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Introduction

Thiophene chemistry is a flourishing area of organic semiconductors as they are useful for

field effect transistors, solar cells and light-emitting diodes.1 This interest stems from the

unique optical and electronic properties of thiophene oligomers and polymers coupled

with the ease of synthesis and their unique reaction selectivity. Therefore, the preparation

of thiophenes is pivotal in this burgeoning area of science. Although there have been sev-

eral reviews that have focused on the preparation of poly(alkylthiophene)s, this is not the

case for oligomeric and monomeric materials. Halo-substituted alkylthiophenes are very

useful compounds that react under various conditions to give a plethora of derivatives,

which can then be used in the field of materials chemistry.

This review summarizes the advances from 1986–2013 in the synthesis and reactivity

of these systems to provide a stepping-stone for the design and preparation of more com-

plex thiophene-based molecular architectures for the next generation of materials in pho-

tonics and electronics. We will focus first on the preparation of halo-substituted

alkylthiophenes by electrophilic aromatic substitution and then their reactivity using vari-

ous metal-catalyzed cross-coupling methods.

I. General Preparation of Halo-substituted Alkylthiophenes

Halo-substituted alkylthiophenes can be prepared in various ways depending on the posi-

tion on the thiophene ring of both the halogen atom and the alkyl chain. Different halogen

atoms such as chlorine, bromine or iodine can be introduced on the ring.

Only a few studies report the preparation of chloro-substituted methyl(alkyl)thio-

phenes2 via electrophilic aromatic substitutions.3 The reaction of benzeneseleninyl chlo-

ride in the presence of aluminum chloride in chloroform with methylthiophenes 1 and 3

affords the corresponding target compounds 2 and 4 in high yields (77–89%) and selectiv-

ity. The authors found that the yields are greatly improved if the reaction is performed in

chloroform instead of dichloromethane (Scheme 1).
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Another method for the chlorination of alkylthiophenes reported by Bidan et al.4 uses sul-

furyl chloride in a polar solvent and led to the synthesis of isomerically pure compound 6 in a
65% yield (Scheme 2).

Bromo-substituted alkylthiophenes are the most often reported halo-substituted

alkylthiophenes. N-bromosuccinimide (NBS) in the presence of the desired alkylthio-

phene in an organic solvent (or solvent mixture), such as acetic acid (AcOH),5 chloroform

Scheme 1

Scheme 2

Scheme 3
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(CHCl3),
6 tetrahydrofuran (THF),7 or N,N-dimethylformamide (DMF),8 are the most

commonly used conditions (Scheme 3). High yields (70–98%) are generally obtained and

depending on the reaction conditions, the mono- or dibromo compounds can be obtained.

With 3-alkylthiophenes, bromination occurs at the 2-position first and then at the 5-posi-

tion to give the corresponding dibrominated compound. Other variations on the reaction

conditions are also reported.9–13

When 2-alkylthiophenes are used as the starting compounds, bromination occurs at

the 5-position first (as in 12, 14) and then at the 3-position (as in10) (Scheme 4).5,8,14

D’Aleo et al. proposed an alternate method to obtain bromo-substituted alkylthio-

phenes using ammonium bromide in the presence of hydrogen peroxide in aqueous acetic

acid to selectively access the monobromo 7 or the dibromo 8 derivative (Scheme 5).15

The authors found that similar yields and selectivities were obtained when N-bromosucci-

mide was used. Moreover, this method was applied for the preparation of iodo-substituted

alkylthiophenes: in this case, ammonium iodide is used instead of ammonium bromide.

Scheme 4

Scheme 5
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Bromo-substituted alkylthiophene derivatives (15, 17) were prepared in high yields

by electrophilic substitution using bromine (Br2) in solvents such as CHCl3 or AcOH

(Scheme 6).10,16

The preparation of iodo-substituted alkylthiophenes has also been reported, although

the reaction conditions differ from those for the preparation of chloro- or bromo-substi-

tuted alkylthiophenes (Scheme 7). Wudl et. al. reported the use of iodine in the presence

of dilute nitric acid to access 2-iodo-3-methylthiophene (18) in a 54% yield.17 The nitric

acid can be replaced with HgO or Hg(AcO)2 to afford the desired iodo-substituted

alkylthiophenes in 92–97% yields.4,13,18

Scheme 6

Scheme 7
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Finally, iodination of 3-alkylthiophenes using N-iodosuccinimide19 in acetic acid at

0�C was reported by Jayakannan et al.20 In addition to the 2-iodo compounds, the reac-

tion also generated the isomeric 5-iodo-3-alkylthiophenes, which were difficult to remove

completely. To summarize, halogenation of alkylthiophenes can be performed under vari-

ous conditions depending on the derivative desired (Cl, Br or I).

II. Reactivity of Halo-substituted Alkylthiophenes

In this section, the reactivity of the generic halo-substituted alkylthiophenes is discussed.

We will first address their reactivity towards lithium reagents in lithium-halogen

exchange reactions. Then, the use of alkylthiophenes in metal-catalysed cross-coupling

reactions, such as the Kumada, Suzuki, Stille, and direct arylation reactions will be

reviewed.

1. Lithiation Reactions

A useful method to generate halo-substituted thiophenes is by a lithium-halogen exchange

reaction. Hellberg et al. have demonstrated the preparation of the dimeric adduct 21 in

94% yield by the mono-lithiation of 3,4-dibromo-2,5-dimethylthiophene (20) in THF fol-

lowed by an oxidative coupling with CuCl2 (Scheme 8). 21

Amer et al. used the n-BuLi/CuCl2 couple as a polymerizing agent with 2,5-dibromo-3-

methylthiophene (8) to generate the polymeric material 22 (Scheme 9).18 The yield of the

polymer was dependent on the reaction temperature chosen.

Scheme 8

Scheme 9
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Ikeda et al. reported that lithium-halogen exchange with 3-bromo-2-methylthiophene

(23) followed by reaction with N,N-dimethylcarbamoyl chloride gave the bis(2-methyl-3-

thienyl)ketone (24) (Scheme 10) in a moderate yield of 48%.22

Aldehyde-functionalized alkylthiophenes are commonly prepared from bromo-substi-

tuted alkylthiophenes (Scheme 11). Several groups have reported the use of the lithium-

bromine exchange reaction, under slightly different reaction conditions. Thus Frey et al.

showed that dilithiation of 2,3,4,5-tetrabromothiophene (25) using n-BuLi and quenching

of the reaction with 1-formylpiperidine23 led to an 80% yield for the dialdehyde 26. Simi-

larly, Elandaloussi et al. described the conversion of 2-bromo-3-octylthiophene (27) to 3-
octylthiophene-2-carbaldehyde (28) in 96% yield using lithium-bromine exchange at

¡100�C followed by formylation by DMF.24

Gong et al. employed a successive lithiation approach (Scheme 12) to first introduce

an alkyl chain at the 2-position of thiophene (29) using n-BuLi in THF followed by addi-

tion of 1-bromooctane to afford 2-octylthiophene (30, R D n-octyl) in 58% yield.6 Subse-

quent lithiation of 30 followed by treatment with DMF as the formylating reagent led to

31 in 61% yield.

Scheme 10

Scheme 11
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Lithiation reactions are very useful for the preparation of precursors for Suzuki,

Stille, Hiyama and Kumada cross-coupling reagents. For instance, various boronic ester

groups can be introduced on the thiophene ring using lithiation protocols (Scheme 13).

Scheme 12

Scheme 13
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El-Shehawy et al. have reported the preparation of 2-(4-n-hexyl-2-thienyl)-4,4,5,5-tetra-

methyl-1,3,2-dioxaborolane (33) from 32 in 95% yield using n-BuLi and tris-(isopropyl)

borane followed by quenching with pinacol.12 A more facile approach towards 33 was

reported by Janssen et al. wherein 5 was selectively lithiated at the 5-position using lith-

ium diisopropylamine (LDA), and the lithiated product was treated with trimethylborate

and pinacol.25 Alternatively, the thiophene was lithiated at the 2-position using lithium-

halogen exchange with n-BuLi and subsequently treated with trimethylborate and pinacol

to give 34 in a 31% yield.25 Janssen et al. also reported that 33 and 34 were very stable

towards silica, which permitted purification using silica gel column chromatography.

Neopentylglycol can be used instead of pinacol for formation of the dioxaborolane as

reported by Pron et al.26 for the preparation of 35.
Stannylthiophene derivatives can also be prepared using LDA or n-BuLi in THF

(Scheme 14). The procedure for the preparation of 3-alkyl-2-halo-5-(tributylstannyl)thio-

phenes has been reported for the chloro, bromo and iodo derivatives.27–29 When n-butyl-

lithium is used as the lithiating agent, a temperature of ¡80�C is used to achieve good

selectivity to target the kinetic product 3629 whereas with LDA, selective addition of the

stannyl group at the 2-position can be achieved at higher temperatures (¡40�C) afforded
37 or 39.27

Yields ranged from 79 to 93% and it is important to point out the authors’ emphasis

on the excellent stability of the stannylthiophene derivatives, as they can be handled in

air or water without immediate degradation.29

The preparation of trimethylsilylthiophene derivatives such as 40 and 42was carried

out by successive lithium-halogen exchange (Scheme 15). Other examples have been

Scheme 14
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Scheme 15

Scheme 16
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reported by Wu and Spivey.30–31 A variety of silyl reagents such as trimethylsilyl chlo-

ride (TMSCl), triethylsilyl chloride (TESCl) or tris(isopropyl)silyl chloride (TIPSCl)

can be employed, and excellent yields of up to 96% were obtained. Interestingly, the

TIPS derivative 42 is readily desilylated (ipso attack) on contact with silica, a fact that

can be attributed to the relief of steric strain caused by the adjacent hexyl group.32–33

2. Metal-catalyzed Cross-coupling Methods

Palladium catalyzed cross-coupling reactions provide valuable protocols for the prepara-

tion of a variety of thiophene derivatives. This section reviews the main cross-coupling

methods, namely the Kumada, Suzuki, Stille and direct arylation reactions.

2.1. Kumada Coupling. Kumada coupling34 is a nickel or palladium catalyzed cross-

coupling reaction used for the preparation of carbon-carbon bonds (alkyl-aryl or aryl-aryl),

and used extensively in the preparation of thiophene based materials. Several articles and

reviews discussing the choice of reagents (solvents or catalyst) for Kumada cross-coupling

reactions have been published.35–39 In this section, we will focus on simple Kumada cou-

pling between halo-substituted alkylthiophenes with another alkyl or aromatic group.

Alkylthiophenes are primarily prepared by Kumada coupling involving a halothio-

phene and the Grignard of a haloalkane. Scheme 16 summarize a series of examples of

various alkylations of thiophene using Kumada coupling to yield 44, 46 or 48).9,21,40

Short, long or branched alkyl chains can be added to the thiophene core to afford yields

often greater than 90%.

A representative Kumada coupling reaction involving an aryl-aryl coupling sequence

is illustrated in Scheme 17.41 First, 2-bromothiophene (49) reacts with magnesium in

diethyl ether to generate the organomagnesium intermediate which undergoes a transme-

tallation with the Ni(dppp)Cl2 catalyst, followed by coupling with the dibromothiophene

derivative; in this particular example, a yield of 50% is reported.

Typical solvents used for this reaction are either neat diethyl ether (Et2O) or tetrahy-

drofuran (THF), although mixed solvent systems such as Et2O/benzene/THF have also

been reported.42

Nakayama reported the use of successive Kumada cross-coupling and bromination

reactions to extend the conjugation of thiophene-derivatized naphthalenes in a controlled

fashion (Scheme 18).43 In the first step, 1,8-diiodonaphthalene was treated with the

Grignard of 2-bromothiophene to afford the desired bisthiophene (52) in 12% yield. Inter-

estingly, the yield was improved 3-fold by using 1,8-dibromonaphthalene (51) instead of

1,8-diiodonaphthalene. The thiophene chain was extended by successive bromination and

Scheme 17
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Kumada coupling to afford the desired tetrathiophene product 53 and up to the octathio-

phene derivative.43 The Kumada coupling method was also used for the preparation of 3-

methyl-2-[8-(3-methyl-2-thienyl)-1-naphthyl]thiophene (54) and its 1H NMR spectrum

was investigated in depth to distinguish the presence of atropisomers.

Various catalysts for such Kumada coupling reactions have been reported. For

instance, Wang et al. reported the use of NiCl2(PPh3)2 for the preparation of 3-methyl-2-

[p-(3-methyl-2-thienyl)phenyl]thiophene (55) (Scheme 19).44 In this case, reaction of

2-bromo-3-methylthiophene (7) with magnesium generated the Grignard reagent, which

was subsequently treated with 1,4-dibromobenzene to afford 55.

Tanaka et al. reported the regioselective preparation of head-to-tail (HT) oligoal-

kylthiophenes.45 Their paper focused on the regioselective metallation on the 5-posi-

tion of 3-n-hexylthiophene by hydrogen abstraction, followed by cross-coupling with

2-bromo-3-n-hexylthiophene to form the HT-coupled oligoalkylthiophene. In doing

so, they used the Knochel-Hauser base TMPMgCl�LiCl (TMPH D 2,2,6,6-tetrame-

thylpiperidine), as shown in Scheme 20, for the HT regioselective formation of 56.

Different ligand and catalyst systems were investigated and the combination of Ni

(cod)2 with 2 equivalents of 1,3-Bis(2,6-di-i-propylphenyl)imidazolidin-2-ylidene

(SIPr) resulted in complete conversions with quantitative yields.

2.2. Suzuki coupling. The Suzuki-Miyaura palladium catalyzed cross-coupling reaction

possesses many advantages such as wide functional group tolerance, non-toxicity, mois-

ture insensitivity and a relative stability of some boronic derivatives.46 The catalytic sys-

tem for the Suzuki-Miyaura coupling involves three key steps: 1. oxidative addition, 2.

transmetallation and 3. reductive elimination. The oxidative addition of the aryl bromide

Scheme 18

Scheme 19
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represents the key step and the choice of the ligands is crucial for this step, especially for

the synthesis of oligo- and polyalkylthiophene derivatives. The electron-donating ability

of the ligand is therefore important as it increases the electron density of the palladium

intermediate. Using electron-rich palladium ligands generally allows more efficient

coupling while supressing undesired side-reactions. For instance, Li et al. investigated

various ligands for the Suzuki coupling of thiophene-based materials (Scheme 21).47 In

their study, Pd(PPh3)4 was compared with an electron-rich version tris[tri(2-thienyl)phos-

phine)palladium) or (Pd(PTh3)4), and it was found that the latter catalytic system resulted

Scheme 20

Scheme 21

Scheme 22
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in higher yields for a wide variety of thiophene-based substrates. For example, the synthe-

sis of 59 afforded an 82% yield when using Pd(PTh3)4 while the traditional Pd(PPh3)4
afforded a 76% yield (Scheme 21).

The choice of the reaction conditions is crucial in Suzuki cross-coupling reactions.

For instance, Liu’s group recently reported a highly active catalytic system for Suzuki-

Miyaura cross-coupling reaction using water as the solvent to prepare phenyl-substituted

thiophenes (61 and 64) (Scheme 22).48 The authors reported yields over 80% when using

the commercially available ligand L1. After optimizing the phase transfer agent (tetra-n-

butylammonium bromide or Me(octyl)3N
CCl¡), the base (K3PO4 H2O, KOAc, KOH,

K2CO3, Na2CO3, NaOH, Cs2CO3) and time (1 or 8 h), a 98% yield was achieved on a

model system. These optimal conditions were used for various substrates, including thio-

phene substrates, with high yields (Scheme 22).

Miyaura et al. reported that the addition of copper(I) halides in Suzuki reaction

conditions was highly effective for the preparation of ortho-substituted biaryls

(Scheme 23).49 For instance, they found that coupling 2-bromo-3-methylthiophene (7)

with sterically encumbered aryltriolborates resulted in aryl-substituted thiophene (66) in

80–90% yields, depending on the aryltriolborate. It is proposed that the Cu(I) facilitates

the transmetallation of the boronates to the aryl palladium bromide.50 Furthermore, this

Scheme 23

Scheme 24

Scheme 25
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method does not use a base, which is unusual for a Suzuki-Miyaura coupling, enabling the

use of starting materials containing base-sensitive functional groups.

It is also possible to perform Suzuki-Miyaura coupling selectively.51 In the exam-

ple shown in Scheme 24, 2-(3-n-hexyl-2-thienyl)-4,4,5,5-tetramethyl-1,3,2-dioxaboro-

lane reacts selectively with the iodine on 2-bromo-3-n-hexyl-5-iodothiophene (67) to

form 68 in 63% yield. The 2-bromo-3-n-hexyl-5-iodothiophene (67) was prepared by

successive halogenations of 3-n-hexylthiophene (48) with N-bromosuccinimide then

N-iodosuccinimide.

Various boronic esters have been used for the Suzuki synthesis of thiophene deriva-

tives.52 For example, 2-[5-(5,5-dimethyl-1,3,2-dioxaboran-2-yl)-2-thienyl]-5,5-dimethyl-

1,3,2-dioxaborane (69) was reacted with 2-bromo-3-n-octylthiophene (27) under anhy-

drous conditions to generate the terthiophene 70 in 28% yield (Scheme 25).

Using the same boronic ester, Collard et al. reported the coupling of 1-(2-bromo-3-

thienyl)-perfluorooctane (71) with 72 for the preparation of a bis(thiophene) derivative 73

in 90% yield (Scheme 26).53 The direct attachment of a fluoroalkyl substituent on the

thiophene raises the oxidation potential of the reactant compared to its alkyl analogues.

This electron-withdrawing nature of the side chain renders the corresponding oligothio-

phene n-dopable, which is a useful property for electron transport materials.53

Hiroto et al. have reported an interesting route for the preparation of diarylethene

photoswitchable materials.54 Normally, synthetic methods to such species are limited

to the nucleophilic addition-elimination reaction of perfluorocyclopentene with hetero-

aryllithium reagents at cryogenic temperatures. The perfluorocyclopentene in this

reaction is difficult to handle as the boiling point is 27�C and low yields (»30%) are

generally obtained. Hiroto et al. proposed a Suzuki-coupling approach with the use of

Scheme 26

Scheme 27
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1,2-dichlorohexafluorocyclopentene (75), and the Suzuki-Miyaura coupling works

well with ligands such as 2-dicyclohexylphosphino-20,60-dimethoxybiphenyl (SPhos)

or 2-dicyclohexylphosphino-2,40,60-triisopropylbiphenyl (XPhos) in the presence of

Pd2dba3.CHCl3 for unsubstituted thiophene boronic acid derivatives 76. However,

with alkylthiophene boronic acids the reaction conditions are slightly modified where

tricyclohexylphosphine (PCy3) is used as the ligand and CsF as the base. Yields of up

to 88% were obtained (Scheme 27), and these reaction conditions also tolerated ester,

nitrile or aldehyde functional groups.

Suzuki-Miyaura palladium catalyzed cross-coupling was also used for the prepara-

tion of a star-shaped semiconducting material for dye-sensitized solar cells, and an

Scheme 28

Scheme 29

Scheme 30
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example is reported in Scheme 28.55 Therein, tris(4-(4,4,5,5-tetramethyl-[1,3,2]dioxa-

borolane)phenyl)amine (79) was reacted with 2-bromo-3-methylthiophene under cross-

coupling conditions to afford tris[p-(3-methyl-2-thienyl)phenyl]amine (80) in 94% yield.

2.3. Stille Coupling. Stille coupling is one of the most used palladium cross-coupling

methods56 for the preparation of thiophene oligomers57 (bithiophene, terthiophene, qua-

terthiophene, etc.) and polymers.58–60 For more information, mechanistic discussions are

reported in a review by Espinet61 and an excellent review on the advances in the synthesis

of regioregular polythiophenes by McCullough et al. has also been published.62

Scheme 29 depicts an example of a Stille coupling involving a halo-substituted

alkylthiophene unit.63 In this work, 2,5-dibromo-3-methylthiophene (8) underwent a

palladium catalyzed cross-coupling reaction with the stannylthiophene protected alde-

hyde 81. The reaction was performed in two steps, first the Stille coupling of 8 and 81 fol-

lowed by the deprotection of the acetal to form 82 in an overall yield of 73%.

Scheme 31

Scheme 32
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Turbiez et al. reported the synthesis of various 3,4-ethylenedioxythiophene (EDOT)-thio-

phene oligomers64 using Stille coupling with 2-bromothiophene and 2-bromo-5-hexylth-

iophene to give dimers 84 or 85 in yields ranging from 33 to 73% (Scheme 30).

Odobal et al. reported the synthesis of a quaterthiophene.65 The quaterthiophene 87 was

obtained by Stille coupling of 2-bromo-3-n-octylthiophene (27) and 5,50-bis(tributyl-
stannyl)-2,20-bithiophene (86) in 86% yield using a two-solvent system (THF:DMF)

(Scheme 31). The authors reported a lower yield when 86 was replaced with 5,50-bis
(trimethylstannyl)-2,20-bithiophene. In this last case, the major compound obtained was

Scheme 34

Scheme 33
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the 3,30-di-n-octylsexithiophene which originated from the homocoupling of the bithio-

phene 86 before it reacted with the 2-bromo-3-n-octylthiophene (27). This side reaction

has been reported by several groups. 29,66–67

Scheme 35

Scheme 36
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Following up the previous example, Li et al. have reported the synthesis of thiazole-

containing hexamers (90 and 93) for field-effect transistors 68 The synthesis is shown in

Scheme 32 and, in general, yields for the thiazole-containing oligomers were significantly

lower (around 20% for 90) than those for the oligothiophenes. Various side-products

(dimerization of bis((tributylstannyl)thiazole for instance) contributed to this low yield,

however, substituting the 4 and 40 position with an alkyl chain decreased the amount of

dimerized side product, thus increasing the yield of 93 up to 74%. The solubility of these

alkylated thiazole-containing oligomers also increased in common organic solvents.

The cross-coupling of aryl bromides with organostannanes to form vinylthiophenes

(95 and 96) has been reported by Gajare et al.69 They reported the use of a low-coordi-

nated diphosphinidenecyclobutene ligand for the efficient cross-coupling of electron-rich

and electron-poor aryl bromides with organotin reagents. After optimizing the conditions

(Scheme 33), the system afforded yields ranging 80–89% when halo-substituted alkylth-

iophenes were used. This method was compatible with nitro, aldehyde or ester functional

groups.

A recent article by Lundin et al. discusses the head-to-head (HH) and head-to-tail

(HT) coupling of alkylthiophenes, the resulting regiochemistry and its impact on the poly-

mer’s properties. 70 The authors investigated the regiochemical orientation using a model

system of two different alkylated bithiophenes obtained by Stille coupling (Scheme 34).

The palladium cross-coupling reaction was performed in a microwave reactor using

Pd2dba3/P(o-Tol)3 in chlorobenzene. Two bithiophenes, 5-bromo-4-n-decyl-2,20-bithio-
phene (99) and 5-bromo-3-n-decyl-2,20-bithiophene (100), were obtained. Compound 99

is formed in preference of 100 in roughly a 2:1 ratio, a preference similar to that observed

for poly(3-n-decylthiophene). In addition, this ratio was dependent on the number of

equivalents of 2-(tributylstannyl)thiophene used, where a lower stannane equivalent

resulted in a greater preference towards 99.

Stille palladium catalyzed cross-coupling was also applied for the synthesis of star-

shaped materials by several groups.55,71 Cores such as 1,3,5-tribromobenzene, tris(4-bro-

mophenyl)amine55 (101) or 2,5,8-tris(tributylstannyl)benzo[1,2-b:3,4-b0:5,6-b00]trithio-
phene71 (103) have been used under three-fold Stille coupling conditions [(PdPPh3)4/

toluene] to give the corresponding stars (Scheme 35). A 75% yield was obtained for the

synthesis of tris[p-(2-thienyl)phenyl]amine (102) but a low yield of 10% was obtained for

the benzo[1,2-b:3,4-b0:5,6-b00]-trithiophene derivative 104. In the case of the 1,3,5-tribro-

mobenzene (105) core, the Stille coupling was performed with (5-chloro-4-octylthio-

phen-2-yl)trimethylstannane (36).29 The chlorine atoms on 36 were retained on the

thiophene rings to afford 106 in 91% yield (Scheme 36).

2.4. Direct Arylation. The conventional methods to synthesize p-conjugated systems

are performed by using palladium cross-coupling reactions, such as Kumada, Suzuki-

Miyaura, Stille, Sonogashira or Hiyama. Although these methodologies allow the for-

mation of C-C bonds quite efficiently, the preparation of specific intermediates is

required. For instance, Suzuki coupling requires the preparation of boronic acid

(or ester) derivatives and Stille coupling requires the preparation of toxic organotin

intermediates. It is also important to point out that many steps are often required to

reach the desired targets and the choice of other functional groups on the molecules is

limited. Direct selective arylation opens doors to greener, more efficient, syntheses of a

variety of new heteroaromatic compounds, such as small molecules and macromolecules

for organic, electronic materials. 72–73
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We have recently reported a selective direct arylation approach for the preparation of

2-aryl-4-bromo-5-methylthiophene derivatives.74 Using the reaction conditions shown in

Scheme 37, we were able to synthesize a library of 2-aryl-4-bromo-5-methylthiophenes

(107) in one step with moderate yields (27–63%). Electron-withdrawing groups generally

resulted in higher yields than electron-donating groups, and homocoupling of 3-bromo-2-

methylthiophene was not observed. The observed selectivity is rationalized by the pre-

ferred oxidative addition of the aryl bromide (rather than 3-bromo-2-methylthiophene) on

the Pd(OAc)2 catalyst.

Shang et al. recently reported a versatile method for the synthesis of heterocyclic

chalcone analogues using Pd-catalyzed dehydrogenative cross-coupling between hetero-

arenes and ethyl ketones.75 For instance, starting with 2-chloro-3-methylthiophene (2)

and propiophenone (108) it was possible to obtain the desired (E)-3-(5-chloro-4-methyl-

thiophen-2-yl)-1-phenylprop-2-en-1-one (109) in 60% yield in one step using the condi-

tions described in Scheme 38. The use of the PCy3 ligand was crucial as it suppressed the

homocoupling of the thiophene and improved the efficiency of the reaction by reducing

the electrophilicity of the palladium. The second parameter that must be taken into

account is the choice of the base. In this case, LiOAc used together with 2,2,6,6-tetra-

methyl-1-piperidinyloxy (TEMPO) as co-oxidant led to an increase in yield, presumably

by accelerating the re-oxidation of Pd0 to PdII.76 Finally, a variety of functional groups

were tolerated such as formyl or acetyl groups (both base sensitive) and a ketal group

(acid sensitive). Likewise, both electron-withdrawing and electron-donating substituents

on the benzene ring of the ethyl ketone led to excellent yields.

Join et al. proposed the use of an Ir catalyst to achieve direct arylation of a heteroar-

ene with iodoarene (110) to form phenylthiophenes (111) (Scheme 39).77 After screening

various iridium complexes and ligands with Ag2CO3, the authors found the PCy3 ligand

was the most effective ligand, affording high yields. The reaction conditions allowed the

use of ketone, ester, nitro or methoxy functional groups. In addition, various heteroaryls

Scheme 37

Scheme 38
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(thiophene, furan, pyrrole, indole, benzothiophene) were applied as the coupling partner

and the arylation was found to take place regioselectively; namely, the alpha position of

thiophene, furan and pyrroles, the 2-position for benzothiophene and the 3-position for

indoles. It is worth mentioning that Br-containing substrates underwent C-H arylation

leaving the C-Br bond intact, which is very attractive for subsequent steps.

Abdo et al. reported the application of a direct C-H arylation reaction between a

thieno[3,4-pyrazine] (TP) and 2-bromo-3-n-hexylthiophene (Scheme 40).78 The authors

used two different approaches, a thermally activated C-H direct arylation and a micro-

wave-assisted direct C-H arylation using Pd(OAc)2/Bu4NBr. With the thermal approach,

a mixture of the di-substituted TP (113) and the tri-substituted TP (112) products was

obtained in 50% and 22% yield, respectively. The microwave-assisted method led to a

similar mixture after 5 min and increasing the time did not lead to a difference in the yield

or ratio of the products.

Itami et. al. reported the use of a Ni(OAc)2/bipy catalyst system to perform C-H aryla-

tion of heteroarene rings (Scheme 41).79–80 After screening a variety of Ni catalysts,

ligands and bases, the authors found that the Ni catalysts and the LiOt-Bu base were

Scheme 39

Scheme 40
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critical in obtaining the targets.79 In addition, bidentate ligands such as bipy, were found

to be more efficient and solvents like 1,4-dioxane led to slightly higher yields compared

to solvents such as 1,2-dimethoxyethane (DME), toluene, DMF or N-methylpyrrolidone

(NMP). Using the optimum conditions, the direct arylation of 2-bromo-3-methylthio-

phene (7) with benzothiazole (114) afforded 2-(3-methyl-2-thienyl)-1-thia-3-azaindene

(115) in 58% yield.

Hassan et al. reported a convenient method to prepare symmetrical alkylbithio-

phenes81 and the reaction conditions are given in Scheme 42. The bithiophene 44 was

obtained in a 92% yield after 4h. Toluene was used to avoid carbon-hydrogen reduction

and in this case, the use of the n-Bu4NBr did not increase or decrease the reaction yield.

In general, the use of a tetraalkylammonium salt was employed to accelerate the reaction

rate and increase yields.81

Kobayashi et al. reported the selective palladium catalyzed coupling reaction of

halogenated methylthiophenes with iodobenzenes using a AgNO3/KF system

(Scheme 43).82 The authors found that no reaction was observed at the C-Br bond, and

the fractional addition of AgNO3 improved the reaction yield. The yields of arylated

alkylbromothiophenes 116 ranged from 51–61%; methoxy, ester and nitrile groups were

tolerated.

Scheme 41

Scheme 42

Scheme 43
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The same group also reported the use of two other substrates ethyl-4-iodobenzoate

(117) and 9-ethyl-3-iodo-9H-carbazole (119) with PdCl2(PPh3)2 as the catalyst as illus-

trated in Scheme 44.83,84. Yields of 86 and 75% were obtained for ethyl p-(5-bromo-4-

hexyl-2-thienyl)benzoate (118) and 2-bromo-5-(9-ethyl-9H-carbazol-3-yl)-3-hexylthio-

phene (120), respectively.

2.5. Other Palladium-catalyzed Reactions. Although the most common reactions of

halo-substituted alkylthiophenes are Kumada, Suzuki, Stille and direct arylation cross-

coupling reactions, there are other important Pd-catalyzed reactions often employed. For

instance, Watanabe et al. reported Buchwald-Hartwig palladium-catalyzed reaction using

a halo-substituted alkylthiophene by treating diphenylamine (121) with 2-bromo-3-meth-

ylthiophene (7) to afford 122 in 58% yield (Scheme 45).85 In addition, 121 was treated

with 3-bromothiophene to afford the corresponding diphenylaminothiophene in 69%

yield with only 0.25 mol % of Pd(OAc)2.

Hopper et al. also reported the amination of five-membered heterocyclic halides

under Buchwald-Hartwig conditions using the P(t-Bu)3 ligand.
86Scheme 46 illustrates the

different locations of the methyl group on the thiophene ring led to the differences in the

yields obtained from various methyl-substituted bromomethylthiophenes. Thus reaction

of 123 with N-methyl-aniline gave a 52% yield of the aminothiophene 124 while only a

6% yield of 125 was obtained from the same reaction with 2-bromo-3-methylthiophene

(7). In this case, the major product isolated was the amidine PhND CHN(Me)Ph, presum-

ably arising from a metal-mediated disproportionation of the unstable imine CH2 D
NHPh resulting from a b-hydride elimination of the palladium N-methylaniline

Scheme 44

Scheme 45
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intermediate. However, the reaction of 3-bromo-4-methylthio-phene (126) with N-meth-

ylaniline afforded 127 in 54% yield, showing that the position of the bromine relative to

the methyl group–namely 2-bromo-3-methylthiophene compared to 3-bromo-4-methyl-

thiophene–has a major influence on the yield of aminothiophene derivatives.

Both Littke87 and Yu88 groups reported the palladium-catalyzed cyanation of hetero-

raryls under mild and simple conditions (Scheme 47) to prepare 3-methylthiophene-2-car-

bonitrile (129) in good yields (86%87 and 90%88 respectively). Yu et al. used 1,10-bis
(diphenylphos-phino)ferrocene (dppf) in the presence of Zn(CHO)2.2H2O. The zinc

formate dihydrate was critical as it reactivated the palladium catalyst.88 Littke et al. stud-

ied the same reaction using Pd(P(t-Bu3)2 as catalyst with similar success.87 In addition, a

variety of functional groups such as aniline, phenol, ester, nitro, amide, carboxylic acid

and boronic acid were tolerated.87

Tour’s group reported the reaction of 3-ethyl-2-iodothiophene (129) with trimethylsi-

lylacetylene in a Sonogashira palladium cross-coupling reaction (Scheme 48).89 Using

Scheme 46

Scheme 47
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standard Sonogashira conditions (CuI, PdCl2(PPh3)2, THF), 130 was obtained from 2-

iodo-3-ethylthiophene (129) in nearly quantitative yield (97%).

Murray et al. reported the coupling of 2-bromo-3-methylthiophene (7) with

methyl isocrotonate in a Heck-Mizoroki reaction (Scheme 49).90 After the reaction

conditions were optimized to determine the best catalyst/ligand/base/solvent system,

that procol was applied to a variety of substrates to synthesize many crotonate

derivatives. Interestingly, methyl (2Z)-butenoate (131) afforded a 53% yield of

methyl (E)-3-(3-methyl-2-thienyl)-2-butenoate (132) without contamination from

any other isomers.

Liu et al. have reported a Pd2(dba)3/2-dimethylamino-20-diphenylphosphino-
1,10-biphenyl catalyst system for the formal a-heteroarylation of acetone to give

134 as shown in Scheme 50.91 A variety of ligands were screened and Buchwald’s

o-biphenyl phosphines led to the best reaction yields. The reaction tolerates both

electron-withdrawing groups and electron-donating groups on the aromatic group.

Mechanistically, the reaction proceeds via a tin enolate generated in situ, which

undergoes transmetallation, and coupling with the corresponding haloaromatic

ring. In this regard, triflate, chloride and bromide moieties can be used in the aro-

matic substrate.

Scheme 48

Scheme 49

Scheme 50
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Conclusion

The chemistry of thiophenes is rich and provides several avenues for the synthesis of

complex molecular architectures through the selective but reactive nature of the thio-

phene ring. Functionalization of these materials using various metal-catalyzed cross-cou-

pling methods demonstrates the vast number of molecular structures available for the

production of novel oligomeric and polymeric materials for the next generation of materi-

als for organic photonics and electronics.
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