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Abstract

Groundwater is the primary source for irrigation and drinking in

many parts of the world. Anthropogenic activities such as mining;

large scale production, storage and transport of various chemicals;

improper waste management practices; and unsustainable intensive

agricultural practices have resulted in the contamination of many

groundwater aquifers. The identification of the exact location and

release history of contributing sources, which are often unknown, is

very important in planning effective remediation measures as well

as in determining the liability on the polluter. Contamination of

ground water aquifers may be caused by a combination of pollutant

sources varying in time of release, flux and location. In situations

where they are unknown, location and release histories have to be

estimated by inversion. Inversion of the equations governing flow

and transport over time and space is an ill-posed problem.

Estimation of unknown groundwater pollutant source

characteristics from measured pollutant concentrations at several

monitoring locations is generally an ill-posed and sometimes

non-unique inverse problem. Linked simulation-optimization based

methodologies have evolved as effective tools capable of solving

this problem.



One of the important issues in estimation of unknown

contamination sources is the release history reconstruction. It is

generally assumed that reliable information on potential source

locations and their time of activity is available from background

studies of anthropogenic activities on a contaminated site. In such

cases, only the release history of the pollutant sources is unknown.

Some of the main limitations in accurate source characterization are:

1. Sparsity of concentration measurement data.

2. Inefficient monitoring network for concentration measurements.

3. Difficulty in establishing the time of pollutant source activity

initiation.

4. Applicability of optimal source characterization to distributed

sources.

5. Problems associated with achieving a global optimal solution

efficiently.

In order to address some of these limitations, initially a linked

simulation-optimization model for optimal source characterization

is developed using adaptive simulated annealing (ASA) as

the optimization algorithm. Performance of the ASA based

methodology was compared with a source characterization method

using genetic algorithm (GA) for optimization, in terms of their

ability to handle uncertainties and efficiency of convergence. Using

illustrative aquifer examples, it was shown that ASA converges

faster and produces better results even with erroneous measurement



data and with uncertainties in hydraulic conductivity and porosity.

A more complex scenario exists when no reliable information

is available on the potential location or initial time of activity

of sources. Apart from this, the frequency of measurement at

monitoring wells may not be uniform and some measurements

might be missing in practical situations.

A methodology is developed to generate initial estimates of source

characteristics such as source location and to estimate the initial time

of activity from pollutant concentration measurements obtained

from a single location where the contamination was first detected.

dynamic time warping (DTW) distance is used to minimize errors in

estimation of source characteristics arising from improper alignment

of estimated and observed concentration data on the temporal axis.

Performance of this methodology is evaluated using data obtained

from both an illustrative site and an actual contaminated site.

Based on these estimates, a methodology is developed to design

a monitoring network to generate concentration measurement

information aimed at obtaining more reliable estimates of source

characteristics. This methodology is implemented for a real

contaminated site and it was found that the use of developed

methodology results in reliable estimates of source characteristics

with a far lesser number of monitoring wells.

The source characterization methodology is then extended for

estimation of release history of distributed pollutant sources

in a realistic scenario. Distributed sources in an abandoned



mine site were considered for this purpose. A conceptual

flow model is developed and calibrated for an abandoned mine

site in South-East Queensland. Various illustrative scenarios of

contamination are considered for evaluating the performance of

this developed methodology. It was shown that the developed

methodology is potentially applicable for estimation of distributed

source characteristics.

When management measures are implemented to control

contamination in a groundwater aquifer, measured concentration

values are the resultant effect of natural transport and control

measures. This can produce incorrect estimates for source

characteristics. The methodology for release history reconstruction

can be applied to managed contaminated sites by incorporating

the proposed management strategy into the groundwater flow or

transport model. This is illustrated by incorporating contamination

management strategies already in place into the groundwater flow

and transport model for an abandoned mine site with some degree

of existing control measures.



Contents

List of Figures xv

List of Tables xviii

List of Symbols and Abbreviations xx

1 Introduction 1

1.1 Unknown Groundwater Pollutant Source Characterisation . . . 3

1.2 Linked Simulation-Optimization Approach . . . . . . . . . . . . 5

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

2 Review of Literature 10

2.1 Unknown Groundwater Pollutant Source Characterisation . . . 10

2.1.1 Linked Simulation-Optimization Approach of

Unknown Groundwater Contaminant Source

Characterisation . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Monitoring Network Design for Unknown Groundwater

Contaminant Source Characterisation . . . . . . . . . . . . . . . 18

2.3 Relevant Tools and Techniques . . . . . . . . . . . . . . . . . . . 24

2.3.1 Flow and Transport Modelling . . . . . . . . . . . . . . . 24

2.3.2 Techniques for Parameter Uncertainty Representation . 26

x



2.3.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . 27

2.3.4 Techniques for Pattern Recognition and Classification . 30

2.4 Motivation for this Study . . . . . . . . . . . . . . . . . . . . . . 31

3 Three-Dimensional Groundwater Contamination Source

Identification Using Adaptive Simulated Annealing 33

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Simulation of Groundwater Flow and Transport . . . . . . . . . 38

3.2.1 Mathematical Representation of Groundwater Flow and

Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Numerical Solution of Groundwater Flow and Transport

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2.1 MODFLOW . . . . . . . . . . . . . . . . . . . . 43

3.2.2.2 MT3DMS . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Formulation of the Optimization Problem . . . . . . . . 44

3.2.4 Optimization Algorithms . . . . . . . . . . . . . . . . . . 46

3.2.5 Suitability and Sensitivity of Adaptive Simulated

Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Simulating Errors in Concentration Measurement Data . 50

3.3.2 Incorporating Uncertainty in Hydrogeologic Parameters 51

3.3.3 Performance Evaluation Criteria . . . . . . . . . . . . . . 52

3.3.4 Incorporation of Different Concentration Monitoring

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Discussion of Solution Results . . . . . . . . . . . . . . . . . . . 55

3.4.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



3.4.2 Source Flux Magnitude Estimation with Error Free Data 58

3.4.3 Source Flux Magnitude Estimation with Erroneous Data 60

3.4.4 Source Flux Magnitude Estimation with Uncertainty in

Hydrogeologic Parameters . . . . . . . . . . . . . . . . . 62

3.4.5 Effects of Monitoring Network . . . . . . . . . . . . . . . 66

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Methodology for Initial Estimation of Unknown Pollutant Source

Characteristics and Design of Monitoring Network 72

4.1 Preliminary Estimation of Unknown Groundwater Pollutant

Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Pattern Comparison using Dynamic Time Warping

Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.2 Pattern Comparison using DTW Distance to Estimate

the Time of First Activity of Unknown Pollutant Source 81

4.1.3 Initial Source Characteristics Estimation . . . . . . . . . 85

4.2 Monitoring Network Design for Efficient Unknown Pollutant

Source Characterisation . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Performance Evaluation of Methodology for Initial Estimation

of Unknown Pollutant Source Characteristics and Design of

Monitoring Network 93

5.1 Performance Evaluation Criteria for Initial Estimation of

Unknown Pollutant Source Characteristics . . . . . . . . . . . . 93

xii



5.1.1 Performance Evaluation Criteria for Monitoring

Network Design . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Initial Estimation of Source Characteristics . . . . . . . . 96

5.2.3 Monitoring Network Design . . . . . . . . . . . . . . . . 102

5.3 Application to a Contaminated Aquifer . . . . . . . . . . . . . . 105

5.3.1 Site Description . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Groundwater Flow Model and its Calibration . . . . . . 107

5.3.2.1 Boundary Conditions . . . . . . . . . . . . . . . 109

5.3.2.2 Sources and Sinks . . . . . . . . . . . . . . . . . 110

5.3.2.3 Model Calibration . . . . . . . . . . . . . . . . . 110

5.3.3 Groundwater Transport Model . . . . . . . . . . . . . . . 114

5.3.4 Performance Evaluation of Initial Estimation of

Unknown Pollutant Source Characteristics . . . . . . . . 118

5.3.5 Performance Evaluation of Monitoring Network Design 120

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Application of Release History Estimation Methodology

to Distributed Sources incorporating Surface-Groundwater

Interactions 124

6.1 Site Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Topography and Climate . . . . . . . . . . . . . . . . . . 127

6.1.2 Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Numerical Groundwater Flow Modelling . . . . . . . . . . . . . 129

6.2.1 Geology and Hydrogeology . . . . . . . . . . . . . . . . . 132

xiii



6.2.2 Model Layers . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.3 Hydrogeological Properties . . . . . . . . . . . . . . . . . 135

6.2.4 Sources, Sinks and Boundary Conditions . . . . . . . . . 135

6.2.5 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Transport Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Performance Evaluation of Release History Reconstruction

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusions 155

References 159

xiv



List of Figures

3.1 Schematic Representation of Linked Simulation-Optimization

Model using Adaptive Simulated Annealing . . . . . . . . . . . 39

3.2 Model Variogram and Spatially Correlated Hydraulic

Conductivity Values Generated for the First Layer . . . . . . . . 53

3.3 Illustrative Study Area . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Top View of Study Area Showing Sources and Monitoring

Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Estimated Release History with Error Free Data . . . . . . . . . 59

3.6 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Reconstructed Release Histories using the Competing Methods 63

3.8 Various Monitoring Networks . . . . . . . . . . . . . . . . . . . . 67

3.9 Characteristic Curves of Wells on Chosen Monitoring Networks 68

3.10 Source Release History Reconstruction using Different

Monitoring Networks . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Illustrative Example of Initial Pollutant Detection . . . . . . . . 74

4.2 Breakthrough Curve at a Monitoring Location . . . . . . . . . . 76

4.3 Illustrative Example of Pattern Comparison using Dynamic

Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Computed DTW Distance over Time . . . . . . . . . . . . . . . . 84

xv



4.5 Effects of Approximation of Source Flux Magnitudes on

Breakthrough Curve . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Flowchart Showing the Steps in Initial Estimation . . . . . . . . 89

5.1 Illustrative Study Area . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Actual Release History of the Source . . . . . . . . . . . . . . . . 98

5.3 Model Generated Observation Sequences with Synthetic Errors 98

5.4 Discretized Potential Source Locations . . . . . . . . . . . . . . . 100

5.5 Potential Monitoring Locations . . . . . . . . . . . . . . . . . . . 102

5.6 Estimated Release History . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Location of the Study Area within Upper Macquarie

Groundwater Model . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Extent of Study Area and Contaminated Area, Elevation Profile

and Location of Monitoring Wells . . . . . . . . . . . . . . . . . 107

5.9 Layers of the Developed Conceptual Model . . . . . . . . . . . . 108

5.10 Model of the Study Area . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Components of a Calibration Target Box Plot . . . . . . . . . . . 111

5.12 Calibration Results of Groundwater Flow Model . . . . . . . . . 113

5.13 Estimated vs Observed Heads after Calibration . . . . . . . . . 114

5.14 Simulated Heads in Layer 1 . . . . . . . . . . . . . . . . . . . . . 115

5.15 Simulated Heads in Layer 2 . . . . . . . . . . . . . . . . . . . . . 116

5.16 Simulated Heads in Layer 3 . . . . . . . . . . . . . . . . . . . . . 117

6.1 Topographical Features of the Study Area. Adapted from: Wels

et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 The Don and Dee River Groundwater Management Unit

Boundaries. Adapted from: Government of Queensland (2011) 130

xvi



6.3 Historical Catchment Boundaries. Adapted from: Unger et al.

(2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Geology of the Mine Site Adapted from: Taube (1986) . . . . . . 133

6.5 Top Elevation Contour Map and MODFLOW Boundary

Conditions in Layer 1 . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Top Elevation Contour Map and MODFLOW Boundary

Conditions in Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Top Elevation Contour Map and MODFLOW Boundary

Conditions in Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Top Elevation Contour Map and MODFLOW Boundary

Conditions in Layer 4 . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.9 Estimated vs Observed Heads after Calibration . . . . . . . . . 142

6.10 Calibrated Groundwater Model of the Study Area . . . . . . . . 143

6.11 Recharge Rates for Various Recharge Zones in the Study Area . 146

6.12 Simulated Heads in Layer 1 . . . . . . . . . . . . . . . . . . . . . 147

6.13 Simulated Heads in Layer 2 . . . . . . . . . . . . . . . . . . . . . 148

6.14 Simulated Heads in Layer 3 . . . . . . . . . . . . . . . . . . . . . 149

6.15 Simulated Heads in Layer 4 . . . . . . . . . . . . . . . . . . . . . 150

6.16 Estimated Source Concentrations and Convergence Profile for

Various Error Levels . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvii



List of Tables

3.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Actual Source Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Parameters used in Optimization Algorithms . . . . . . . . . . . 60

3.4 Normalized Absolute Error of Estimation . . . . . . . . . . . . . 62

3.5 Performance Evaluation for Uncertainty in Hydrogeologic

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Actual Source Characteristics . . . . . . . . . . . . . . . . . . . . 97

5.3 Estimation of Preliminary Source Characteristics using Error

Free Observed Data . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Monitoring Locations Chosen in the Optimal Monitoring

Network and Arbitrary Monitoring Networks for Comparison 103

5.5 Extraction Wells in the Study Area . . . . . . . . . . . . . . . . . 110

5.6 Parameters Used for Flow and Transport Model of BTEX

Affected Study Area . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 Initial Estimates of Source Characteristics . . . . . . . . . . . . . 120

5.8 Source Characteristics Obtained using Linked

Simulation-Optimization Method . . . . . . . . . . . . . . . . . . 122

xviii



6.1 Parameters Used for Flow and Transport Model of the Study

Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Observed and Estimated Values of Hydraulic Head at Various

Monitoring Locations . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Actual Source Concentrations . . . . . . . . . . . . . . . . . . . . 151

xix



Partial List of

Symbols and

Abbreviations

∆x Finite Difference grid spacing in

x-direction

∆y Finite Difference grid spacing in

y-direction

∆z Finite Difference grid spacing in

z-direction

θ Porosity of the porous medium,

dimensionless

ϑi Seepage or linear pore water velocity,

(LT−1)

Cns Simulated concentration

Cpert Perturbed contaminant concentration

value

Dij Hydrodynamic dispersion coefficient,

(L2T−1)

Kij The hydraulic conductivity tensor (LT−1)

Ss The specific storage of the porous media

(L−1)

Sud A uniform random number between -1

and +1

ASA Adaptive Simulated Annealing

C Concentration of pollutants dissolved in

groundwater, (ML−3)

DERM Department of Environmental Resources

Management, Govt. of Queensland,

Australia.

DTW Dynamic Time Warping

GA Genetic Algorithm

GMU Groundwater Management Unit

h Potentiomentric Head (L)

NAEE Normalized absolute error of estimation

NSW New South Wales, Australia

SA Simulated Annealing

SRTM Shuttle Radar Topography Mission

t The time (T)

UNEP United Nations Environment Programme

xx



Chapter 1

Introduction

Groundwater resources are susceptible to contamination from pollutants

generated by anthropogenic agricultural and industrial activities. Often,

when the contamination is first detected, little is known about the various

characteristics of the pollutant source. This study presents methodologies

for unknown groundwater pollutant source characterisation using linked

simulation-optimization approach. The performance of these methodologies

are evaluated for practical scenarios of point and distributed sources of

groundwater pollution.

Water is essential to support life and for the preservation of environment.

Due to growing populations of human beings and associated increase in

anthropogenic activities such as agriculture and industrialisation, water

demand has risen sharply. According to the recent estimates published by

UNEP, global water consumption has tripled over the past 50 years (Gaddis

et al., 2012). In many parts of the world, groundwater is the primary

source for irrigation and drinking water supply. With increasing dependency

of some regions on groundwater, global groundwater abstraction rate has

more than doubled between 1960 and 2000 (Wada et al., 2010). Total global

groundwater abstraction was estimated to be about 600-700 km3yr−1 in 2003.

In the same year, groundwater was estimated to meet at least 50% of potable
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water supplies; 40% of the demand from those industries that do not use

mains water, and 20% of water use in irrigated agriculture. Dependence

on groundwater is particularly becoming prominent in expanding urban

communities. It has been estimated that about 1500 million urban dwellers

worldwide depend on well, borehole and spring sources (Foster and Chilton,

2003).

Given the importance of groundwater in meeting current global water

demand, sustainability of groundwater resources is vital for ensuring

long-term water security. A major constraint to the sustainability of

groundwater resources is quality deterioration. Among various reasons

for groundwater quality degradation, anthropogenic contamination and

salination of groundwater are the most important (Morris et al., 2003).

Groundwater resources are polluted mainly because of pollutant streams

generated by rapidly increasing industrial activities and use of chemicals in

agriculture. Some of the more severe incidents of groundwater pollution with

large plumes of high concentration pollutants are associated with industrial

point sources from major accidental spillage or casual discharge in highly

vulnerable areas (Foster and Chilton, 2003).

The realization of increasing vulnerability of groundwater resources

to pollution has necessitated development of efficient techniques for

prevention, detection and remediation of contaminated groundwater aquifers.

Contamination of groundwater resources can often remain undetected for

significant periods of time. In order to develop methodologies for effective

and economical remediation of groundwater contamination, it is necessary to

locate the source and predict the future course of groundwater contamination.
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The first step in groundwater aquifer remediation should therefore be the

characterisation of unknown pollutant sources. Reliable information about

sources of pollution in terms of their location, release history and time of

initial activity is highly important in planning effective remediation strategies.

It is also important for estimating the extent, and assigning the liability for

pollution.

1.1 Unknown Groundwater Pollutant Source Characterisation

The characteristics that define a groundwater source include:

1. Type of source (point, areal, etc.)

2. Spatial location and extent of the source

3. Point of time when the source first became active

4. Pollutant flux released as a function of time elapsed since start time.

Non-reactive groundwater flow and transport processes in a

three-dimensional aquifer can be represented mathematically by the

advection dispersion equation (ADE). This equation can be solved using

numerical techniques. When groundwater source characteristics are known

and the flow and transport parameters (i.e. hydraulic conductivity, porosity,

etc.) of the porous media can be measured accurately, numerical simulation

models can be used for predicting pollutant concentration at any given point

in the study area with respect to time. When the sources of pollution are

unknown, the measured pollutant concentration at various locations in the

study area over a period of time is used to estimate the unknown source

characteristics, by solving the advection dispersion equation backwards
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in time and space. Therefore, ascertaining various characteristics of the

pollutant sources from available pollutant concentration measurements is an

inverse problem.

Unknown groundwater pollutant source characterisation is an ill-posed

inverse problem. An inverse problem is well posed if the following conditions

are satisfied (Tikhonov and Arsenin, 1977):

• A solution exists

• The solution is unique, and

• The solution is stable.

The solution to this problem exists theoretically as one or more sources of

contamination must be physically present in the study area to have caused

the contamination. However, aquifer parameters used in governing equations

of groundwater flow and transport are often not known precisely. This

makes it difficult to solve for the characteristics of the pollutant source

mathematically. Hence, the existence of a solution for inverse mathematical

model of groundwater transport is not guaranteed. Moreover, similar

pollutant plumes can be produced by several different combinations of source

characteristics. This means a groundwater pollutant source identification

problem has non-unique solutions. Groundwater transport equations are

solved using numerical methods. These methods are not stable in reverse

time. Hence, the stability of solution cannot be guaranteed as well.

Identification of groundwater pollutant sources and their characterization

is complicated because of inadequacy of measured concentration information

and due to uncertainty in available information. Most often, the only

information available is the pollutant concentration measured in one or more
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affected wells, average porous media properties, and some possible guesses

about the location of the pollutant source. Out of all the characteristics

listed above, type of source is often obvious. In some cases the groundwater

pollutant source location could be obvious from preliminary investigations.

If an exhaustive record of pollutant inventory and industrial activities of the

area is available, it may be possible to infer other characteristics of the source,

mainly the start time and release pattern. However, in a number of instances,

one or more of the listed characteristics of the source remains unknown at the

time of detection of contamination in an aquifer, either due to inaccessibility

of the pollutant source or due to lack of any previous information. In such

cases the source characterization has to be undertaken by using measured

information from a set of monitoring wells. Monitoring wells can provide

point information about the pollutant concentration, potentiometric head

and hydraulic conductivity. Solution of this problem is highly sensitive to

measurement errors either in the observation data or model parameters (Sun,

1994).

1.2 Linked Simulation-Optimization Approach

One of the earlier methods used to identify unknown pollution source

was to run forward simulations and try to match the results with observed

data. This is an inefficient and exhaustive approach which may not perform

satisfactorily. A more direct and efficient approach is to use an optimization

approach. However, any optimum decision based on inadequate simulation

of the physical processes in the groundwater system is almost meaningless.

Therefore, a proper optimization based methodology for groundwater
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pollution source identification should incorporate a simulation of the physical

process. This method is known as linked simulation-optimization approach.

Earlier implementations of this approach used linear programming and

response matrix along with forward simulations (Gorelick et al., 1983).

More recent developments incorporated the nonlinear nature of the aquifer

processes, and use more efficient optimization algorithms, and linked

simulation-optimization approaches (Mahar and Datta, 1997, 2000, 2001;

Singh and Datta, 2006; Atmadja and Bagtzoglou, 2001b; Chadalavada et al.,

2011a). Recently, however, evolutionary algorithms such as genetic algorithm

and simulated annealing have been used for optimization (Mahinthakumar

and Sayeed, 2005; Singh and Datta, 2006; Yeh et al., 2007; Chadalavada et al.,

2011b). Use of evolutionary algorithms makes it easier and computationally

more efficient to link the optimization algorithm with a simulation model.

1.3 Research Objectives

Existing methodologies for unknown groundwater pollution source

characterization have several limitations. Some of the main limitations are:

1. Sparsity of concentration measurement data.

2. Inefficient monitoring network for concentration measurements.

3. Difficulty in establishing the time of pollutant source activity initiation.

4. Applicability of optimal source characterization to distributed sources.

5. Problems associated with achieving a global optimal solution efficiently.

This study aims to develop a methodology based on linked

simulation-optimization approach for faster and efficient characterization of
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unknown groundwater pollutant sources. Estimation of characteristics of the

unknown groundwater pollutant sources is even more difficult when the time

at which the source first became active is unknown. Another problem is the

sparsity of measured concentration data. Often, in real monitoring scenarios,

some measurements are missing or the time interval between measurements

is not uniform. This study presents a methodology utilizing dynamic time

warping (DTW) distance to address both these limitations. The developed

methodology has been extended for application to distributed sources on

managed sites. Specific objectives of this study are:

1. Develop a simulation-optimization based methodology for unknown

groundwater contamination source identification.

2. Incorporate uncertainties and measurement errors in the developed

simulation-optimization approach to handle uncertainty in measurements

or in estimated hydrogeological parameters.

3. Develop a methodology to obtain initial estimates of source characteristics

such as source location and initial time of source activity using

concentration measurements from a single location.

4. Design of a dedicated monitoring network for more efficient source

identification using the initial estimates of source characteristics.

5. Extend the developed methodology for application to sites where some

form of remedial management strategies have already been implemented.

6. Performance evaluation of the developed methodologies using aquifer

data.
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7. Evaluate the applicability of developed methodology for specific

application to mining sites with distributed pollutant sources.

1.4 Organization of the Thesis

This thesis contains seven chapters including the introduction. Chapter 2

of the thesis presents the state-of-the-art on various techniques used in this

study.

Chapter 3 presents a linked simulation-optimization model for optimal

source characterization using adaptive simulated annealing (ASA) as the

optimization algorithm. Performance of the ASA based methodology is

compared with a source characterization method using genetic algorithm

(GA) for optimization, in terms of their ability to handle uncertainties

and efficiency of convergence. Using illustrative aquifer examples, it

is shown that ASA converges faster and produces better results, even

with erroneous concentration measurement data and with uncertainties in

hydraulic conductivity and porosity.

Chapter 4 presents a more complex scenario when no reliable information

is available on the potential location or initial time of activity of sources. Apart

from this, the frequency of measurement at monitoring wells may not be

uniform and some measurements might be missing in practical situations. A

methodology is developed to obtain initial estimates of source characteristics

such as source location and to estimate the initial time of activity from

pollutant concentration measurements obtained from a single location where

the contamination was first detected. Dynamic time warping (DTW) distance

is used to minimize errors in estimation of source characteristics arising from

8



improper alignment of estimated and observed concentration data on the

temporal axis.

Chapter 5 presents the performance evaluation of the methodology

developed in Chapter 4 using simulated data for an illustrative site, and using

data obtained from an actual contaminated site. Based on these estimates,

a methodology is developed to design a monitoring network to generate

concentration measurement information aimed at obtaining more efficient

and reliable estimates of source characteristics. This methodology is evaluated

for a real contaminated site and it was found that the use of the developed

methodology results in reliable estimates of source characteristics with a far

lesser number of monitoring wells.

Chapter 6 presents an extension of the source characterization

methodology developed in Chapter 3 for estimation of release history of

distributed pollutant sources to a managed contaminated site in a realistic

scenario. Distributed sources in an abandoned mine site are considered for

this purpose.

Chapter 7 presents a summary of the salient points that have been

addressed, and the major conclusions of this study.
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Chapter 2

Review of Literature

This chapter briefly discusses the body of literature that is relevant to

solving unknown groundwater pollutant source characterisation problem.

The first part of this chapter describes various approaches to solve the

problem of unknown groundwater pollutant source characterisation. It

also discusses the variations of this problem based on pollutant source

characteristics that are unknown and need to be estimated.

The second section of this chapter describes various methodologies

developed for monitoring network design, particularly in the context of

unknown pollutant source identification.

The final section presents an overview of literature on various tools and

techniques used for groundwater flow and transport simulation, representation

of uncertainty, optimization and pattern recognition in this study.

2.1 Unknown Groundwater Pollutant Source Characterisation

When a contamination event is initially detected in a groundwater aquifer,

several characteristics of the pollutant sources are unknown. Groundwater

pollutant source characterisation involves the identification of the magnitude,

location and duration of unknown pollutant sources. Estimation of unknown

characteristics of an unknown groundwater pollutant source from measured
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contaminant concentrations at various locations in the study area over a

period of time involves solving the advection dispersion equation backwards

in time and space. Therefore, it is an inverse problem.

Several methods have been suggested to solve this inverse problem. These

methods can be broadly classified as heat transport inversion, analytical

solutions and regression, deterministic direct methods, probabilistic and

geo-statistical simulation approaches and optimization approaches. A

detailed review of these methodologies can be found in Atmadja and

Bagtzoglou (2001b); Michalak and Kitanidis (2004); Bagtzoglou and Atmadja

(2005) and Sun et al. (2006a,b).

Since the mathematical model of heat and mass transfer is similar to that

of groundwater flow and transport, solutions for ill-posed inverse problems

are applicable to such problems in groundwater flow and transport as

well. Most of the solutions in this category involve using approximations

for inverse modelling and sometimes a method to eliminate ill-posedness.

One of the methods for eliminating ill-posedness is Tikhonov-Regularization

(Tikhonov and Arsenin, 1977). Parameters used in mathematical models

of heat and mass transfer are homogeneous and they can be accurately

measured. This is not always possible in a groundwater aquifer which is

mostly non-homogeneous and the parameters such as hydraulic conductivity

and porosity are not easily measurable at every point in the aquifer. Hence,

the use of heat transport inversion methods has been limited.

Analytical solutions and regression as well as deterministic direct methods

rely on inversing the mathematical solutions of the governing equations of

groundwater flow and transport. Some of the significant studies using these
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methods are Skaggs and Kabala (1995); Sidauruk et al. (1998); Alapati and

Kabala (2000). However, these methods have limited application as they

assume a homogeneous aquifer with simple geometry and flow conditions.

Probabilistic and geo-statistical simulation approaches represent the

groundwater transport process as a stochastic model. These methods aim

at solving stochastic differential equations backward in time.

Geo-statistical techniques are used to better represent the heterogeneity

in porous media properties. Atmadja and Bagtzoglou (2001a); Bagtzoglou

and Atmadja (2005) used this method to present a probabilistic framework

to identify solute sources in heterogeneous media. Snodgrass and

Kitanidis (1997) used probabilistic approach based on Bayesian theory and

geo-statistical techniques. This study assumed the source locations to be

known. Probabilistic and geo-statistical approaches can address the problem

of non-homogeneity in the porous media parameters. However, this involves

solving the governing stochastic equations backward in time and requires

extensive computational resources.

2.1.1 Linked Simulation-Optimization Approach of Unknown Groundwater

Contaminant Source Characterisation

A number of optimization based methodologies for unknown groundwater

contaminant source identification have been proposed by a number of

researchers. First attempt in this regard was made by Gorelick et al.

(1983). In this attempt, they formulated the source identification problem

as forward-time simulations coupled with an optimization model using linear

programming and response matrix approach. The solute transport model was

implemented as a series of constraints in the form of a concentration response
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matrix. Aquifer parameters were assumed to have no uncertainty. The main

limitation of this method is that it is applicable generally to linear systems.

Wagner and Gorelick (1986) used nonlinear multiple-regression to

estimate aquifer parameters and coefficient of zero order production for a

one-dimensional hypothetical system. Estimation of the linear source term

was found to be highly sensitive to the introduction of measurement errors.

The first attempt to estimate model parameters along with source

characterization was implemented by Wagner (1992). Wagner used an inverse

model as a non-linear maximum likelihood estimation problem. Estimates

of hydro-geological and source parameters were based on measurements of

hydraulic head and contaminant concentration. Steady confined groundwater

flow and transient, non-reactive, single species transport was assumed for the

example problem. When the contaminant flux was assumed to be unknown

along with model parameters, this method estimated the model parameters

within 30% of their actual values and the source fluxes were overestimated by

about 20%.

Mahar and Datta (1997, 2001) developed an embedded

simulation-optimization approach combining optimal identification of a

pollutant source with the design of a groundwater quality monitoring

network in order to improve on the efficiency of the identification process.

The method was applied to a 2-D homogeneous, isotropic, and saturated

aquifer. They proposed a two-step methodology in which an optimization

model was used to identify an unknown pollution source based on

observation data. In the next step, different realizations of pollutant plumes

were simulated using perturbed sources. On obtaining these realizations,
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integer programming was used to determine the optimal locations of the

monitoring wells. The concentrations measured in these wells were used in

the nonlinear optimization model to obtain a more accurate estimation of

sources. Mahar and Datta (2000) were also able to estimate the magnitude,

location and duration of pollutant sources using nonlinear optimization

technique.

Aral et al. (2001) formulated a contaminant source characterization

problem as a nonlinear optimization model, in which contaminant source

locations and release histories were defined as explicit unknown variables.

The optimization model selected was the standard model, in which the

residuals between the simulated and measured contaminant concentrations

at observation sites were minimized. Simulated concentrations at the

observation locations were implicitly embedded into the optimization model

through the solution of groundwater flow and contaminant fate and transport

simulation models. To simplify this computationally intensive process, they

used progressive genetic algorithm (PGA) for the solution of the nonlinear

optimization model.

Singh et al. (2004); Singh and Datta (2004) used a trained artificial neural

network (ANN) to simultaneously solve the problems of estimating unknown

pollution sources and estimating hydrogeological parameters. The universal

function approximation property of a multilayer, feed-forward ANN was

utilized to estimate temporally and spatially varying unknown pollution

sources, as well as to provide a reliable estimation of unknown flow and

transport parameters. ANN was trained on patterns of simulated data using

a back-propagation algorithm. A set of source fluxes and temporally varying
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simulated concentration measurements constituted the pattern for training.

Performance of this methodology was evaluated under varying concentration

measurement errors.

Mahinthakumar and Sayeed (2005) investigated and compared several

hybrid optimization approaches that combine genetic algorithms with a

number of local search approaches for solving these problems. The

example problems used contained both single and multiple-source releases

in three-dimensional heterogeneous flow fields. A parallel computing

environment was used to handle the heavy computational needs of these

problems. The results indicate that hybrid optimization methods, especially

those that combine an initial global heuristic approach (e.g. genetic

algorithms) with a subsequent gradient-based local search approach (e.g.

conjugate gradients) are very effective in solving these problems.

A genetic algorithm (GA) based simulation optimization approach was

used for optimal identification of unknown groundwater pollution sources

by Singh and Datta (2006). A flow and transport numerical simulation model

was externally linked to the GA-based optimization model to simulate the

physical processes involved. The simulation model used potential pollution

source characteristics that are evolved by the GA and simulates the resulting

concentration measurement values at observation locations. These simulated

spatial and temporal pollutant concentration measurement values were used

to evaluate the fitness function value of the GA. This approach makes it

feasible to solve the source-identification problems for complex aquifer study

areas with multiple unknown pollution sources.

Yeh et al. (2007) proposed an approach that combines simulated annealing
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(SA), tabu search (TS), and the three-dimensional groundwater flow and

solute transport model (MODFLOW-GWT). It was used to estimate source

location, release concentration, and release period of the source. The sampling

concentrations at monitoring points were simulated by the MODFLOW-GWT

with an assumed release concentration and release period at a known source

location. In the source estimation process, the source location was selected by

TS within the suspected source area, and the trials for release concentrations

and release periods were generated by SA. MODFLOW-GWT was utilized to

compute the simulated concentrations at the monitoring points with the trial

solution. The above mentioned procedures were repeated until the stopping

criterion regarding the differences of objective function value (OFV) was met.

Six studies on a homogeneous site, two studies on the heterogeneous site, and

one study on the transient flow problem were conducted in this study.

He et al. (2009) studied a coupled simulation-optimization approach for

optimal design of petroleum contaminated groundwater remediation under

uncertainty. Compared to the previous approaches, it had the advantages of:

(1) addressing the stochasticity of the modelling parameters in simulating

the flow and transport of NAPLs in groundwater, (2) providing a direct

and response-rapid bridge between remediation strategies (pumping rates)

and remediation performance (contaminant concentrations) through the

created proxy models, (3) alleviating the computational cost in searching for

optimal solutions, and (4) giving confidence levels for the obtained optimal

remediation strategies. The approach was applied to a site in Canada for

demonstrating its performance.

Datta et al. (2009c) developed a methodology for simultaneous pollution

16



source identification and parameter estimation in groundwater systems. The

groundwater flow and transport simulator that serves as a binding constraint

was linked to the nonlinear optimization model as an external module.

This methodology was aimed at addressing some of the computational

limitations of using the embedded optimization techniques. Performance of

the proposed methodology using spatio-temporal hydraulic head values and

pollutant concentration measurements was evaluated by solving illustrative

problems. They found that the solution results obtained using the

proposed methodology were better than those obtained using the embedded

optimization technique.

Datta et al. (2011) proposed a linked simulation-optimization based source

identification methodology using a classical nonlinear optimization model

linked to a groundwater flow and transport simulation model. The essential

link between the simulator and the optimization method were the derivatives

or gradient information required for the optimization algorithm. They

concluded that the proposed methodology was potentially applicable to large

scale study areas with multiple unknown pollution sources and eliminates

some of the computational limitations of embedded optimization techniques.

Based on the characteristics that are unknown, groundwater contaminant

source characterization problems can be classified into various categories

(Pinder, 2009):

1. Reconstruction of source release history problems

2. Identification of source location or release time of contaminant.

3. Identification of source location and magnitude.

4. Identification of source location and release time of contaminant.
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5. Identification of location, magnitude of source and release time of

contaminant.

The last category is the most challenging (Pinder, 2009). In this study, this is

the problem that has been addressed.

2.2 Monitoring Network Design for Unknown Groundwater

Contaminant Source Characterisation

Monitoring network design problems for groundwater management

have been widely studied with different objectives. Design objectives

of monitoring networks vary widely depending on the need for design.

Fundamental approaches of monitoring network design for groundwater

quality management are a natural extension of observation network design

for meteorology. Detailed reviews of methods implemented for monitoring

network design are reported in Loaiciga et al. (1992), Minsker (2003), and

Kollat et al. (2011). Most of the research on this subject focuses on

monitoring networks for leak detection from known contaminant sources

such as landfills, large spills and historically contaminated lands.

Optimization based methodologies for monitoring network design have

considered a wide range of objectives. Massmann and Freeze (1987) proposed

a methodology for designing a monitoring network for contamination

detection to be located between the source and the regulatory compliance

surface of a landfill site. They used stochastic contaminant transport

simulations to calculate the probability of detection of the monitoring

network. It was assumed that the contamination is brought about by

the release of a single, inorganic nonradioactive species into a saturated,
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high-permeability, advective, steady state horizontal flow system which can

be analyzed with a two-dimensional analysis.

Loaiciga (1989) proposed a mixed integer programming formulation

based approach. The proposed model was tested on a real aquifer and

it was concluded that it results in optimal monitoring policy. Meyer

and Brill (1988) presented a method for the optimal monitoring design

network using the maximum covering location problem (MCLP) formulation.

The MCLP maximizes the demand served within the maximal service

distance given a fixed number of facilities. Knopman and Voss (1989)

proposed a multi-objective formulation of sampling network design for site

characterization studies. They considered optimal design of a sampling

network as a sequential process in which the next phase of sampling is

designed on the basis of all available physical knowledge of the system. They

considered three objectives: model discrimination, parameter estimation and

cost minimization.

McKinney and Loucks (1992) proposed a new network design algorithm

for improving the reliability of groundwater simulation model predictions.

Their objective was to minimize the simulation model prediction variance

choosing optimal monitoring locations. Variance of predicted state variables,

hydraulic head and contaminant concentration was used as a measure of

model prediction reliability in this study. This method was implemented

to design a monitoring network and the authors showed that a significant

increase in simulation model prediction reliability is achieved by measuring

aquifer properties at locations selected by the algorithm. Meyer et al.

(1994) proposed a method that incorporates system uncertainty in monitoring
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network design and provides network alternatives that are optimal with

respect to several objectives of designing monitoring networks. They

considered three design objectives. (1) minimize the number of monitoring

wells, (2) maximize the probability of detecting a contaminant leak, and (3)

minimize the expected area of contamination at the time of detection. Yenigül

et al. (2005) presented a reliability assessment to estimate the performance

of groundwater monitoring systems at landfill sites. They presented a

hypothetical problem where the detection probabilities of several monitoring

systems are compared. Using a Monte Carlo approach to incorporate

uncertainties due to subsurface heterogeneity and the leak location they

showed that lateral dispersivity of the medium has a significant influence

on the reliability of the monitoring system. They also demonstrate that

the number and the location of the monitoring wells is dependent on the

heterogeneity of the medium and size of the contaminant leak.

Cieniawski et al. (1995) extended the work of Meyer and Brill (1988) on

the optimal location of a network of groundwater monitoring wells under

conditions of uncertainty using genetic algorithms (GAs).

Datta and Dhiman (1996) developed a mathematical model for

designing a groundwater quality monitoring network using a linked

simulation-optimization model. They formulated the model using chance

constraints and solved it by using a mixed-integer programming algorithm.

Their model incorporates uncertainties in the prediction of pollutant

movement in the saturated zone. Nonlinearities due to the inclusion of

cumulative distribution functions (CDFs) of actual spatial concentrations were

accommodated in the optimization model through a piecewise linearization
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scheme.

The first attempt to link optimal groundwater pollution source

identification with the measurement data collected from a designed

monitoring network was reported in Mahar and Datta (1997). They developed

a methodology combining an optimal groundwater quality monitoring

network design with an optimal source identification model. They used a

three-step methodology. In the first step an embedded nonlinear optimization

model was utilized for preliminary identification of pollutant sources. The

second step utilized these preliminary identification results and a linked

simulation-optimization approach to design an optimal monitoring network

that could be implemented in the subsequent time periods. In the third step,

the observed concentration data at the designed monitoring well locations

were utilized for more accurate identification of the pollutant sources.

Hudak (1998) developed a method for designing configurations of

monitoring wells, consisting of vertically nested intakes in boreholes. This

methodology was tested on a 32 ha solid waste landfill in Tarrant County,

Texas, USA. The objective of investigation was to design a monitoring

network that is able to minimize the un-detection of contaminant plumes

in the study area. Results of this study illustrated a practical need for

structured approaches to designing detection-based groundwater monitoring

configurations.

Reed and Minsker (2004) used high-order Pareto optimization (i.e.

optimizing a system for more than two objectives) on a long-term monitoring

(LTM) application. Their application combined quantile kriging and the

non-dominated sorted genetic algorithm-II (NSGA-II) to successfully balance
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four objectives: (1) minimizing sampling costs, (2) maximizing the accuracy

of interpolated plume maps, (3) maximizing the relative accuracy of

contaminant mass estimates, and (4) minimizing estimation uncertainty.

Herrera and Pinder (2005) proposed a method for the space-time

optimization of monitoring networks for groundwater quality. The objective

of their study was to minimize the total cost of sampling groundwater

contaminants by estimating optimal monitoring locations and optimal

sampling frequency. This method used Kalman filter coupled with a

stochastic transport model in which velocity and dispersion are spatially

correlated random fields to consider the combined spatial and temporal

redundancy of the sampling network. The objective of optimization was to

minimize the estimated variance of monitored parameters. Kalman filter was

used again to obtain real-time update of the estimates. Synthetic examples

were presented to show that for a contaminant plume in motion this method

can obtain cost-effective sampling networks.

Kollat and Reed (2007) presented a detailed assessment of how increasing

problem sizes (measured in terms of the number of decision variables

being considered) impacts the computational complexity of using multiple

objective evolutionary algorithms (MOEAs) to solve long-term groundwater

monitoring (LTM) applications.

Dhar and Datta (2007) proposed a methodology for optimal design of a

time varying monitoring network that has wells installed in stages. Their

optimization model incorporates uncertainties in prediction or estimation

of some of the aquifer parameters such as hydraulic conductivity and

dispersivity.
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Chadalavada and Datta (2008) developed optimal groundwater pollution

monitoring network design models to prescribe optimal and efficient

sampling locations for detecting pollution in groundwater aquifers. Multiple

realizations of pollutant plumes in a two-dimensional aquifer were generated

incorporating the uncertainty in both source and aquifer parameters. These

concentration realizations were incorporated in the optimal monitoring

network design models. Two different objectives were considered separately.

The first objective function minimizes the summation of unmonitored

concentrations at different potential monitoring locations and the second

minimizes estimation variances of pollutant concentrations at various

unmonitored locations. The first objective function minimizes the probability

of choosing monitoring locations with low concentrations and the second

results in a design that chooses optimal monitoring locations where

the uncertainties in simulated concentrations are large. The developed

optimization models were solved using genetic algorithm. The variances of

estimated concentrations at potential monitoring locations were computed

using kriging. The solution results were evaluated for an illustrative

study area and performance evaluation results established the potential

applicability of this methodology.

Dhar and Datta (2010) developed a methodology based on an optimization

model solution for optimal design of a groundwater quality monitoring

network. The developed methodology addressed the issue of redundancy in

monitoring network results in the optimal design of a monitoring network.

The methodology interpolates concentration data spatially using inverse

distance weighting method. A logic-based mixed-integer linear optimization
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model was formulated and solved using the branch-and-bound algorithm.

The proposed methodology was tested for a real world problem and its

performance was evaluated for different scenarios using available historical

concentration data. These performance evaluation results showed that the

proposed methodology performs satisfactorily when compared with other

existing methodologies.

Chadalavada et al. (2011a) proposed models for the design of monitoring

networks to improve efficiency of source identification. In this study, a

new approach of monitoring network design is presented assuming no prior

information on location, release history or magnitudes of the contaminant

source. The developed methodology also assumed that the contaminant had

only been detected at one location and uses the observation recorded over

several periods at this location to design an optimal monitoring network.

2.3 Relevant Tools and Techniques

This section is intended to present relevant literature on several tools for

groundwater flow and transport simulation, optimization, pattern recognition

and uncertainty representation that have been used through various stages in

this study.

2.3.1 Flow and Transport Modelling

Fundamental mathematical models representing groundwater flow and

transport have been discussed in detail by Javandel et al. (1984) and

Fetter (1994). A number of numerical simulation models using finite

difference and finite element methods have been developed to solve these
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governing equations. A detailed discussion of the developed methods has

been presented by Anderson and Woessner (1992) and Zheng and Bennett

(1995). McDonald and Harbaugh (1988) developed a finite difference based

modular three-dimensional groundwater flow model. This model was named

MODFLOW and has been widely used in groundwater flow simulations.

MODFLOW has continuously been updated and the most recent version was

released in 2005. Zheng (1990) developed a modular 3-D transport model for

simulation of various transport processes such as advection, dispersion and

chemical reactions of contaminants in groundwater systems. This model was

called MT3D and it has a comprehensive set of solution options including

method of characteristics (MOC), the modified method of characteristics

(MMOC), a hybrid of these two methods (HMOC), and the standard finite

difference method (FDM). Zheng and Wang (1999) extended the capabilities

of MT3D to include a multi-component program structure which can

accommodate add-on reaction packages for modelling various biological and

geochemical reactions. The solving methods were augmented and an option

to include non-equilibrium sorption and dual-domain advection-diffusion

mass transport. Clement (1998) presented another modular computer code for

simulating reactive multi-species transport in three-dimensional groundwater

systems. The model is called RT3D and it provides a flexible framework

to simulate natural attenuation, accelerated bio-remediation or other reactive

transport modelling scenarios. The program also has an option to add any

reaction kinetics for multiple aqueous and sorbed phase species.

25



2.3.2 Techniques for Parameter Uncertainty Representation

Generally, average values of aquifer parameters such as hydraulic

conductivity and porosity are used in the groundwater flow and transport

models. In reality, however, these parameters can have a different

value at each location in space. Hence, they can be represented

most realistically by a stochastic set of values defined by a probability

distribution. One of the earliest investigations into stochastic-conceptual

analysis of one-dimensional groundwater flow was carried out by Freeze

(1975). This study concluded that values of hydraulic conductivity

follow a log-normal distribution whereas those of porosity follow normal

distribution. This study analyzed groundwater flow in non-uniform media

using stochastic-conceptual approach in which the effects of stochastic

parameter distributions on predicted hydraulic heads were analyzed with

the aid of a set of Monte Carlo solutions to the pertinent boundary value

problems.

Dagan (1982) presented a methodology to solve the inverse problem

of determining transmissivity at various points, given the shape and

boundary of the aquifer and recharge intensity and given a set of measured

log-transmissivity Y and head H values at a few points.

Kitanidis (1986) examined the effect of parameter uncertainty in a Bayesian

framework with emphasis on the derivation of the Bayesian distribution (and

its first two moments) of unknown quantities given some measurements. This

distribution accounts not only for natural variability but also for parameter

uncertainty. It was shown that when both drift and covariance function

parameters are uncertain, the Bayesian distribution is generally not Gaussian,
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and the Bayesian conditional mean is a nonlinear estimator. The case of

diffuse priors was examined in some detail; it was shown that the posterior

distribution of the covariance function parameters is given by the restricted

likelihood function, i.e. the likelihood function of generalized increments. The

results provided insight into the applicability of maximum likelihood versus

restricted maximum likelihood parameter estimation, and conventional linear

versus kriging estimation.

Andricevic and Kitanidis (1990) presented an optimization methodology

for aquifer remediation using differential dynamic programming. This

method accounts for and reduces parameter uncertainty. The methodology

uses a dual-control method in which system parameters are improved and the

aquifer parameter is managed to achieve the specified objectives at minimal

cost. The methodology was applied to a hypothetical one-dimensional

system. This methodology was extended to the case of two-dimensional

groundwater systems by Lee and Kitanidis (1991).

Detailed characterization of the spatial distribution of hydrogeological

parameter values in an aquifer is also described in Yeh (1992) and Gelhar

(1993).

2.3.3 Optimization Algorithms

Choice of optimization algorithm largely depends on the type of problems

to be solved. Groundwater pollutant source characterization is a complex

multi-variate optimization problem. Hence, heuristics based methods were

chosen so as to obtain maximum computational efficiency without sacrificing

accuracy of obtained solutions. Two of the most popular optimization

algorithms in this category are simulated annealing and genetic algorithm.
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In simulated annealing, a current solution may be replaced by a random

“neighbourhood” solution chosen with a probability that depends on the

difference between corresponding function values and on a global parameter

T (called temperature) that is gradually decreased in the process (Kirkpatrick,

1984). Of the various simulated annealing implementations, it is evident in

literature that the adaptive simulated annealing algorithm converges faster

(Ingber and Rosen, 1992) while maintaining the reliability of results and

hence it was preferred over traditional Boltzmann annealing implementation

(Kirkpatrick, 1984). Yeh et al. (2007) used simulated annealing (SA), Tabu

Search (TS), and the three-dimensional groundwater flow and solute transport

model (MODFLOW-GWT) to estimate source location, release concentration,

and release period of the source. In the source estimation process, the source

location was selected by TS within the suspected source area, and the trials for

release concentrations and release periods were generated by SA. This study

attempts to use adaptive simulated annealing for enhanced computational

efficiency for source characterisation. However, use of combination of TS

with SA, in which TS is used for screening purposes, was computationally

not efficient.

Genetic algorithms (GAs) are population based search strategies which are

popular for many difficult to solve optimization problems including inverse

problems. GAs emulate the natural evolutionary process in a population

where the fittest survive and reproduce (Holland, 1975). GA-based search

performs well because of its ability to combine aspects of solutions from

different parts of the search space.

Simulated annealing, as an algorithm, is very efficient in solving
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non-convex optimization problems by ensuring that it does not always move

downhill on a complex non-convex search space and hence avoids getting

trapped in local minimum. Simulated annealing also differs significantly

from conventional iterative optimization algorithms in that gross features of

the final state of the system are seen at higher temperatures, whereas the

finer details of the state appear at lower temperatures (Haykin, 1999). The

fact that simulated annealing ensures a global optimal solution enhances its

suitability for solving ill-posed inverse problems in general, and the problem

of unknown groundwater pollutant source characterization in particular.

Its ease of use and remarkable efficiency in handling complex objective

functions and constraints has made simulated annealing an attractive choice

for solving a wide range of complex optimization problems. However,

the slow convergence and hence long time of execution of standard

Boltzmann-type simulated annealing has been a constraint (Ingber, 1996).

Adaptive simulated annealing removes that constraint by making the

annealing schedules decrease exponentially in annealing time, thereby

making the convergence much faster. A major difference between ASA and

traditional Boltzmann annealing algorithms is that the ergodic sampling takes

place in terms of n parameters and the cost function. In ASA the exponential

annealing schedules permit resources to be spent adaptively on re-annealing

and on pacing the convergence in all dimensions, ensuring ample global

searching in the first phases of search and ample quick convergence in the

final phases (Ingber, 1996).

Another major advantages of using adaptive simulated annealing is also

the fact that the parameters of algorithm are adjusted adaptively and
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hence the solutions do not vary widely if parameter values are changed

within reasonable limits. This is in contrast with genetic algorithm, where

even minor changes to parameters such as mutation probability, crossover

probability or population size cause a significant difference in the solutions.

2.3.4 Techniques for Pattern Recognition and Classification

Contaminant concentration observations obtained from monitoring

locations in a study area can be represented as a time series. In linked

simulation-optimization methods, candidate values of various parameters

are used to obtain estimated characteristic curve at the monitored locations.

Pattern recognition techniques can be used to match the observed and

estimated concentration time series. Datta et al. (1989) presented one of

the earliest attempts to use pattern recognition for groundwater source

characterization. They used statistical pattern recognition techniques to

identify groundwater pollution source magnitudes. They also incorporated

the simulation equations as response matrix in the model. They investigated

the effects of parameter uncertainty and measurement errors on the source

identification. The optimal groundwater pollution source identification model

was used as a screening model to limit the number of pattern classes to

be incorporated. The final pollution source characteristics was estimated

using the expert system to accommodate imprecise knowledge regarding

data reliability. The performance was found encouraging in general and

specifically good under conditions of missing observed concentration data.

One of the main aims of the present study is to address one of the difficult

scenarios of unknown groundwater pollution source characterization, i.e.

to estimate the unknown sources when the exact time a source becomes
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active is completely unknown. To address this, a new methodology is

developed using dynamic time warping as a distance measure to compute

the difference between estimated and observed concentrations at various

monitoring locations.

Dynamic time warping (DTW) distance is used as a measure of

dissimilarity between two time series. It is a widely used pattern recognition

tool, first proposed in the 1960s (Bellman and Kalaba, 1959) as a measure

of speech signal dissimilarity. Since then, it has been used in a variety of

applications and has been particularly popular in time series clustering and

data mining applications (Rabiner and Juang, 1993). An in-depth review of

dynamic time warping is presented in Senin (2008).

2.4 Motivation for this Study

Existing methodologies for unknown groundwater pollution source

characterization have several limitations. Some of the main limitations are

their inability to handle sparsity of concentration measurement data, lack

of consideration for specific monitoring network design for concentration

measurements, difficulty in establishing the time of contaminant source

activity initiation, and problems associated with achieving a global optimal

solution efficiently.

This study aims to develop a methodology based on linked

simulation-optimization approach for faster and efficient characterization of

unknown groundwater pollutant sources. Estimation of characteristics of the

unknown groundwater pollutant sources is even more difficult when the time

at which the source first became active is unknown. Another problem is
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the sparsity of measured concentration data. Often, in real-life monitoring

scenarios, some measurements are missing or the time interval between

measurements is not uniform. This study presents a methodology utilizing

dynamic time warping (DTW) distance to address both these limitations.

The developed methodology has been extended for potential application to

distributed pollution sources in managed sites.

The issue of systematic and planned monitoring of pollutant concentration

over time and space is also an important factor in efficient estimation

of unknown sources of groundwater pollutants. This area needs further

attention. This study therefore addresses the issue of designing monitoring

networks to enhance the efficiency of source identification. Another issue that

needs attention is the applicability of some of the developed methodologies

to distributed pollution sources and managed sites. These issues have also

been addressed in this study. Performance evaluation of the methodologies

developed is carried out to estimate the potential applicability of these

proposed methodologies. The next chapters present the methodologies

utilized in this study.
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Chapter 3

Three-Dimensional Groundwater

Contamination Source Identification Using

Adaptive Simulated Annealing

A similar version of this chapter has been published and copyrighted in the

Journal of Hydrologic Engineering.

Jha, M., & Datta, B. (2012). Three dimensional groundwater

pollution source identification using adaptive simulated annealing,

to appear in: Journal of Hydrologic Engineering (ASCE), doi:

10.1061/(ASCE)HE.1943-5584.0000624.

In the event of detection of pollution in a groundwater aquifer, the

first step generally is a detailed reconnaissance or audit of all available

information on the history of pollution. It involves creating an inventory of

past anthropogenic activities, particularly involving the chemical substances

that were found to have contaminated the aquifer. In several cases, it is

possible to generate reliable estimates on potential source locations and

the time at which the source activity began. In such instances, only the

magnitude of pollutant flux needs to be estimated as a function of time

over the entire study period, utilizing available measurement information
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obtained after pollution detection. This chapter addresses the problem of

estimating unknown groundwater source flux magnitude as a function of

time given the potential source locations are known and that a reliable

estimate of the time when the sources first became active is available.

This chapter proposes a linked simulation-optimization based methodology,

utilizing adaptive simulated annealing (ASA) for optimization, to solve this

problem. Performance of the ASA based methodology is compared with

that based on genetic algorithm (GA). The ASA based solution algorithm is

shown to be computationally efficient for optimal identification of the source

characteristics in terms of execution time and accuracy. This computational

efficiency appears to prevail even with moderate levels of errors in estimated

parameters and concentration measurement errors. Also, the pollutant

concentration monitoring locations are shown to be critical in the efficient

characterization of the unknown pollutant sources. Optimal identification

results for different monitoring networks are presented to demonstrate the

relevance of a suitable network to efficient source identification.

In linked simulation-optimization approaches a numerical groundwater

flow and transport simulation model is linked to the optimization model.

Most of these approaches, such as linear programming with response matrix

approach (Gorelick et al., 1983), nonlinear optimization with embedding

technique (Mahar and Datta, 1997, 2000, 2001), artificial neural network

approach (Singh et al., 2004; Singh and Datta, 2004, 2007), constrained

robust least square approach (Sun et al., 2006a,b), classical optimization

based approach (Datta et al., 2009a,b, 2011) and genetic algorithm based

approach (Aral et al., 2001; Mahinthakumar and Sayeed, 2005; Singh and
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Datta, 2006) minimize an objective function representing the difference in

measured concentration and simulated concentration at various monitoring

locations.

Most of the recent implementations of simulation-optimization method

adopt evolutionary global search approaches as the optimization model.

In recent years, genetic algorithm (GA) and its variants have been widely

used in solving groundwater problems, particularly unknown pollutant

source identification (Hilton and Culver, 2005; Mahinthakumar and Sayeed,

2005; Singh and Datta, 2006). However, most of the implementations of

simulation-optimization approaches assume a two-dimensional groundwater

transport, or availability of observation data throughout the study time period

or both.

Simulation-optimization based approaches are also computationally

intensive owing to the fact that the simulation model has to be run thousands

of times before an acceptable solution is produced. This is a major roadblock

to any desktop implementation of the simulation-optimization approach.

This chapter compares the performance of adaptive simulated annealing

(ASA) (Ingber, 1993, 1996) based simulation-optimization approach to the one

based on genetic algorithm in order to evaluate the performance using ASA

especially in a time constrained scenario.

The ASA code was first developed in 1987 as very fast simulated

re-annealing (VFSR) (Ingber, 1989). Ingber and Rosen (1992) showed that

VFSR is at least an order of magnitude superior to genetic algorithms

in convergence speed and is more likely to find the global optima

during a time limited search. The performance evaluation of competing
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simulation-optimization approaches is based on a realistic scenario of

missing measurement data, where pollutant concentration measurements are

available a few years after the sources have ceased to exist. An illustrative

three-dimensional aquifer is used for performance evaluation. Apart from

the convergence speed, the two algorithms are compared for their ability to

produce accurate source release histories with moderately erroneous data and

with uncertainty in estimation of hydrogeological parameters.

Another important factor that affects the execution time and accuracy

of solutions generated by linked simulation-optimization approaches is the

choice of observation locations. Poorly chosen pollutant observation locations

often produce misleading results and hence it becomes important that, after

the initial estimation of the pollutant sources, a monitoring network is

designed and implemented. Some researchers have attempted to link the

pollutant monitoring locations with the efficiency of source identification

(Bagtzoglou et al., 1991; Mahar and Datta, 1997; Dhar and Datta, 2010;

Chadalavada et al., 2011a). Bagtzoglou et al. (1992) presented a method

for probabilistic estimation of source locations and spill time histories.

Mahar and Datta (1997) and Chadalavada et al. (2011a) proposed models for

design of monitoring networks to improve efficiency of source identification.

Limited evaluation results presented in this work attempt to demonstrate the

relevance of a designed monitoring network and the shortcomings of arbitrary

observation locations.
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3.1 Methodology

The linked simulation-optimization approach consists of two parts. An

optimization algorithm generates the candidate solutions corresponding

to various unknown groundwater source characteristics. The candidate

solutions are used as input in the numerical groundwater transport

simulation model to generate the concentration of pollutant in the study area.

The generated concentration at designated monitoring locations is matched

with the observed values of pollutant concentrations at various time intervals

at the same locations. The difference between simulated and observed

concentration is then used to calculate the objective function value which is

utilized by the optimization algorithm to improve the candidate solution. The

process continues until an optimal solution is obtained.

A schematic representation of this process of using ASA as the

optimization algorithm in a linked simulation-optimization model is

presented in Figure 3.1. The classical simulated annealing (SA) algorithm

has many associated guiding parameters such as the initial parameter

temperature, annealing schedule, acceptance probability function, goal

function, etc. Effective application of classical simulated annealing to

a particular optimization problem normally involves a lot of trials and

adjustments to achieve ideal values for all or most of these parameters. ASA,

which is a variant of classical SA, helps overcome this difficulty to a certain

extent by automating the adjustments of parameters controlling temperature

schedule and random step selection, thereby making the algorithm less

sensitive to user-defined parameters compared with classical SA. This

additional ability of ASA, combined with inherent efficiency of classical
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SA to find the global optimal solution even when multiple local optimums

exist, makes it a natural choice for solving the groundwater pollutant source

identification problem.

3.2 Simulation of Groundwater Flow and Transport

Physical processes of groundwater flow and transport have been modelled

as mathematical equations and a number of methods exist for solving these

governing equations. A discretized numerical method is used to solve the

governing equations of groundwater flow and transport in this study.

3.2.1 Mathematical Representation of Groundwater Flow and Transport

Groundwater flow follows the same physical principles as any other fluid

flowing through a porous media. It can be described by differential equations.

As several variables affect the groundwater flow, it is generally described as

a partial differential equation in space and time. Hence, spatial co-ordinates

such as x, y, z, in Cartesian system and time (t) are independent variables.

The governing equations of a fluid flow in porous media are derived by

employing laws of mass and energy conservation. The partial differential

equation governing groundwater flow is given by Equation 3.1 (Fetter, 1994).

∂

∂x

(
Kxx

∂h
∂x

)
+

∂

∂x

(
Kyy

∂h
∂y

)
+

∂

∂x

(
Kzz

∂h
∂z

)
+ W = Ss

∂h
∂t

(3.1)

Where

Kxx, Kyy, and Kzz are the values of hydraulic conductivity (LT−1)

along the x, y and z co-ordinate axes respectively;

h is the potentiometric head (L);
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Figure 3.1: Schematic Representation of Linked Simulation-Optimization
Model using Adaptive Simulated Annealing
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W is the volumetric flux per unit volume representing sources

and/or sinks of water (T−1);

Ss is the specific storage of the porous media (L−1); and

t is time (T).

Detailed derivation of this equation is presented in Freeze and Cherry (1977),

Bear (1988) and Fetter (1994).

Processes involved in movement of solutes contained in groundwater are

complex. However, two processes dominate such solute movement. One of

these is diffusion and the other is advection. Diffusion is the process by which

solutes move from areas of high concentration to areas of lower concentration.

Advection, on the other hand, is the process by which groundwater carries

the dissolved solutes with it. Apart from these two processes, dispersion

acts on the solutes to dilute them and lower their concentration. There may

also be processes such as adsorption and chemical reaction that retard the

solutes and cause them to move in the porous media at a rate slower than

that suggested by advection process. All these processes can be modelled by

partial differential equations. Detailed derivation of the governing equation of

groundwater solute transport has been presented in Freeze and Cherry (1977),

Javandel et al. (1984) and Fetter (1994). Transport of solutes or contaminants

in a three-dimensional saturated aquifer can be represented by the partial

differential Equation 3.2 (Javandel et al., 1984).

∂C
∂t

= Dij
∂

∂xi

(
∂C
∂xj

)
− ∂

∂xi
(ϑiC) +

qs

θ
Cs +

N

∑
k=1

Rk (3.2)

Where

C is the concentration of pollutants dissolved in groundwater,
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(ML−3);

t is time, (T);

xi, xj is the distance along the respective Cartesian coordinate axis,

(L);

Dij is the hydrodynamic dispersion coefficient, (L2T−1);

ϑi is the seepage or linear pore water velocity, (LT−1);

qs is the volumetric flux of water per unit volume of aquifer

representing sources (positive) and sinks (negative), (T−1);

Cs is the concentration of the sources or sinks, (ML−3);

θ is the porosity of the porous medium, dimensionless;

N is the number of chemical species considered;

∑N
k=1 Rk is the chemical reaction term for each of the N species

considered, (ML−3T−1).

In order to solve this transport equation, linear pore water velocity needs

to be known for the study area. Hence, it becomes necessary to first calculate

the hydraulic head distribution using a groundwater flow simulation model.

The distribution of pollutant at all locations in a study area for any

specific point in time after the release of pollutants is obtained as the

solution of groundwater transport equation with known aquifer parameters

and source characteristics. For a simple case of a non-decaying continuous

pollutant source, leaking into a one-dimensional aquifer at a rate of C0, the

concentration of pollutant at some length L away from the source at time t is
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given by Equation 3.3 (Ogata and Banks, 1961).

C =
C0

2

[
er f c

(
L− vxt
2
√

DLt

)
+ exp

(
vxL
DL

)
er f c

(
L + vxt
2
√

DLt

)]
(3.3)

Where

C is pollutant concentration (ML−3, mg/L);

C0 is initial pollutant concentration (ML−3, mg/L);

L is the length of flow path (L, m)

vx is the average linear groundwater velocity (LT−1, m/day);

t is time elapsed since the release of pollutant (T, days);

DL is the longitudinal dispersion coefficient (L2T−1, m2/day).

3.2.2 Numerical Solution of Groundwater Flow and Transport Equations

In the mathematical model of groundwater flow or transport, the variables

are assumed to be continuous. Numerical solutions aim at approximately

solving the governing partial differential equations by discretizing the

independent variables. In order to solve the equations of groundwater flow

or transport, boundary conditions need to be known. Two basic types of

boundary conditions are used (Anderson and Woessner, 1992): Dirichlet

condition and Neumann condition. When the head or solute concentration

is known around a boundary it is referred to as Dirichlets condition, and

when the flux or concentration gradient is known around a boundary it

is called Neumann condition. It is also possible to use a combination of

these two boundary conditions. In order to solve for transient conditions,

it is also essential to know the initial conditions. Since the groundwater

transport model is inherently transient, it cannot be solved without knowing
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initial condition. Initial condition is essentially the starting or background

concentration of a pollutant in a groundwater aquifer. In this study, governing

equations of groundwater flow and transport are solved using computer

models that use block-centred finite difference spatial discretization. In

a non-homogeneous aquifer, parameters such as hydraulic conductivity,

porosity and dispersivity vary continuously throughout the matrix of study

area. In order to discretize the distribution of such parameters, the

entire study area is divided into a number of cuboidal, block-centred,

non-overlapping three dimensional finite-difference cells. Aquifer parameters

are associated to the centre of each cell in the finite difference grid. The

governing equations are solved by what are known as iterative methods.

3.2.2.1 MODFLOW

MODFLOW (McDonald and Harbaugh, 1988; Harbaugh, 2005), is one

of the most versatile finite difference groundwater flow models. It was

developed by United States Geological Survey to simulate groundwater

flow in confined, leaky confined and unconfined aquifers. It is made

up of a series of separate, independent modules that simulate recharge,

evapo-transpiration, areal recharge, flow to wells, flow to drains and flow

through riverbeds. Transient flow conditions can also be simulated. In such

cases, the time domain is discretized into a number of stress periods of finite

time length. It also gives the user an option to use several methods of solution.

MODFLOW has been used in this study to simulate groundwater flow in the

study area.
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3.2.2.2 MT3DMS

The MT3DMS groundwater transport model (Zheng and Wang, 1999) uses

a mixed Eulerian-Lagrangian approach for the solution of the governing

equation. The Lagrangian part of the method, used for solving the advection

term, employs the forward-tracking method of characteristics (MOC), the

backward-tracking modified method of characteristics (MMOC), or a hybrid

of these two methods. The Eulerian part of the method, used for solving the

dispersion and chemical reaction terms, utilizes a conventional block-centred

finite difference method. MT3DMS is used along with the flow model

(MODFLOW) since it utilizes the flow field generated by the flow model

(MODFLOW) to compute the velocity field. MT3DMS is used in this study to

simulate pollutant transport in groundwater.

3.2.3 Formulation of the Optimization Problem

It is assumed in this study that information on a set of potential source

locations is available. The objective of simulation-optimization method then

reduces to regenerating the source release histories at these potential source

locations. Spatial and temporal pollutant concentration (C) is known at

specific monitoring locations at various points of time. Candidate source

fluxes are generated by the optimization algorithm. These values are used for

forward transport simulations in MT3DMS. The difference between simulated

and observed pollutant concentrations are then used to calculate the objective

function. The objective function for this optimization problem is defined as:

MinimizeF1 =
nk

∑
k=1

nob

∑
iob=1

(
cestk

iob − cobsk
iob

)2
.wk

iob (3.4)
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Subject to the constraints:

cestk
iob = f (x, y, z, vx, DL, DT, t, θ) and

Ci
min ≤ θi ≤ Ci

max (3.5)

Where

cestk
iob = concentration estimated by the identification model at

observation well location ’iob’ and at the end of time period ’k’.

nk = total number of concentration observation time periods;

nob = total number of observation wells;

cobsk
iob = observed concentration at well ’iob’ and at the end of time

period ’k’;

wk
iob = weight corresponding to observation location ’iob’, and the

time period ’k’;

x,y,z = cartesian co-ordinates of the monitoring location with

pollutant source as the origin;

vx = groundwater velocity (Darcy’s velocity) in horizontal direction;

t = time elapsed since the release of pollutant in groundwater;

DL, DT = dispersivity in longitudinal and transverse direction;

θ = pollutant source flux (in terms of mass per unit time) released

into groundwater;

θi = candidate solution for source flux in stress period ’i’;

Ci
min = minimum pollutant source flux in stress period ’i’;

Ci
max = maximum pollutant source flux in stress period ’i’.
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The first constraint to this optimization function in Equation 3.5 means

that cestk
iob is obtained by solving the linked simulation models, and is a

function of various hydrogeologic parameters and source characteristics. The

implicit constraints represent the linkage between the optimization and the

groundwater flow and transport simulation model. The second constraint

points to the fact that values of source flux in every stress period are bounded

by a maximum and a minimum value.

The weight wk
iob can be defined as follows:

wk
iob =

1
(cobsk

iob + n)2
(3.6)

Where n is a constant, sufficiently large, so that errors at low concentrations

do not dominate the solution (Keidser and Rosbjerg, 1991). It is also possible

to include other forms of this weight.

3.2.4 Optimization Algorithms

Solution results obtained by using adaptive simulated annealing based

simulation-optimization method are compared to the solution results

obtained by using genetic algorithm in this study. In simulated annealing, a

current solution may be replaced by a random neighbourhood solution chosen

with a probability that depends on the difference between corresponding

function values and on a global parameter T (called temperature). The

temperature parameter is gradually decreased in the search process

(Kirkpatrick, 1984). Of the various simulated annealing implementations,

it is evident in literature that the adaptive simulated annealing algorithm

converges faster (Ingber and Rosen, 1992) while maintaining the reliability
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of results and hence it was preferred over traditional Boltzmann annealing

implementation (Kirkpatrick, 1984). Its application to unknown pollutant

source identification has been limited but it is potentially a good alternative

because its convergence curve is steep, thereby producing better results when

execution time is limited. Genetic algorithms (GAs) are population based

search strategies which are popular for many difficult to solve optimization

problems, including inverse problems. GAs emulate the natural evolutionary

process in a population where the fittest survive and reproduce (Holland,

1975). GA-based search performs well because of its ability to combine aspects

of solutions from different parts of the search space. Real coded genetic

algorithm was used with a population size of 100, crossover probability of

0.85 and a mutation probability of 0.05. The values were chosen based on a

series of numerical experiments.

3.2.5 Suitability and Sensitivity of Adaptive Simulated Annealing

In the application discussed here, simulated annealing is utilized for

finding the global minimum of an objective function that characterizes

large and complex systems such as transport of pollutants in groundwater.

Simulated annealing, as an algorithm, is very efficient in solving non-convex

optimization problems by ensuring that it does not always move downhill on

a complex non-convex search space and hence avoids getting trapped in local

minimum. Simulated annealing also differs significantly from conventional

iterative optimization algorithms in that gross features of the final state of

the system are seen at higher temperatures, whereas the finer details of the

state appear at lower temperatures (Haykin, 1999). The fact that simulated

annealing ensures a global optimal solution enhances its suitability for
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solving ill-posed inverse problems in general, and the problem of unknown

groundwater pollutant source characterization in particular.

Its ease of use and efficiency in handling complex objective functions

and constraints has made simulated annealing an attractive choice for

solving a wide range of complex optimization problems (Ingber, 1996).

However, the slow convergence and hence long time of execution of standard

Boltzmann-type simulated annealing has been a constraint. Adaptive

simulated annealing removes that constraint by making the annealing

schedules decrease exponentially in annealing time, thereby making the

convergence much faster. A major difference between ASA and traditional

Boltzmann annealing algorithms is that the ergodic sampling takes place

in terms of n parameters and the cost function. In ASA the exponential

annealing schedules permit resources to be spent adaptively on re-annealing

and on pacing the convergence in all dimensions, ensuring ample global

searching in the first phases of search and ample quick convergence in the

final phases (Ingber, 1996).

Another major advantage of using adaptive simulated annealing is also

the fact that the parameters of algorithm are adjusted adaptively and hence

the solutions do not vary widely if parameter values are changed within

reasonable limits. This is in contrast with genetic algorithm where even minor

changes to parameters such as mutation probability, crossover probability, or

population size cause a significant difference in the solutions.
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3.3 Performance Evaluation

In order to evaluate the performance of two different optimization

algorithms based on the solutions obtained, it is vital to first ensure that only

one solution exists. In other words, a unique solution has to be guaranteed.

This is possible only under the following idealized assumptions (Sun, 1994):

1. The numerical models used for simulation of groundwater flow and

transport are able to provide exact solution of the governing equations in

forward runs.

2. All the model parameters and concentration measurements are known

without any associated errors.

3. The unknown parameter is piecewise constant.

The first assumption is valid for cases where grid size and time step used

in the numerical solution tend to zero. As the groundwater simulation

models used in this study have been proven to be stable and convergent,

this assumption approximately holds. The second assumption, however,

cannot hold in real-life scenarios. Hence, it becomes necessary to use

synthetically generated observation values initially which can be considered

free of measurement errors. The third condition is implemented by assuming

that the unknown fluxes are constant in every stress period. In such

conditions it approximately resembles a well-posed problem. Therefore,

these evaluations are initially carried out for synthetic data (simulated data)

with known parameter values. There is another related issue of unique

solutions. Whenever numerical simulation and optimization models are used,

the convergence of the solutions may be another issue related to unique
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solutions. These issues are discussed in Datta (2002). In this study the use

of synthetic observation data, with known hydrogeologic parameter values

reduces the ill-posed nature of the problem. The uniqueness of the solution

cannot be guaranteed. However, sufficient iterations were allowed to ensure

convergence to the optimal solution. Performance of the source identification

methodology is evaluated using synthetic data from a three-dimensional

aquifer study area. The synthetic pollutant concentration data are obtained

by solving the numerical flow and transport simulation models.

3.3.1 Simulating Errors in Concentration Measurement Data

Once the global optimal solution has been obtained for the idealistic

assumption, the performance evaluation of developed methodology can take

into account the effects of pollutant concentration measurement errors as

well as uncertainty associated with the determination of hydrogeological

parameters. To test the performance for realistic scenarios, concentration

measurement errors are incorporated by introducing varied amounts of

synthetically generated statistical noise in the simulated concentration values.

The perturbed simulated concentration represents erroneous measurement

and is defined as follows:

Cpert = Cns + Sud × a× Cns (3.7)

Where

Cpert = perturbed concentration value;

Cns = simulated concentration;
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Sud = a uniform random number between -1 and +1;

a = a fraction between 0 and 1.0.

3.3.2 Incorporating Uncertainty in Hydrogeologic Parameters

Many times the groundwater flow models use layers with several zones

that are assigned representative average values of hydraulic conductivity to

generate the head distribution in the study area. This information is used by

the transport model to calculate pollutant concentrations at different points

in time and space. Hydraulic conductivity, however, is represented most

realistically by a stochastic set of values defined by a log-normal probability

distribution. If the study area has several non-homogeneous layers, then the

distribution is different in each layer. Even within a homogeneous layer the

hydraulic conductivity values are not unique. They show random variations

in space. The measure of this random variation is represented by the standard

deviation of the distribution.

In order to test the performance of ASA based simulation-optimization

methodology, the observed pollutant concentrations are generated using

non-homogeneous non-uniform hydraulic conductivity values whereas the

transport simulation model linked to optimization algorithm still uses the

head distribution generated by a flow model that uses average values of

hydraulic conductivity. The values of hydraulic conductivity (K) are assumed

to follow a log-normal distribution (Freeze, 1975). If we define another

variable Y such that Y = log10K, then Y is distributed normally with a mean µy

and a standard deviation σy. The values of σy generally vary between 0.2 and

20 (Freeze, 1975). And the value of µy is close to the log of average hydraulic

conductivity.
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Spatial variation of hydrologic parameters is also an important

consideration for simulating realistic groundwater flow and solute transport

processes. Detailed characterization of the spatial distribution of hydrologic

parameter values in an aquifer is described in Yeh (1992) and Gelhar (1993).

In order to create a quasi three-dimensional hydraulic conductivity field in

this study, different values for mean and standard deviation are chosen for

each layer. Furthermore, in order to incorporate geo-spatial correlations for

the hydraulic conductivity in each layer, a small number of sample hydraulic

conductivity values are first sampled from the statistical distributions using

Latin hypercube sampling (Pebesma and Heuvelink, 1999). Values from

this sample are then interpolated to the entire layer using ordinary kriging

(OK) (Cressie, 1988). Interpolation of a defined variogram simulates the

geo-spatial correlation in hydraulic conductivity values. An example of

hydraulic conductivity distribution generated using this method is shown

in Figure 3.2. The point value of porosity is assumed to follow a normal

distribution (Freeze, 1975). In this study, porosity was assumed to have

a mean of 0.3-0.4 and a standard deviation of 0.005-0.008. Similar to the

generation of hydraulic conductivity values, different values of mean and

standard deviation are used for each layer of the aquifer to generate quasi

three-dimensional values of porosity in a non-uniform, heterogeneous media.

Geo-spatial correlations are simulated as described above for hydraulic

conductivity values.

3.3.3 Performance Evaluation Criteria

The execution times of the algorithms are compared based on convergence

curves which represent the value of objective function achieved versus
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Figure 3.2: Model Variogram and Spatially Correlated Hydraulic
Conductivity Values Generated for the First Layer
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time. To compare the ability of competing linked simulation-optimization

approaches to produce accurate source histories, the error in estimating

source fluxes accurately is also used as a performance criterion. Normalized

absolute error of estimation (NAEE) is used as the measure of errors in

estimation of the sources. It can be represented as:

NAEE(%) =
∑S

i=1 ∑N
j=1

∣∣∣(qj
i

)
est
−
(

qj
i

)
act

∣∣∣
∑S

i=1 ∑N
j=1

(
qj

i

)
act

× 100 (3.8)

Where

NAEE = normalized absolute error of estimation;

S = number of sources = 2 in this case;

N = number of transport stress periods = 5 in this case;(
qj

i

)
act

= actual source flux for source number i in stress period j;(
qj

i

)
est

= estimated source flux for source number i in stress period j.

3.3.4 Incorporation of Different Concentration Monitoring Scenarios

In order to evaluate the relevance of any existing monitoring network in

efficient estimation of the unknown pollutant sources, a number of plausible

monitoring scenarios are incorporated. The performance of developed

methodology is evaluated and compared for each of these monitoring

scenarios.

A set of five different monitoring networks, each consisting of five

individual monitoring locations are separately used to reconstruct source

release histories. The effectiveness of each monitoring location is also
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Figure 3.3: Illustrative Study Area

compared based on the normalized absolute error of estimation.

3.4 Discussion of Solution Results

The developed methodology was applied to a hypothetical illustrative

study area with synthetically generated concentration measurements over

space and time. The advantage of using a hypothetical study area lies in

the fact that unknown data errors do not distort the performance evaluation

of the methodology. This helps in understanding the drawbacks of developed

methodology independent of input data error.

3.4.1 Study Area

The illustrative study area is a heterogeneous aquifer measuring 2100 m

x 1500 m x 30 m and consisting of three unconfined layers as shown in

Figure 3.3.

The east and west boundaries are constant head boundaries, whereas the
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Figure 3.4: Top View of Study Area Showing Sources and Monitoring
Locations

north and south boundaries are no flow boundaries. There are two sources

(S1 and S2) of pollution. S1 is located in the top layer and S2 in the middle

layer. Five monitoring locations (M1 through M5) are located in the first layer

as shown in Figure 3.4. A grid size of 30 m x 30 m x 10 m is used for

finite difference based numerical solution of groundwater flow and transport

equations. Model parameters are listed in Table 3.1.

Only a conservative pollutant is considered. There are two point sources of

pollutants. One in the top layer and another one in the middle layer. The

study area is discretized into a number of rows, columns and layers along the

x, y and z axes respectively. Hence, the location of sources can be expressed
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Table 3.1: Model Parameters

Parameter Value
Length of study area (m) 2100
Width of study area (m) 1500
Saturated thickness, b(m) 30
Grid spacing in x-direction, ∆x (m) 30
Grid spacing in y-direction, ∆y (m) 30
Grid spacing in z-direction, ∆z (m) 10

Hydraulic conductivity in x-direction, Kxx (m/day)
20

Hydraulic conductivity in y-direction, Kyy (m/day) 20
Vertical anisotropy 5
Hydraulic gradient (m/m) 0.00238
Effective porosity, θ 0.3
Longitudinal dispersivity, αL (m) 15
Transverse dispersivity, αT (m) 3
Initial pollutant concentration (mg/l) 0.00

as row, column and layer number of the discretized cell that contains the

physical source location. A time horizon of 20 years is considered. The

entire time horizon is divided into five different stress periods. The first four

stress periods are each two years long and the final stress period is of 12

years duration. Sources are assumed to be active only in the first four stress

periods or in the initial eight years. Actual source fluxes are presented in

Table 3.2. Source location, in terms of the row, column and layer number in the

discretized space is also mentioned. It is assumed that groundwater pollution

is detected at five different locations in the study area at the end of 10th year,

that is two years after the sources had ceased to exist. The observation wells

are monitored for a period of 10 years starting from year 11 at an interval of

73 days. Observed pollutant concentration measurements at the designated

monitoring locations are generated using MT3DMS as transport simulation

model followed by perturbation as per Equation 3.7.
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Table 3.2: Actual Source Fluxes

Sources Layer Row Column Contaminant Flux (g/s)
Stress Period 1 2 years 6.250
Stress Period 2 2 years 4.630

Source 1 1 12 15 Stress Period 3 2 years 9.028
Stress Period 4 2 years 5.556
Stress Period 5 12 years 0.000
Stress Period 1 2 years 6.690
Stress Period 2 2 years 9.346

Source 2 2 38 9 Stress Period 3 2 years 6.100
Stress Period 4 2 years 7.280
Stress Period 5 12 years 0.000

3.4.2 Source Flux Magnitude Estimation with Error Free Data

A set of error free observation data is generated. These observations

are then used to evaluate the developed linked simulation-optimization

methodology based on both GA and ASA. Input parameters used for GA

and ASA are presented in Table 3.3. Every iteration of ASA based method

uses one run of the groundwater transport simulation model (MT3DMS)

whereas every generation of GA based method uses 100 (population size)

runs of the same simulation model. Irrespective of the method, one run of

the groundwater transport simulation model takes 3.784 seconds to run on a

Dell Optiplex R© running an Intel R©CoreTM2 Duo Processor at 2.93 GHz. The

execution time for one transport simulation run is, however, dependent on

the computing platform.

In order to keep the comparison independent of computing platform, both

the methods were compared based on number of transport simulation runs,

which is directly proportional to the execution time. Both the methods were

used to estimate source release histories using the error free data. In order to

verify the convergence of each optimization method, time of run was made
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Figure 3.5: Estimated Release History with Error Free Data

practically unconstrained. It was found that eventually both the optimization

algorithms were able to achieve an objective function value very close to

zero and identified the release history accurately. The objective function

convergence profile as well as estimated fluxes are plotted at the end of 25,000

simulation runs of the groundwater transport model. Minimum value of

objective function achieved is plotted against number of runs of the transport

simulation model. The estimated flux values for both the sources in each

stress period are also plotted against actual source fluxes. Convergence profile

and source flux estimates are shown in Figure 3.5. Convergence profile shows
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Table 3.3: Parameters used in Optimization Algorithms

Parameters of ASA Parameters of GA

Accepted to generated ratio 1.00E-06 Mutation strategy: Polynomial mutation
Variable boundaries : Rigid

Cost precision 1.00E-10 Population size 100
Maximum cost repeat 5 Total no. of generations 400

Temperature ratio scale 1.00E-05 Crossover probability 0.778
Temp. anneal scale 100 Mutation probability 0.0512

Exponent (n for SBX) 2
Exponent (n for Mutation) 20

that the objective function value for the source identification model converges

to a value very close to zero with about 5,000 simulation runs. However,

further convergence is accelerated when using ASA algorithm. The entire

range of convergence beyond 25,000 simulation runs is not shown here. From

these results, it can be concluded that the developed methodology is able to

achieve optimal solution for an ideal error free scenario which resembles a

well-posed problem.

3.4.3 Source Flux Magnitude Estimation with Erroneous Data

Five sets of erroneous observation data are generated with the formulation

described in Equation 3.7. The value of fraction ’a’ is specified as 0.1.

These erroneous observations are used to reconstruct the release histories

of pollutant sources. Linked simulation optimization method using ASA

is compared with the method using GA as the optimization algorithm.

Parameters used for both the optimization algorithms is presented in

Table 3.3. Unlike the case with error free measurement data, in this case

both the methods were used to reconstruct source release histories using

the erroneous data with a limit on execution time. In order to make

the comparison consistent by ensuring same number of simulation runs in
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Figure 3.6: Convergence Plot

the ASA and GA based methodologies, the number of simulation runs is

restricted to 40,000. This restriction was based on the fact that increasing the

number of simulation runs even to 80,000 resulted in very little improvement

in the objective function value. Minimum value of objective function achieved

is averaged over five solutions and is plotted against number of runs of

the transport simulation model. The plot is presented in Figure 3.6. This

plot clearly shows that the ASA based method converges much faster in the

beginning. The GA based method is able to achieve comparable objective

function values only after a much larger number of simulation runs. Because

of the erroneous measurement data this problem may be ill-posed and the

solution may not be unique. Therefore, lower objective function values do not

always mean accurate reconstruction of the release histories.
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Table 3.4: Normalized Absolute Error of Estimation

No. Of Simulation Runs NAEE (%)
GA ASA

10000 5.35 2.94
20000 5.79 3.23
30000 4.49 3.39
40000 3.66 3.50

In order to test the effectiveness of the competing methods based on accuracy

of solutions produced, reconstructed release histories were compared to the

actual release history after every set of 10,000 transport simulation runs. The

results are shown in Figure 3.7. It can be seen that the ASA based method

is more efficient compared to the GA based method after 10,000 and 20,000

simulation runs. However, as the execution time increases further with increase

in number of simulation runs, the release histories produced by both methods

become similar. This is also confirmed from the calculated values of NAEE

presented in Table 3.4. As the execution time increases, the NAEE of ASA

based method appears to increase only slightly. This could be due to statistical

variation in the five different solutions and may be attributed to the input

data error. Averaging over a larger number of solutions may modify this

inference. NAEE of GA based method consistently improves. However, the

NAEE values obtained using ASA are still better in comparison.

3.4.4 Source Flux Magnitude Estimation with Uncertainty in Hydrogeologic

Parameters

Any attempt to estimate release history of pollutant sources is susceptible

to the uncertainty in estimation of hydrogeological parameters of the aquifer.

Most often, an average value of the hydrogeological parameter such as

hydraulic conductivity is used in the groundwater flow and transport models.
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Figure 3.7: Reconstructed Release Histories using the Competing Methods

However, in the real world this is not true as the hydrogeological parameter

values are not uniform even in a homogeneous layer. The real world values of

hydro-geological parameter can be closely approximated by certain statistical

distribution (Freeze, 1975). It has been reported that source release history

reconstruction problems are particularly sensitive to hydraulic conductivity

and porosity (Datta et al., 2009a,b).

In this study, three sets of numerical experiments were carried out

to study the effects of uncertainty in estimation of hydrogeological

parameters. Contaminant concentration observation data were generated

using a distribution of i) hydraulic conductivity, ii) porosity, and iii) both

i) and ii). The distributions for hydraulic conductivity in each of the three

layers were generated using log20, log17 and log21 as mean and 0.1, 0.08

and 0.12 as standard deviations respectively. Similarly, the distributions for
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porosity were generated using 0.30, 0.32 and 0.30 as mean and 0.006, 0.008

and 0.006 as standard deviation. The simulation model used in the linked

simulation-optimization methods based on ASA and GA that were used

to reconstruct the release histories of the pollutant sources, however, used

spatially averaged values of hydraulic conductivity and porosity. The reason

is that field measurements reflect actual hydrogeologic conditions. However,

for modelling purposes, often average values of the hydrogeologic parameters

are used. While the non-uniformity in the hydrogeologic parameters is

incorporated in generating actual field measurement, these uncertainties are

not included in the linked simulation-optimization model. Therefore, the

modelling uncertainties are also incorporated in these evaluations.

Three sets of numerical experiments are carried out, each containing five

different runs with different realization of point values of hydrogeological

parameters. In the first set, pollutant concentration observation values were

generated after incorporating non-uniformity in hydraulic conductivity alone.

In the second set, randomly generated values of porosity, as discussed earlier,

were used to generate the pollutant concentration measurements. In the

third set, randomly generated values of both hydraulic conductivity and

porosity values were used. The execution time is limited to 20,000 runs of the

groundwater transport model. The solution results are presented in Table 3.5.

It can be inferred from these solution results that the reconstruction of

release histories becomes difficult when unmodelled non-uniformity in both

hydraulic conductivity and porosity are present. However, the optimal

source identification model does not incorporate these non-uniformities.
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It is also apparent that, within the restricted execution time, adaptive

simulated annealing based methodology produces better results compared

to those produced by GA based methodologies. This is the inference

even when the modelled values of hydrogeological parameters used in the

simulation-optimization model are average of the actual spatially varied

values used to generate synthetic pollutant concentration observation values

for the performance evaluation.

3.4.5 Effects of Monitoring Network

The selection of a pollutant concentration monitoring network directly

affects the results obtained using linked simulation-optimization models.

In order to study the effects of monitoring locations, a set of four

arbitrary monitoring networks was used apart from the one used in the

rest of this study. The observation data obtained from each of these was

used to reconstruct the release histories of pollutant sources using linked

simulation-optimization method based on ASA. All the four monitoring

networks (labeled MN2 through MN5) are shown in Figure 3.8. Two of the

monitoring networks have all the observation wells placed perpendicular to

the general direction of groundwater flow while the other two have wells

chosen on the vertices and centre of a virtual rectangle. The characteristic

curves for each of the monitoring networks are shown in Figure 3.9. It is

worthwhile to note that no more than three arbitrary observation wells chosen

show any appreciable pollutant concentration. This implies that, in effect, at

most only three chosen monitoring locations are able to capture the pollutant

plume. ASA based simulation-optimization method was used to reconstruct

the release histories of sources. The simulation runs were limited to 30,000.
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Figure 3.8: Various Monitoring Networks
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Figure 3.9: Characteristic Curves of Wells on Chosen Monitoring
Networks
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Figure 3.10: Source Release History Reconstruction using Different
Monitoring Networks

NAEE was calculated and plotted as shown in Figure 3.10 as a function of

number of transport simulation runs.

It is evident that MN4 produces the most accurate results. This could

be due to the fact that more wells in MN4 capture the pollutant plume

and are located in the direction of flow downstream of the pollutant

sources. These results, however, are not rigorous enough to pinpoint a single

criterion that could be used for designing a monitoring network dedicated to

source identification. Further study on the criteria for designing dedicated

monitoring networks for source identification is now being carried out.
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3.5 Conclusion

A linked simulation-optimization method for source identification was

developed based on adaptive simulated annealing. It was applied to an

illustrative study area. The results obtained were compared with those

obtained using genetic algorithm, a more widely used optimization approach.

It is evident from the limited numerical experiments that adaptive simulated

annealing algorithm based solutions converge to the actual source fluxes

faster than genetic algorithm based solutions. This results in substantial

saving in computational time. The source fluxes identified by using adaptive

simulated annealing are closer to actual fluxes when compared to the

results obtained using genetic algorithm, even when the observation data

are erroneous and the hydrogeological parameters are uncertain. It can

be concluded that adaptive simulated annealing is computationally more

efficient for use in simulation-optimization based methods for identification

of unknown groundwater pollutant sources, especially in a time constrained

environment.

Use of ASA has the potential to reduce CPU time required for solution

by an order of magnitude. In some cases, with a very large number of

iterations in the linked simulation-optimization approach, it is possible that

the solutions obtained using GA could converge to a marginally better

solution compared to that of an ASA based algorithm. However, it appears

that ASA based solutions converge very close to the optimal solution using

only a small fraction of the iterations required while using GA. For a much

larger scale and complex study area, this computational efficiency may be

vital. Although computational time may not be the most important factor in
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choosing the optimization algorithm, use of ASA may result in an optimal

solution within a reasonable number of search iterations.

The next chapter presents a methodology for iterative design of a

monitoring network and efficient source estimation. The relevance of

designing a pollutant monitoring network to enhance the efficiency of source

identification is also discussed.
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Chapter 4

Methodology for Initial Estimation of

Unknown Pollutant Source Characteristics

and Design of Monitoring Network

Any unknown groundwater pollutant source identification problem is very

difficult to solve if the time of first activity of the source is unspecified. Most of

the existing methodologies and the methodologies presented in the previous

chapter assume that reliable estimates of potential source location and the

time when these sources start activity exist. However, this may not always be

the case. In this chapter, an attempt has been made to solve this problem by

matching the time-indexed sequence of pollutant concentration observed at

every location in the monitoring network to the entire estimated pollutant

breakthrough curve at that location. Apart from this, missing pollutant

concentration observations and misaligned estimated and observed pollutant

concentration sequences may also affect the solution results of methodology

developed in the previous chapter. Since the primary objective of this study is

to develop an efficient linked simulation-optimization based methodology for

characterizing or identifying unknown pollutant sources in any groundwater

aquifer, it is essential to address these issues. Dynamic time warping (DTW)
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distance has been used as the measure of dissimilarity between the observed

and estimated sequences of pollutant concentration. Use of DTW distance in

place of Euclidean distance helps limit the influence of missing observation

data and those of misaligned estimated and observed pollutant concentration

sequences on the estimated unknown pollutant source characteristics.

This chapter discusses a methodology which can be used for reliable

estimation of source characteristics in situations where background

information on pollutant source characteristics is either non-existent or

unreliable. In order to generate more observation information for accurate

estimation of source characteristics, a designed monitoring network is

essential. Therefore, a methodology is developed utilizing the initial estimates

of various source characteristics to design an efficient monitoring network,

exclusively for enhancing the efficiency and accuracy of pollutant source flux

magnitude reconstruction. The performance of the developed methodology

is evaluated for a hypothetical contamination scenario and also for a real-life

contaminated aquifer site.

Very often, contamination of groundwater is initially detected in one or

more arbitrarily located wells. These wells are referred to as “detection

wells” in this study. Figure 4.1 illustrates a typical study area at the time

of initial detection of a contamination event in a multilayered groundwater

aquifer. It is assumed that the pollutant was first observed at a single

detection well. At this point, from preliminary investigation, it might be

possible to locate a finite number of potential source locations as shown in

Figure 4.1. Information related to the likelihood of any of these potential

source locations being the actual source location is not available. The
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Figure 4.1: Illustrative Example of Initial Pollutant Detection

pollutant plume boundary is not known and the time at which source activity

began cannot be ascertained at this stage. This problem of preliminary

source characteristics estimation is formulated as an optimization problem

with integer valued decision variables. Candidate solutions for unknown

source characteristics are generated by the optimization module. In order

to incorporate the physical processes governing groundwater flow and

transport, this optimization module is linked with a numerical groundwater

flow and transport simulation module. The candidate solutions generated by

the search mechanism of the optimization module are used as an input for

the groundwater flow and transport simulation module to produce estimated

pollutant breakthrough curves at the detection wells. The objective of the

optimization module is to minimize dissimilarity, or maximize the matching,

between observed pollutant concentration sequence at the detection well, and

74



the estimated sequence generated by simulation. DTW distance is used as

a measure of dissimilarity between two time sequences of concentrations at

a location. The preliminary source characteristics estimated in this step are

then used to ascertain best location of a finite number of monitoring wells

in a network such that it ensures maximum detection of pollutant and hence

most effective source characterization. In order to test its performance, the

developed methodology is applied to an illustrative example problem.

4.1 Preliminary Estimation of Unknown Groundwater

Pollutant Source Characteristics

The first step in the proposed methodology is to generate preliminary

estimates of the following groundwater pollutant characteristics for each of

the potential source locations:

1. The likelihood of a potential source location being an actual source

location.

2. Duration of activity of source.

3. Lag time between first activity at the source and first detection of

contamination.

The developed methodology is based on several assumptions:

1. Contaminant has been detected in at least one arbitrarily located

monitoring well and concentration of pollutant in this well has been

measured at specified time intervals.

2. Sufficient information exists to set up and calibrate a groundwater flow

model of the site.
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Figure 4.2: Breakthrough Curve at a Monitoring Location

3. There is only one pollutant plume and the plume is not affected by any

other pollutant source outside the boundaries of the study area.

4. A finite set of suitable candidate locations for monitoring wells is

available.

5. Search domain in space and time is discretized.

6. The source flux has a very low volumetric flow rate (although

concentration can be high) and does not affect the hydraulic head

distribution in the study area.

If a well is monitored over a specified period of time and the measured

pollutant concentration data are plotted against time, it will form a small part

of the entire actual pollutant breakthrough curve at the monitored location.

In Figure 4.2, the breakthrough curve is shaded in the portion representing
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measured concentration values. A contaminant breakthrough curve at any

given location in the study area can be estimated by solving governing

mathematical equations of groundwater flow and transport. These equations

have already been discussed in Chapter 3. It can be deduced from Equation

3.3 that, at a given monitoring location M(x,y,z) in a three-dimensional space,

the breakthrough curve for pollutant concentration C(t) can be expressed as a

function of various unknown parameters as shown in Equation 4.1.

C (t) = f (x, y, z, vx, DL, DT, t, θ) (4.1)

Where

x,y,z = cartesian co-ordinates of the monitoring location with

pollutant source as the origin;

vx= groundwater velocity (Darcy’s velocity) in horizontal direction;

DL, DT= dispersivity in longitudinal and transverse direction; and

θ = contaminant source flux (in terms of mass per unit time) released

to groundwater.

If all flow and transport parameters are known precisely at every point

in the study area, and the pollutant concentrations at a large number of

monitoring wells can be measured without any errors, then these error free

observations can be utilized by solving the inverse problem to determine the

relative spatial location of the monitoring well with respect to the source, the

temporal pattern of release at the source, magnitude of pollutant released

over time, and the time lag between beginning of source release and pollutant

detection in the initial monitoring well. However, such ideal conditions do

not exist in real-life contamination scenarios. Flow and transport parameters
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are known only at a few points and measurements of pollutant concentration

cannot be error free.

Reliable estimates of spatial location, release history and magnitude of

pollutant release can generate a near-ideal breakthrough curve. In such a case,

only the time lag between beginning of source release and pollutant detection

will be unknown. Since the observed values from the detection well form a

portion of this near-ideal breakthrough curve, the point on the temporal axis

where observed pattern fits the ideal breakthrough curve is indicative of this

lag.

Initial estimation of pollutant source characteristics can be based on the

similarity between a measured concentration sequence of fixed time length

to same-sized (in terms of time) portion of a candidate breakthrough curve.

Traditionally, Euclidean distance has been used to measure this similarity.

However, this distance measure has several disadvantages when applied to

this case:

1. Euclidean distance works well only when the frequency of observed and

estimated concentrations match.

2. Any missing data in observed concentration sequence can compromise

the effectiveness of this measure.

In this methodology, no prior information on any of the source characteristics

is assumed to exist at this stage. It is more appropriate to use a pattern

comparison technique which can estimate the similarity of two time series

very efficiently even if their sampling frequencies don’t match, or if some

measurements are missing. This can be achieved by using dynamic time

warping (DTW) distance.
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4.1.1 Pattern Comparison using Dynamic Time Warping Distance

Pattern comparison techniques have been widely used for speech

processing and recognition. In this study, dissimilarity or distance between a

test pattern and a set of reference patterns is used as a measure of comparison.

The test pattern can be represented as:

T = {t1, t2, t3, ......., tN}

where each ti is a vector consisting of measured concentrations at one or more

detection wells at time period i, and N is the total number of measurements

at any given well over the initial monitoring period ’T’. The set of reference

patterns can be represented as
{

R1, R2, ....., RV} where each Rj is a sequence

on the estimated breakthrough curve of equal time length (T) as the test

pattern.

Rj =
{

rj
1, rj

2, rj
3, ......., rj

M

}
where M is the total number of concentration values on the estimated

breakthrough curve in a time duration ’T’. The goal of pattern comparison

in this study is to identify the reference pattern of time length ’T’ on the

estimated breakthrough curve that has minimum dissimilarity (or distance)

with the test pattern. In order to determine the global similarity between the

test pattern T and any reference pattern Rj, the following aspects need to be

taken into account:

1. Although T and Rj are of equal time length, the number of samples in

each of these sequences may be different.

2. T and Rj need not line up in time in a well-prescribed manner. This

is because the estimated breakthrough curve is being generated with
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approximations of actual source characteristics and the test pattern is

being compared to all same-sized portions of the breakthrough curve.

3. Pairs of vectors need to be compared for ascertaining local dissimilarity

and facilitating temporal lineup between T and Rj.

Therefore, a method to solve this pattern comparison problem must be able

to use a local dissimilarity measure and a global method of time alignment.

This can be achieved in a number of ways. A detailed discussion of these

methods is presented in Rabiner and Juang (1993). In this study, dynamic

time warping (DTW) distance was chosen as the appropriate method of

pattern comparison. One of the most important reasons for using this

technique is that it has embedded time alignment.

The aim of dynamic time warping is to find a warping path such that

the local dissimilarity or distance between the test sequence T and reference

sequence Rj is minimum. In other words, DTW picks the deformation of time

axes of test and reference sequences such that it brings the two time series

as close to each other as possible. A warping path ’p’ can be represented

as a sequence p = (p1, p2, ......pL) where each individual member pl of the

sequence consists of a pair of integer indices (nl, ml)ε[1 : N]x[1 : M] where

N and M represents the size of test and reference sequence respectively.

The local dissimilarity for any warping path can be defined as shown in

Equation 4.2. The dynamic time warping (DTW) distance between the test

and reference sequence is given by Equation 4.3.

dp

(
T, Rj

)
=

L

∑
l=1

d
(

tnl , rj
ml

)
(4.2)
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DTW
(

T, Rj
)
= min

{
dp

(
T, Rj

)}
(4.3)

where ’d’ is a local dissimilarity function. In this study, Euclidean distance or

the l2 norm is used as the local dissimilarity measure.

The advantage of using DTW distance as a similarity measure instead

of Euclidean distance lies in the fact that exact time alignment between

observed and estimated sequences is not necessary and hence frequency at

which concentration is observed at the monitoring wells need not match the

frequency at which estimated concentrations are available on the candidate

characteristic curve. Also, this distance measure is not very much affected by

a few missing data instances in the observation sequence.

4.1.2 Pattern Comparison using DTW Distance to Estimate the Time of

First Activity of Unknown Pollutant Source

An illustrative study area is used to illustrate the methodology and

explain how DTW distance can be used as a similarity measure. The

observation sequence consists of 16 measurements covering a 900-day period

with readings taken every 60 days from the beginning of detection. The

location of the pollutant source is assumed to be known. Therefore, for

this specified location, it is possible to simulate a template breakthrough

curve, covering a span of time since the start of activity of the source. The

observed sequence is compared to all similar sized portions of the template

breakthrough curve and corresponding dynamic time warping distances are

calculated. A few of these comparisons are shown in Figure 4.3. Figure
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Figure 4.3: Illustrative Example of Pattern Comparison using Dynamic
Time Warping
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4.3 shows the ideal breakthrough curve and pattern comparison between

observed and estimated sequences at various positions in the time domain.

The pattern comparison process begins at time t = 0 on the time scale. Since in

this case the observations are available over 900 days, the observed sequence is

compared with the template sequence on the breakthrough curve for intervals

of 90 days. The estimated sequence is normalized and dynamic time warping

distance is calculated. The process then moves forward by shifting to the

next observation (or by one time step) on the breakthrough curve. In this

case, each successive observation on the breakthrough curve is available at a

30-day interval. Hence, in each iteration, the comparison window moves 30

days. The time horizon of this study is assumed to be 30 years.

The observed concentration values are compared with 365 individual

estimated concentration sequences. In Figure 4.3, five of the possible 365

instances are shown. It should be noted that if the time lag between each

successive observed and estimated concentration is the same, and if there

are no missing values in the observed sequence, dynamic time warping

distance is the same as Euclidean distance. However, the advantage of

using dynamic time warping distance is the fact that it aligns observed and

estimated sequences on the time scale and hence it is much more robust

in dealing with time mismatches and missing data. In order to illustrate

this, time sequence comparison was done with all the 16 values of observed

concentration and with four values for t = 120, 360, 540 and 720 missing. The

resulting DTW distances are plotted in Figure 4.4. It can be observed that the

missing observed data do not have any significant impact on the point in time

domain where DTW achieves minimum distance. It can be seen in Figure 4.4
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Figure 4.4: Computed DTW Distance over Time
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that the DTW distance reaches its minimum at t = 7500. This indicates that

the source activity began approximately 7500 days before the contamination

was detected.

4.1.3 Initial Source Characteristics Estimation

Unknown pollutant source characteristics are real valued. However, the

numerical modelling techniques used to solve the groundwater flow and

transport equations in this study are based on finite difference method,

where spatial and temporal domain is discretized. Hence, the unknown

source characteristics can be mapped to a set of integers that represent

this discretization. As an example, the source location can be represented

by an integer corresponding to the identity of the discretized cell in the

three-dimensional finite difference grid. Similarly, release history can be

discretized into a number of stress periods of finite length, and a single integer

can represent the number of stress periods since the beginning of the study

period in which the source is active. Magnitude of source does not have

a significant impact at initial estimation stage, primarily due to the fact that

both the test sequence and the reference sequence are normalized to the range

(0,1) before being compared. Hence, at this stage, essentially the pattern of

increasing or decreasing sequences are being matched and not their precise

magnitudes. Integer approximations shift the peak of the breakthrough curve

slightly and they also have some impact on the pattern of breakthrough curve.

However, it is not very significant. This is illustrated in Figure 4.5. Several

breakthrough curves were generated at a given monitoring location using:

1. Actual source flux magnitudes
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2. Source flux magnitudes rounded off to nearest 100s.

3. Source flux magnitudes averaged over four stress periods.

4. Source flux magnitudes averaged over the entire study period.

It can be seen from Figure 4.5 that the peak of the breakthrough curve is

shifted most by averaging the source flux values over the entire study period.

For all other approximations, the breakthrough curve maintains more or less

the same pattern as the original one.

Since integer approximation of the source characteristics does not seem

to change the pattern of the breakthrough curve drastically, the problem of

initial estimation can be cast into an optimization problem with integer valued

decision variables. For every potential source location, the decision variables

are:

1. Release history: This variable can take an integer value between 1 and the

maximum number of stress periods in the transport model. It indicates

the number of stress periods since the beginning in which the given

source has been active.

2. Source magnitude: Since the pattern of breakthrough curves and not the

exact values of pollutant concentrations are being matched, it is sufficient

at this stage to estimate the relative source strength in each of the active

source periods. Hence, the values can be discretized and mapped to an

integer domain. As an example, if the maximum possible limit of source

magnitude is 570 mg/l and the level of accuracy is to the nearest 100 then

source strength can take any value between 1 and 6.
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Figure 4.5: Effects of Approximation of Source Flux Magnitudes on
Breakthrough Curve
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In this methodology, a set of discrete candidate source characteristic values is

generated by the optimization algorithm and these values are used as input

to the forward flow and transport model in order to generate a candidate

characteristic curve. The cost function of this candidate solution set is the

minimum DTW distance achieved while comparing the observed values to

same time-sized portions of candidate breakthrough curve.

Initial estimation of candidate source characteristics can now be

represented as an optimization problem as shown in Equation 4.4.

Minimize : F1 = dDTW

(
Cobs, Ck

est

)
, kε[1, 2, ...n] (4.4)

Subject to the constraint:

Ck
est = f (x, y, z, vx, DL, DT, t, θ)

Where

dDTW (a, b) = DTW distance between time sequences ’a’ and ’b’;

Cobs = concentration time series observed at detection well;

Ck
est = kth concentration time series of equal duration as Cobs on the

estimated candidate characteristic curve;

n = total number of reference sequences equal in duration to the

observed time series;

x,y,z = Cartesian co-ordinates of the monitoring location with

pollutant source as the origin;

vx = groundwater velocity (Darcy’s velocity) in horizontal direction;

t = time elapsed since the beginning of pollutant release in
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Figure 4.6: Flowchart Showing the Steps in Initial Estimation

groundwater;

DL, DT = dispersivity in longitudinal and transverse direction; and

θ = pollutant source flux (in terms of mass per unit time) released

into groundwater.

All the steps involved in initial estimation of source characteristics are

presented as a flow chart in Figure 4.6.
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4.2 Monitoring Network Design for Efficient Unknown

Pollutant Source Characterisation

Once the initial estimates of various unknown source characteristics

become available, the next step is to choose optimal locations on a monitoring

network. The objective of designing a monitoring network for pollutant

source identification is to maximize the concentration observed at monitoring

locations (Datta and Purwar, 1992; Mahar and Datta, 1997). Since monitoring

locations can be represented by integer values, the monitoring network design

problem can be expressed as an integer programming problem. The objective

function for the monitoring network design linked simulation-optimization

model in this case is given in Equation 4.5.

Minimize : F2 =
S

∑
s=1

I

∑
i=1

J

∑
j=1

a
(Cest + b)

(4.5)

Where

Cest = estimated contaminant concentration at candidate monitoring

location ’i’, in time period ’j’, assuming the ’sth’ candidate source

location. Values of Cest are computed by groundwater transport

simulation model and this simulation model acts as a binding

constraint.

a = a specified constant (taken as 1 in this study);

b = a small constant to avoid undefined values for zero concentration

(10−10 in this case;

S = maximum number of candidate source locations selected in

previous step;
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I = maximum number of monitoring locations in the network;

J = total number of observations to be recorded at a monitoring well

in the observation period.

With this objective function, the optimization model chooses those

monitoring locations where the value of pollutant concentration observed is

expected to be maximum for all candidate source locations and associated

release history and magnitude.

4.3 Conclusion

This chapter outlined the developed methodology for generating initial

estimates of unknown groundwater pollutant source characteristics in

situations where the time of first activity of the source is unspecified.

These initial estimates are utilized for designing an optimal monitoring

network specifically for the purpose of unknown groundwater pollutant

source identification. This methodology for designing a dedicated monitoring

network for more efficient identification of pollution sources was described.

It is assumed that measurement data is initially available only at one well

where the contamination event has been detected. From the data obtained

from this single ”detection well“, initial estimation of various unknown source

characteristics is generated using the principles of time series matching.

In order to quantify the dissimilarity between two time series, dynamic

time warping distance is utilized. This approach is useful especially if

there are missing data in the observed time series, or if the observed and

estimated data series are not aligned on the temporal axis. Solution results

91



obtained show that the developed methodology is capable of producing

reliable estimates and that the monitoring network designed based on

such preliminary estimation has the potential to improve the efficiency of

unknown groundwater pollutant source identification results. Limitation

of the methodology is that, in its present state, it is applicable only to

contaminated sites affected with a single pollutant plume, i.e. one continuous

plume. The performance evaluation of the methodologies proposed in this

chapter is presented in Chapter 5.
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Chapter 5

Performance Evaluation of Methodology

for Initial Estimation of Unknown

Pollutant Source Characteristics and

Design of Monitoring Network

This chapter discusses the performance evaluation of the developed

methodology for initial estimation of unknown pollutant source

characteristics, and subsequent utilization of these estimates to design

an optimal monitoring network. In order to evaluate the applicability of this

methodology, it is applied to an illustrative study area with synthetically

generated concentration measurements over space and time, as well as to a

contaminated groundwater aquifer.

5.1 Performance Evaluation Criteria for Initial Estimation of

Unknown Pollutant Source Characteristics

Exact characterisation of source characteristics becomes very difficult in

groundwater aquifer contamination scenarios where no prior information

exists on any of the unknown pollutant source characteristics, and the
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pollutant concentration data is available only from one or a very few detection

wells. In such situations, reliable initial estimates of unknown pollutant

source characteristics can be generated by using the methodology proposed

in Section 4.1. The measure of effectiveness of the methodology for initial

estimation of source characteristics should be its ability to generate an

estimated range of source characteristics that contains the actual source

characteristics, even if the observed concentration series contains moderate

levels of errors. In order to test this, several sets of erroneous observation

data were generated using the method mentioned in Section 3.3.1. The

methodology for initial source characteristics estimation was then applied to

an illustrative study area using error free as well as erroneous concentration

measurement data. The effectiveness of this methodology was assessed based

on its ability to estimate the actual source characteristics.

5.1.1 Performance Evaluation Criteria for Monitoring Network Design

Efficiency of the methodology for monitoring network design is tested

on the premise that the optimal monitoring network should produce better

solutions of source characteristics when compared with arbitrary monitoring

networks consisting of the same number of wells. The methodology for source

release history reconstruction, as described in Section 3.1, is applied using the

concentration measurement data obtained from a set of optimal monitoring

locations, and then to three sets of arbitrarily located monitoring networks

consisting of the same number of wells. Effectiveness of the monitoring

network design methodology is evaluated based on the comparison of results

obtained using each set of monitoring network locations.
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Figure 5.1: Illustrative Study Area

5.2 Results and Discussion

This section presents the results of application of the developed

methodology for initial estimation of source characteristics and subsequent

monitoring network design to an illustrative study area. Results obtained

under various scenarios are discussed in detail.

5.2.1 Study Area

The hypothetical study area is a heterogeneous two-dimensional aquifer

measuring 1920 m x 1340 m but irregular in shape as shown in Figure 5.1.

The east and west boundaries are constant head boundaries, whereas the

north and south boundaries are no flow boundaries. There is a pollutant

source well and four pumping wells in the area as shown in Figure 5.1. The
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Table 5.1: Model Parameters

Parameter Value
Length of study area (m) 1920
Width of study area (m) 1320
Saturated thickness, b(m) 10
Grid spacing in x-direction, x (m) 25 to 50
Grid spacing in y-direction, y (m) 25 to 50
Grid Spacing in z-direction, z (m) 10
Hydraulic conductivity in x-direction, Kxx (m/day) 11.2
Hydraulic conductivity in y-direction, Kyy (m/day) 8
Vertical anisotropy 5
Hydraulic gradient (m/m) 0.00463
Effective porosity, θ 0.3
Longitudinal dispersivity, αL (m) 15
Transverse dispersivity, αT (m) 3
Initial pollutant concentration (mg/l) 0.00

pollutant is first detected at a pumping well named PW2. A variable grid size

ranging from 50 m × 50 m to 25 m × 25 m is used for finite difference based

numerical solution of groundwater flow and transport equations. Grid size is

smaller close to the pumping wells and it expands to regular size further away

from pumping wells. This is to enhance the accuracy of numerical flow and

transport modelling results. Other important model parameters are listed in

Table 5.1. A non-reactive pollutant is assumed to originate from a point source

in this study.

5.2.2 Initial Estimation of Source Characteristics

In order to test the proposed methodology, an observed concentration

sequence was generated at the detection well (PW2) by simulating

groundwater pollutant transport using MT3DMS with known source

characteristics. Actual source characteristics are listed in Table 5.2 and the
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Table 5.2: Actual Source Characteristics

Source location (Row, Column) (19,6)
Time of first activity (days before detection) 6720

Duration of source activity (years) 12
Detection well location (Row, Column) (28,30)

actual release history is shown in Figure 5.2. Total time of activity of the

source of pollution is 12 years and Figure 5.2 shows the average source

flux for each year. The observation sequence contains 16 observations at

an interval of 30 days each after 6720 days of initial source release. Since

real world applications invariably involve erroneous observations, it becomes

essential to evaluate the proposed methodology using erroneous data as

well. Observed pollutant concentration measurements at the designated

detection well are generated using MT3DMS as transport simulation model

followed by perturbation as per Equation 3.7. Original and perturbed

concentration measurements are plotted in Figure 5.3. While solving

this illustrative example, the entire study period is taken to be 30

years. In actual contamination detection events, the duration of study

period should be either based on information related to the beginning of

anthropogenic/contaminating activities in the study area gathered during

reconnaissance or taken to be sufficiently large. The entire time horizon is

divided into 30 stress periods of one year length each. Since there is no prior

information on the actual location of source, regularly spaced locations are

chosen to be the potential source locations.

In this study, 101 potential source locations each covering a space of 150 m

x 150 m were chosen in the entire study area. These potential source locations

are shown in Figure 5.4. The total study period of 30 years is divided into 10
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Figure 5.2: Actual Release History of the Source

Figure 5.3: Model Generated Observation Sequences with Synthetic
Errors
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stress periods of three years each for the purpose of initial estimation of source

release history. Since the observed concentration sequence is matched with

estimated sequence after normalization, it is not very important to estimate

exact source release magnitudes. It is sufficient to estimate the relative order

of source release magnitudes in each stress period for use in the later stage of

accurate release history reconstruction.

Initial source characteristics estimation methodology was applied to all

potential sources in order to determine their optimal release history and

optimal time lag between detection and source activity. Optimal source

characteristics, the lowest DTW distance and time lag between first source

activity and its detection have been presented for the 10 best potential

source locations, estimated using both error free and erroneous observation

sequences in Table 5.3.
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Figure 5.4: Discretized Potential Source Locations

It can be inferred from the results in Table 5.3 that a multitude of

combinations of the source characteristics can produce similar effects at

the detection location. For example, sources located at PSL11, PSL26

and PSL10 can each produce a concentration measurement sequence that

closely matches the observed sequence with different duration of activity

and different values of time lag. This is evident by the objective function

values achieved in the first three rows of Table 5.3. This is an indication

of the inherent non-uniqueness of this problem. It was noted during the

study that the quality of estimation deteriorates as the random error added

to the model-generated synthetic observations increases. For this reason,

ranges of various source characteristics have been estimated using erroneous

observation sequence containing 5% random error. These estimations are

used in the next step to design an efficient monitoring network specifically
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Figure 5.5: Potential Monitoring Locations

for the purpose of precise determination of unknown source characteristics.

5.2.3 Monitoring Network Design

The estimated release history for each source location from the previous

step is used to design an optimal monitoring network. Since at this stage,

only initial estimates of source characteristics are available, the objective of

designing a monitoring network is to capture maximum possible pollutant

concentrations in all estimated scenarios of source release. Candidate

monitoring locations were chosen over discretized areas of 100 m x 100 m,

between the farthest estimated source location and the detection location.

These locations are shown in Figure 5.5. It is desired to choose 10 best

monitoring locations. In order to show the efficiency of this method, the

source flux regeneration algorithm presented in Chapter 3 is implemented
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using the observation data collected over the next two-year period from:

1. The optimal monitoring network, and

2. Three different sets of arbitrary monitoring networks each containing 10

wells.

The well locations chosen for optimal and arbitrary monitoring networks

are shown in Table 5.4. These results are compared after the first 5000

Table 5.4: Monitoring Locations Chosen in the Optimal Monitoring
Network and Arbitrary Monitoring Networks for Comparison

Optimal Arbitrary 1 Arbitrary 2 Arbitrary 3

Well 1 23 68 67 26
Well 2 24 11 30 50
Well 3 25 78 94 36
Well 4 34 69 61 32
Well 5 35 3 52 84
Well 6 45 51 23 5
Well 7 46 76 103 58
Well 8 55 54 56 78
Well 9 56 23 21 49

Well 10 57 19 75 59

iterations of the optimization algorithm. Convergence profiles for each set of

observation data, and the respective solutions achieved after 5000 iterations

of adaptive simulated annealing algorithm, are shown in Figure 5.6. As seen

from Figure 5.6, the arbitrary monitoring networks do not achieve the same

level of accuracy in regenerating source release magnitudes over time as the

optimal monitoring network. From the convergence profile it may be also

inferred that the measurement data obtained from the optimal monitoring

network helps the optimization algorithm converge marginally faster than

that using the data obtained from an arbitrary network.
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Figure 5.6: Estimated Release History
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Figure 5.7: Location of the Study Area within Upper Macquarie
Groundwater Model

5.3 Application to a Contaminated Aquifer

In order to evaluate the potential applicability of this methodology to

actual contaminated sites, it was utilized to find the unknown source

characteristics of a real-life petrochemical fuel pollutant source in a shallow

unconfined aquifer.

5.3.1 Site Description

The contaminated site is located in Upper Macquarie Groundwater

Management Area in New South Wales, Australia. Its exact location cannot be

disclosed due to confidentiality agreements with the data provider. However,

the position of this site in Upper Macquarie Groundwater model is shown

in Figure 5.7. Major sources of groundwater recharge in this study area

are the rainfall and contribution from the Macquarie River, which generally

flows from south-east to north-west. Major sinks include extraction wells for

agricultural and municipal water supply. The aquifer is unconfined and is

formed by quaternary and tertiary alluvial deposits over the bedrock.

The contaminated study area falls in an urban neighbourhood and the
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contamination event was detected at a number of locations. After a series

of complaints and the associated event of BTEX vapour emanating from

building basements, an investigation into the contamination was ordered

by the regulatory authority. Pollutant concentration was monitored in 74

wells over a period spanning four years with an aim to delineate the plume

boundary and pinpoint the source of contamination for planning speedy and

effective remediation measures. The source of contamination was attributed

to a leaking fuel tank. However, the source release history was unknown.

Data collected during this investigation was obtained, and is used for the

performance evaluation of developed methodology for initial estimation of

unknown pollutant source characteristics and subsequent utilization of these

estimates to design an optimal monitoring network.

The extent of contamination was limited to about 1 km2. Available

information, however, was not sufficient to describe the boundary conditions

reliably in the immediate vicinity of the contaminated area. Hence, to model

the groundwater flow and transport in the contaminated study area, a much

larger study area was considered. The study area is roughly 3 km × 3 km.

It is bordered by Macquarie River on the western side and by impermeable

bedrocks on the eastern side. The elevation of the study area ranges from

nearly 245 m with respect to the Australian Height Datum (mAHD) towards

the river to 283 mAHD on the north eastern side. Figure 5.8 shows the

boundaries of the modelled area as well as the extent of the contaminated

study area. It also shows the elevation profile and location of monitoring

wells in the contaminated area.
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Figure 5.8: Extent of Study Area and Contaminated Area, Elevation
Profile and Location of Monitoring Wells

5.3.2 Groundwater Flow Model and its Calibration

A groundwater flow model of the entire Upper Macquarie Groundwater

Management Area was developed by Puech (2010). Based on the information

available from this report, as well as from the information collected during

contaminated site investigation, a conceptual groundwater flow model was

developed for the study area. Based on the geologic information and the

borehole logs available at the site, the conceptual model of the site was

divided into three layers, representing the tertiary alluvium, the quaternary

alluvium and the bedrock. Cross-sections of the conceptual model depicting

these layers are shown in Figure 5.9. The conceptual model is shown in

Figure 5.10.
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Figure 5.9: Layers of the Developed Conceptual Model
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Figure 5.10: Model of the Study Area

5.3.2.1 Boundary Conditions

Macquarie River has been represented as a time varying specified head

boundary. The portion of Macquarie river considered in this model falls

between two weirs. Since the data pertaining to standing water level at both

these weirs are available from NSW Office of Water, specified heads along this

boundary have been represented by the river stage at a given point in time.

The northern and southern boundaries have also been considered as time

varying specified head boundaries. Specified heads along these boundaries

were calculated by interpolating observed heads at a few wells lying along

these boundaries. The eastern boundary is a no flow boundary as mentioned

in the Upper Macquarie Groundwater Model (Puech, 2010).
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5.3.2.2 Sources and Sinks

Macquarie River, that has been modelled as a time varying specified

head boundary condition, is a major source of groundwater in this study

area. Apart from this, rainfall also contributes to the groundwater recharge.

The study area receives moderate rainfall with a long-term average of 583

mm/yr. Evaporation rate in the study area peaks at about 260 mm/month

during the months of December and January. The study area falls in the

irrigated recharge zone of Upper Macquarie Groundwater Model and the

initial value of recharge is calculated from the formula presented in Puech

(2010). Extraction of groundwater in the study area is mainly through wells

for the purpose of drinking water supply and agriculture. Extraction wells

included in the model have been presented in Table 5.5.

Table 5.5: Extraction Wells in the Study Area

Name Row Column Layer Extraction (m3/day)

Agricultural 1 28 77 1 0.8767
Agricultural 2 66 38 1 4.6
Agricultural 3 56 44 1 8.11

Municipal Supply 1 57 46 1 1118.88
Municipal Supply 2 68 58 1 756.77

Agricultural 4 76 54 1 503.1
Agricultural 5 76 54 2 503.1

Municipal Supply 3 85 46 1 987.62

5.3.2.3 Model Calibration

Hydraulic conductivity in the study area varies spatially, even within

the same layer. In order to represent this heterogeneity, each layer in the

conceptual model was divided into a number of hydraulic conductivity

zones. The extent, locations and values of hydraulic conductivity for each
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Figure 5.11: Components of a Calibration Target Box Plot

of these zones were obtained from the detailed model proposed in Puech

(2010). Recharge into the aquifer was considered unknown and its values

were obtained through calibration.

The developed model was calibrated using groundwater levels of

monitoring wells obtained from Puech (2010) and from all 74 monitoring

wells in the contaminated zone of study area. Automatic calibration of the

model was carried out using PEST following the guidelines mentioned in

Doherty and Hunt (2010). The calibration process aimed at ensuring that

the deviation between the actual observed heads and the heads simulated by

the calibrated model was within 2 m with a confidence level of 90%, at all

head monitoring well locations. Deviation between the observed heads and

those simulated by the calibrated model can be plotted as calibration target

box plots. The components of a calibration target box plot are illustrated

in Figure 5.11. A set of calibration targets provides useful feedback on the

magnitude, direction (high, low), and spatial distribution of the calibration

error. These calibration target box plots can be plotted at each monitoring

location for every stress period of the flow model. In this flow model, 50

stress periods of six months each were considered and hence it is not possible
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to show all the results. Calibration target box plots for stress periods ending

in June 1997 and December 2001 are shown in Figure 5.12.

The box plots are colour-coded to indicate relative deviation of the

observed and estimated heads. Green box plots indicate that the estimated

values are within the calibration target of head deviations lying within 2 m.

Yellow boxes indicate slight over-reach from the calibration target and the red

boxes indicate that estimated values do not meet the calibration target. It may

be noted that most of the deviations are positive which means that the heads

simulated by the calibrated model are higher than those observed. This may

have been caused by the fact that actual draw-down from agricultural and

other wells in the study area is slightly higher than those modelled. This is

also evident from the fact that, during the stress period ending in December

2001, some of the observations are slightly off the calibration target. July to

December is a relatively dry period and groundwater withdrawal is generally

higher. However, it is very difficult to get precise pumping data for a very

accurate calibration. Also, the instances of calibration target breach are only

a few and hence the calibration can be considered satisfactory.

Figure 5.13 shows the plot of observed and estimated groundwater heads

at the monitoring locations for the last four years of the modelling period. It

shows a linear correlation between observed and estimated groundwater head

values with a correlation co-efficient of 0.97. Hence, it can be inferred from

Figure 5.13 that the calibration was satisfactory and the calibration targets

were achieved.

Groundwater heads simulated using the calibrated model towards the end

of the study period are shown in Figures 5.14 through 5.16. It can be noted
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(a) June 1997 (b) December 2001

Figure 5.12: Calibration Results of Groundwater Flow Model
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Figure 5.13: Estimated vs Observed Heads after Calibration

that the extraction or pumping wells, shown as yellow squares in Figure 5.14,

have a pronounced effect on the groundwater flow regime in this study area.

The large amount of pumping from these wells as presented in Table 5.5 has a

significant impact on the local direction of groundwater flow which is not in

agreement with the regional groundwater flow direction mentioned in Puech

(2010).

5.3.3 Groundwater Transport Model

In order to develop a groundwater transport model of the affected area,

it was assumed that sorption is negligible and can be ignored. Dispersivity

values depend on scale of discretization and values for this were estimated

based on Fetter (1994). Rate constants for aerobic natural attenuation of BTEX

were obtained from experimentation results as reported in Lu et al. (1999). A

detailed list of salient transport model parameters is presented in Table 5.6.
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Figure 5.14: Simulated Heads in Layer 1
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Figure 5.15: Simulated Heads in Layer 2
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Figure 5.16: Simulated Heads in Layer 3
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Table 5.6: Parameters Used for Flow and Transport Model of BTEX
Affected Study Area

Parameter Value
Length of study area (m) 3300
Width of study area (m) 3000
Saturated thickness, b(m) Variable
Grid spacing in x-direction, ∆x (m) 30
Grid spacing in y-direction, ∆y (m) 30
Number of layers in z-direction 3
Average horizontal hydraulic conductivity (m/day)

Layer 1 (tertiary alluvium) 12.37
Layer 2 (quaternary alluvium) 16.24
Layer 3 (bedrock) 0.001

Vertical hydraulic conductivity (m/day)
all layers 0.2

Effective porosity for all layers, θ 0.28
Longitudinal dispersivity, αL (m) 11.34
Transverse dispersivity, αT (m) 1.2
First order decay rate constant (day−1) 0.051
Initial pollutant concentration (mg/l) 0.00

The methodology was implemented only to the contaminated area and not

to the entire study area modelled. The source of contamination is known to

be within the boundaries of the affected area and the monitoring wells are to

be confined within the same boundaries as well. The affected area contains a

total of 1262 discretized cells distributed in three layers.

5.3.4 Performance Evaluation of Initial Estimation of Unknown Pollutant

Source Characteristics

For the purpose of evaluation of this methodology, well no. 37 as shown

in Figure 5.8 is considered to be the first detection well, or the well where

contamination was first observed. From preliminary studies at the site, it is

estimated that the initial source release could not have taken place more than

35 years before detection. Since the monitoring at the detection well lasted
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1 year, a time horizon of 36 years is considered. The entire time horizon is

divided into 18 stress periods of two years length each. In this case, the actual

source release history and the time when this source first became active is

unknown. Hence, the performance of the methodology for initial estimation

of unknown pollutant source characteristics cannot be verified. However, the

estimates can be used to design a monitoring network and effectiveness of the

monitoring network design methodology can be verified by comparing source

characteristics obtained from using all available data from all the wells and

those obtained from using just the data obtained from the designed network.

All the potential source locations are shown in Figure 5.17. Initial source

Figure 5.17: Potential Source Locations

characteristics estimation methodology was applied to all potential sources in

order to determine their optimal release history and optimal time lag between

detection and source activity. Optimal source characteristics, the lowest DTW

distance and time lag between first source activity and its detection are

presented for the 10 best potential source locations in Table 5.7.

119



Table 5.7: Initial Estimates of Source Characteristics

PSL ASP OF Value Time Lag

S36 7 1.11E-06 7440
S21 6 1.45E-06 6450
S48 7 3.59E-06 6810
S49 7 4.19E-06 6450
S47 6 2.82E-05 7080
S51 5 0.000219 7440
S53 8 0.002165 6810
S17 5 0.006932 6420
S34 6 0.002481 7130
S35 6 0.012548 6900

5.3.5 Performance Evaluation of Monitoring Network Design

The initial estimates of source location, active stress period and lag time

from the previous step are used to design an optimal monitoring network. All

existing monitoring locations as shown in Figure 5.8 are considered potential

locations. It is assumed that a maximum of 15 monitoring wells can be

used in the monitoring network. Optimal monitoring locations are shown

in Figure 5.18.

Pollutant concentration measurements recorded for the next two years

obtained from the optimal monitoring network are used to estimate the

pollutant sources. The same flux estimation algorithm presented in Chapter 3

is implemented. Estimated source characteristics are shown in Table 5.8. The

actual location of source for this study area is known and a fairly accurate

guess on the time of initiation is available. However, source release history is

unknown. For this reason, the optimal source release history estimated using

the measurement available from the designed monitoring network (Scenario

1) is compared with the ones obtained using all available monitoring data

from all the 74 wells (Scenario 2).
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Figure 5.18: Optimal Monitoring Well Locations

It can be noticed in Table 5.8 that source characteristics reconstructed using

monitoring data obtained from the monitoring network designed using the

developed methodology is very close to those obtained using all the available

monitoring data from all wells in the original monitoring network. Although

the actual release history for this case study is not exactly known, these

solution results demonstrate how monitoring networks can be specifically

designed for improved source characterization. This results in the use of only

a fraction of resources compared to those that could be used if a designed
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Table 5.8: Source Characteristics Obtained using Linked
Simulation-Optimization Method

Source Characteristics Actual Estimated
Scenario 1 Scenario 2

Location
Row 34 34 34
Column 55 55 55
Layer 1 1 1

Start time (days before detection) Approx. 7300 6810 6600
Duration of activity (years) 14 12
Release history (g/day)

SP 1 – 63.31 67.27
SP 2 – 79.20 71.61
SP 3 – 67.91 48.82
SP 4 – 72.86 55.28
SP 5 – 54.32 47.82
SP 6 – 46.28 42.17
SP 7 – 48.86 2.37

dedicated monitoring network is not utilized.

5.4 Conclusion

Performance evaluation of a new approach for initial source characteristics

estimation and monitoring network design was presented in this chapter.

It was applied to an illustrative aquifer as well as to a real-life unconfined

contaminated aquifer located in Upper Macquarie Groundwater Zone in New

South Wales, Australia. The real contaminated aquifer was already under

management while undertaking this study, and pollutant concentration had

been recorded over nearly four years time span at 74 arbitrarily chosen

monitoring locations. Using the methodology developed, a subset of most

significant monitoring locations was chosen. Source characterization results

obtained using information from the designed monitoring network were

compared with those obtained using all available data from all 74 wells.
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It was evident that the source characterization results compare well when

using extensive concentration measurement data from a very large number

of monitoring wells, and when using only a fraction of the large number of

wells based on a designed monitoring network. This validates the purpose

of designing a dedicated monitoring network for efficient pollutant source

identification.
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Chapter 6

Application of Release History Estimation

Methodology to Distributed Sources

incorporating Surface-Groundwater

Interactions

Unknown sources of groundwater contamination are not always point

sources. Distributed or non-point sources can also cause widespread and

long-lasting contamination. Some examples of groundwater contamination

from distributed sources are:

• Contamination from agricultural chemical use.

• Contamination due to deposits from recharge such as rain, snow, and

dry atmospheric fallout.

• Contamination from large scale overland waste dumps such as those in

hazardous waste or mining waste disposal sites.

This chapter demonstrates the potential for using the developed methodology

for the estimation of release history in aquifers contaminated by distributed

sources. The developed methodology is applied to an abandoned mine site
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that has several sources of pollutant in the form of mining waste dumps,

tailings ponds, and a lake formed by flooding of the open pit.

Unsafe storage or disposal of chemical pollutants used in various ore

dressing processes and inappropriate management of wastes are among some

major reasons for mine site contamination. Such contamination is particularly

predominant at abandoned mining sites because of loopholes in historical

environmental regulations, and due to slow process of natural remediation.

Contamination at abandoned mining sites adversely impacts natural water

resources in its vicinity. It has the potential to affect any groundwater

resources and render them unusable for consumptive use for prolonged

periods. Apart from introducing polluting chemicals into the groundwater

ecosystem, mining operations also tend to modify the surface hydrologic

features that permanently modify groundwater flow regime at the mine site.

Construction of tailings dams and prolonged ponding in the mine pits of open

cast mines create new sources and sinks, thereby changing the entire surface

and subsurface hydrology as well as water quality at the mine site.

Effective remediation of any contaminated groundwater aquifer is highly

dependent on accurate characterization of the pollutant sources. In order

to begin the remediation of a contaminated mine site, it is very important

to first estimate fluxes of pollutants from various possible sources. Often,

locations of potential sources are known and estimates of the starting time

of pollutant release are also available in such situations. In this scenario,

the source characterization problem can be treated as an unknown pollutant

source flux magnitude reconstruction problem.
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Often several management measures are already in place at sites affected

by contamination. All such measures need to be incorporated into the

numerical flow and transport model. If the effects of implemented

management measures are not incorporated in the simulation of flow and

transport processes, the pollutant release history reconstruction methodology

may produce inaccurate results, as the pollutant concentrations measured

at observation wells will be lower after the implementation of management

measures. Therefore, the source characterization methodology applied to this

site also incorporates some management measures, i.e. presence of seepage

drains existing in the site.

6.1 Site Description

The abandoned mine site discussed in this chapter is located in the

coastal ranges of central Queensland. Over a lifespan of about 100 years,

it produced significant amounts of gold, silver and copper. By the time

this mine ceased its operations, it was very severely affected by acid rock

drainage (ARD). Mining operations exposed sulphate-containing minerals to

erosion for a considerable duration resulting in widespread leaching of acidic

chemicals from the minerals to the water resources around the study area.

Rehabilitation efforts are being undertaken at this study area to minimize

the impact of contamination on the water resources in and around it. One

management measure implemented as part of the rehabilitation plan is to

treat the water impounded in the open cut and arrest subsurface infiltration

from the upper reaches to the lower reaches (Unger et al., 2003). However,

this limited remediation measure has not been successful due to uncertainties
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regarding the actual spatially varied sources and the pathways of pollution.

Therefore, a preliminary attempt is made to apply the source characterization

methodology to this site, to gain insight into its potential applicability.

6.1.1 Topography and Climate

The abandoned mine is located in hilly terrain and the topography at the

study area is highly varying with the altitude ranging between 250 and 300

m. Natural topography has been modified to a large extent due to open

pit mining and deposition of waste rock dumps, tailings, etc. The detailed

topography is shown in Figure 6.1. Shuttle Radar Topography Mission

(SRTM) obtained elevation data was used in this study to digitally represent

the topography of the entire study area (Jarvis et al., 2008). This elevation

database was sampled at 3 arc-seconds, which is 1/1200th of a degree of

latitude and longitude, or about 90 metres. The study area is located in the

sub-tropical, sub-humid climatic region with an average annual rainfall of 680

mm. The wet period is generally from October to March. Mean minimum

temperature is 9.5 ◦C whereas the mean maximum temperature is 32.1 ◦C

(MLA, 2008).

6.1.2 Hydrology

The mine is located in the Don and Dee River Groundwater Management

Unit (GMU) which is drained by the Don River and its major tributaries,

the Dee River and Alma Creek. The extent of the entire Don and Dee River

groundwater management unit is shown in Figure 6.2. In Figure 6.1, it may

be noted that this mine site is very close to Dee River. Contamination from

the mine site has affected the water quality in Dee River. Since the alluvial
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Figure 6.1: Topographical Features of the Study Area. Adapted from: Wels
et al. (2006)
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bed of Dee River extends to form the Dee River aquifer, this contamination

has the potential to impact groundwater quality in the entire groundwater

management unit. Natural drainage before the mining activities began has

been documented in Jesson and Bamber (1959). These historical drainage

paths are important because even after mineral processing wastes have

been dumped on natural surface, these historic drainage channels provide a

preferential path for subsurface water flow because the material forming these

channels has a lower hydraulic conductivity when compared with the waste

dumps and tailings. The entire site was divided into four major catchments

based on the pre-mining topography. Each of these catchments drains into the

Dee River. These are shown in Figure 6.3. Although the topography has been

modified by anthropogenic features created during the mineral extraction and

processing, the catchment boundaries are still valid.

6.2 Numerical Groundwater Flow Modelling

A conceptual flow model for the mine site was developed using

MODFLOW-2005 (Harbaugh, 2005). Field investigation carried out for

a previous model by Wels et al. (2006) was taken as the basis for this

model in terms of hydrogeological features, boundary conditions and model

orientation. The conceptual model discussed here utilizes a different elevation

dataset, and the subsurface layers are obtained using available well log data

for the site. The flow model discussed here simulates the groundwater flow

for dry season assuming a steady-state condition. It was assumed that there

is negligible change in groundwater storage and that the groundwater flow

is maintained by a constant recharge from the unsaturated zone. It was also
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Figure 6.2: The Don and Dee River Groundwater Management Unit
Boundaries. Adapted from: Government of Queensland (2011)
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Figure 6.3: Historical Catchment Boundaries. Adapted from: Unger et al.
(2003)
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assumed that no groundwater flow takes place from beyond the geographical

boundaries of this model.

6.2.1 Geology and Hydrogeology

Geology of the site has been described in detail in Taube (1986) and is

shown in Figure 6.4. A good deal of information on subsurface cross-sections

for this study area is available. This information helps in understanding the

hydrogeology of this site. In order to get a better understanding of the

subsurface, well logs were used to generate hydrogeologic cross-sections.

Well log data was obtained from the groundwater database provided

by the Department of Environment and Resource Management (DERM),

Government of Queensland, Australia. These cross-sections combined with

the elevation data were used to generate a three-dimensional representation

of the entire site.

The deposit was formed in the late Devonian geologic period from

intrusive igneous rocks, mainly tonalite which has almost no permeability.

The site investigation carried out by Wels et al. (2006) showed that the

groundwater flow at this site occurs mainly in the permeable mine waste

dumps and in shallow bedrocks that have been fractured in due course of

mining, and have thereby become more permeable. It was also confirmed

that historical surface drainage channels create preferable conduits for

groundwater flow. This is due to the presence of more permeable deposits

from historical erosion leading to washing away of fine permeable material

before the commencement of mining as well as in early stages of mining. As

the open cut has been flooded, it acts as a major source/sink of water thereby

influencing groundwater flow regime in the study area. As a contamination
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Figure 6.4: Geology of the Mine Site Adapted from: Taube (1986)
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management measure, a seepage interception system has been implemented

in the study area to prevent the shallow underflow from reaching into the

Dee River. Groundwater flow from deeper layers reaches the Dee aquifer that

consists of alluvial sediments and fractured igneous rocks.

6.2.2 Model Layers

Mining activities at the site have modified its hydrogeology. Nearly

impermeable igneous rocks were removed from the open cut and waste rocks

and tailings produced as a result of mineral processing were piled over the

natural ground surface. This changed the recharge pattern in the area and

also provided a source/sink in the form of a flooded open cut that resulted

in the establishment of present groundwater paths.

Based on the hydrogeological information (Taube, 1986), aquifer system

at the mine site can be sub-divided into four layers for the purpose of flow

modelling. These are listed hereunder:

• Waste rock dumps and tailings

• Highly weathered bedrock

• Partially weathered bedrock and

• Tight bedrock

Each of these layers have variable thicknesses that are based on cross-sections

generated using the well log data. The LPF package in MODFLOW 2000

was used to specify properties controlling flow between cells. All layers were

defined as convertible layers. Cells were allowed to become dry depending

upon the calculated hydraulic head.
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6.2.3 Hydrogeological Properties

Hydrogeological properties such as the hydraulic conductivity and

porosity of the layers was estimated during the field investigation carried

out by Wels et al. (2006). They conducted pumping tests at several

locations in the study area to obtain representative hydraulic conductivity.

In modelling groundwater flow for this site, it was assumed that each

model layer has a uniform representative value for hydrogeologic parameters

(i.e. hydraulic conductivity and porosity). It was further assumed that the

groundwater movement follows Darcy’s Law and that there are no fractures

or fissures in the porous media that can lead to violation of this assumption.

Representative values of hydraulic conductivity were obtained through the

calibration process of the flow model, using dry-season heads at several

monitoring locations.

6.2.4 Sources, Sinks and Boundary Conditions

Major sources of groundwater at this mine site include the constant

recharge from the unsaturated zone. A constant recharge has been assumed

for the entire dry-season period that is simulated in this model. Recharge

occurs only through the disturbed and loosened portion of the top layer. This

is represented as the top layer in this model. The recharge is estimated during

calibration process of this model.

The flooded open pit also acts as a significant source/sink of groundwater.

This has been represented as a constant head boundary condition in layers

2 and 3 of this model with the constant head equal to standing water level

in the lake at the time of model calibration. Thus, the hydraulic interaction
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between the aquifer and the pit is incorporated into the simulation model.

Several drainage channels were present in the site before mining activities

began, although these are now buried by waste dumps. These drains provide

preferential pathways of infiltration and have been represented as drains in

the MODFLOW flow model. Seepage faces at the site were also represented

as drains in the MODFLOW flow model. The Dee River aquifer is also

represented as a constant head boundary condition in layer 2 of the flow

model with the head equal to standing water level in the Dee River at the

time of calibration. Sources, sinks and various other boundary conditions

are illustrated in Figures 6.5 to 6.8. The first layer, as shown in Figure 6.5,

mainly represents mining waste rock dumps. Preferential flow paths in this

model have been represented as drains. In the second layer, the open pit,

tailings pond and the Dee River are all represented as constant head boundary

conditions. Preferential flow paths in this layer are also represented as drains.

This is shown in Figure 6.6. The open pit is also represented as a constant

head boundary condition in the third layer and this is shown in Figure 6.7.

Figure 6.8 shows the bottommost layer, which is the base rock and has no

source or sinks of groundwater.

A summary of model parameters used in the flow and transport model is

presented in Table 6.1.

6.2.5 Model Calibration

The developed model was calibrated for the dry-season flow using

observed head data obtained at observation wells. Calibration was done
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Figure 6.5: Top Elevation Contour Map and MODFLOW Boundary
Conditions in Layer 1
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Figure 6.6: Top Elevation Contour Map and MODFLOW Boundary
Conditions in Layer 2
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Figure 6.7: Top Elevation Contour Map and MODFLOW Boundary
Conditions in Layer 3
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Figure 6.8: Top Elevation Contour Map and MODFLOW Boundary
Conditions in Layer 4
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Table 6.1: Parameters Used for Flow and Transport Model of the Study
Area

Parameter Value
Length of study area (m) 4000
Width of study area (m) 4000
Saturated thickness, b(m) Variable
Grid spacing in x-direction, x (m) 40
Grid spacing in y-direction, y (m) 40
Number of layers in z-direction 4
Horizontal hydraulic conductivity (m/day)

Layer 1 0.98673
Layer 2 0.163555
Layer 3 0.014369
Layer 4 0.009365

Vertical hydraulic conductivity (m/day)
all layers 0.2

Effective porosity for all layers, θ 0.28
Longitudinal dispersivity, αL (m) 20
Transverse dispersivity, αT (m) 4
Initial pollutant concentration (mg/l) 0.00

using the automatic parameter estimation tool available in GMS 7.01 package

which is based on PEST (Doherty and Hunt, 2010). In the calibration

process, estimates of the values of recharge for each recharge zone and the

representative hydraulic conductivity of each layer were calibrated. Results of

calibration are shown in Table 6.2 and in Figures 6.9 and 6.10. The calibration

target at each observation location was set to an interval of 10 m with a

confidence level of 85%. Calibrated values of head at each monitoring location

with respect to the targets are shown in Figure 6.10. Box plots in Figure 6.10

are colour-coded to show if the calibration target was met. Green boxes

show that the calibration target has been met at that monitoring location,

yellow boxes show head measurements slightly off calibration target, whereas

the red ones show head measurements that are completely off calibration

target. Groundwater heads estimated during the calibration process have
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Figure 6.9: Estimated vs Observed Heads after Calibration

been plotted against the values measured at each monitoring location in

Figure 6.9. It shows a linear correlation between observed and estimated

groundwater head values with a correlation co-efficient of 0.93. Since only

a limited amount of data was available to carry out the calibration, the

calibrated model may not be very accurate. However, the aim of this study

is to demonstrate the potential applicability of release history reconstruction

methodology to distributed sources. Therefore, very accurate calibration of

groundwater flow model may not be a necessary prerequisite to demonstrate

the potential applicability.

The study area was divided into seven different recharge zones and the

recharge rate for each was estimated in the calibration process. These

estimated recharge rates and all the recharge zones are shown in Figure
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Figure 6.10: Calibrated Groundwater Model of the Study Area
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6.11. In this calibration process, distributed spatial recharges from each of

the recharge zones were considered as calibration parameters. Groundwater

potentiometric heads are calculated using the model parameters that are also

mentioned in Table 6.1. Simulated heads from the calibrated model are

plotted in Figures 6.12 to 6.15. It can be inferred from these figures that

the general direction of groundwater flow is from north-west of the study

area to the south-east towards the Dee River.

6.3 Transport Model

In order to demonstrate the applicability of the developed methodology for

characterization of unknown distributed sources, an illustrative groundwater

transport model was developed to simulate the transport of a conservative

pollutant, present in the waste dumps as well as in the flooded open pit.

A conservative pollutant was chosen for illustration purposes as it was not

possible to incorporate some of the complex geochemical processes at this

stage due to limited availability of field data.

Actual pollutant transport at the mine site involves a number of reactive

chemical species and modelling the associated transport process requires a

great deal of analytical and general information on the speciation and aquatic

chemistry taking place in the groundwater. Due to lack of accessibility

to the site and lack of resources for analytical studies on the aquatic

chemistry of contaminated groundwater, it was not possible to simulate the

actual pollutant transport processes occurring in this site. For performance

evaluation of the methodology, it was therefore decided to use an illustrative

contamination scenario, which can be verified for performance evaluation of
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Figure 6.11: Recharge Rates for Various Recharge Zones in the Study Area
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Figure 6.12: Simulated Heads in Layer 1
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Figure 6.13: Simulated Heads in Layer 2
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Figure 6.14: Simulated Heads in Layer 3
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Figure 6.15: Simulated Heads in Layer 4
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the methodology in general.

Observed pollutant concentrations were simulated using transport

parameters as mentioned in Table 6.1. The transport model considered a

time span of 15 years, which was divided into five stress periods of three

years each. It was assumed that the sources are active only in the first three

stress periods. Contaminant concentration measurements in the aquifer are

assumed to be available only for the last stress period at an interval of 60 days.

Sources of pollutant are assumed to be the flooded open pit and the recharge.

Actual source concentrations are shown in Table 6.3.

Table 6.3: Actual Source Concentrations

Sources Contaminant Concentration (mg/l)
Stress Period 1 3 years 4.965
Stress Period 2 3 years 5.528

Open Pit Stress Period 3 3 years 4.863
Stress Period 4 3 years 0.000
Stress Period 5 3 years 0.000
Stress Period 1 3 years 0.0088
Stress Period 2 3 years 0.0092

Recharge Stress Period 3 3 years 0.011
Stress Period 4 3 years 0.000
Stress Period 5 3 years 0.000

In this performance evaluation, the flow regime is taken as steady

state. Therefore, linkage of the source identification model using the flow

simulation model was not necessary. The aquifer head distribution as

obtained through calibration was specified as input for source identification

purposes. The decision variable in the source identification process was

the concentration of pollutant in recharge entering the groundwater system

from the pit, which was considered as a constant head boundary, and the

concentration of the pollutant in recharge coming from the mining waste

dumps and vertical distributed recharge entering through the top layer.
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The vertical recharge in this illustrative problem was assumed uniformly

distributed spatially. However, it is possible to separately delineate these

sources, i.e. different wastes can be considered separately. The concentration

values shown in Table 6.3 are the actual concentrations specified for the pit

and vertical recharge. These specified concentration values were utilized for

generating the concentration measurement values at designated observation

locations for this performance evaluation purpose.

6.4 Performance Evaluation of Release History Reconstruction

Methodology

Potential applicability of the developed methodology was evaluated based

on the ability of the developed methodology to accurately estimate the actual

source concentrations as per the discussed scenario even with moderate

levels of concentration measurement errors. Erroneous observation data are

generated with the formulation described in Equation 3.7. In order to test

the methodology for different levels of measurement errors, three different

values of fraction ’a’ (0.05, 0.1 and 0.15) are used. For each value of fraction

’a’, five randomized realizations of the observed pollutant concentration data

are generated. These erroneous observations are used to reconstruct the

release histories of pollutant sources. Average values of objective functions

and estimated source concentrations are shown in Figure 6.16.

The source identification solution given in Figure 6.16 shows that

the estimated unknown concentration values matched fairly well with

the actual specified concentrations. This inference is true even when

concentration measurement errors are incorporated. It can be inferred
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Figure 6.16: Estimated Source Concentrations and Convergence Profile
for Various Error Levels

from Figure 6.16 that the optimization algorithm converges even with

substantial levels of error in measurement data. It can be also noted

from the estimated source concentrations that the pollutant concentration

values for recharge are less sensitive to errors in pollutant concentration

measurement. This is mainly because recharge has a much larger areal

extent when compared with that of the open pit lake. Even for the open pit

lake the values of source concentration do not fluctuate unreasonably with

increasing errors in measured concentrations. This shows that the developed

methodology is potentially applicable for characterization of a wide range
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of distributed pollutant sources by incorporating surface-groundwater

interactions. Groundwater pollution from unknown pollutant sources at

abandoned mine sites is a widespread problem in Australia, including North

Queensland. This methodology can be applied to enhance the probability of

reliable source characterization at these sites.

6.5 Conclusion

The developed methodology for unknown groundwater source flux

characterization was utilized for a distributed sources of contamination

scenario, incorporating the hydraulic interaction between the surface and

subsurface flow system. The potential applicability of the methodology was

shown by using an illustrative example of an abandoned mine site. While

the study area represented topographic and geologic characteristics of the

abandoned mine site, the contamination scenario was assumed to involve

only a conservative pollutant. Solution results show that the methodology

is potentially applicable to distributed pollutant sources as well. The next

chapter summarises major conclusions derived in this thesis.

154



Chapter 7

Conclusions

This chapter summarises major conclusions derived in this thesis. It

also highlights some of the limitations of the methodologies developed.

The objective of this study was to develop a robust methodology

for unknown groundwater pollutant source identification using linked

simulation-optimization approach in scenarios where little prior information

exists on the various characteristics of the pollutant sources. Also, the

possibility of the contaminated aquifer being under management was

incorporated. This study was aimed at addressing some of the major

limitations in the present state-of-the-art in the use of linked simulation

optimization approach for solving unknown groundwater pollutant sources.

These include:

1. Sparsity of concentration measurement data.

2. Inefficient monitoring network for concentration measurements.

3. Difficulty in establishing the time of pollutant source activity initiation.

4. Applicability of optimal source characterization to distributed sources.

5. Problems associated with achieving a global optimal solution efficiently.

An attempt was made to address the problems associated with computational

efficiency in achieving global optimal solution by using adaptive simulated
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annealing (ASA) as the optimization algorithm. It was shown that when

ASA is adopted as the optimization algorithm, in general, computational

efficiency in achieving global optimal solution is expected. ASA can also

handle uncertainty in hydrogeologic parameters and errors in concentration

measurement more efficiently as compared to genetic algorithm.

Exact characterisation of pollutant sources becomes very difficult in

groundwater aquifer contamination scenarios where no prior information

exists on any of the unknown pollutant source characteristics, and the

pollutant concentration data is available only from one, or a very few,

initial detection wells. In such situations, it is particularly important to

have a reliable estimate of the time of first activity of the source. This

is so because the solution to the problem of unknown pollutant source

identification is non-unique. Because time and space are both variables,

multiple combinations of source location and its time of first activity can

result in the same impacts on pollutant concentrations at the location being

monitored. This non-uniqueness is particularly prominent when monitoring

information is very limited.

The problem of finding the time of initial activity of sources has been

addressed in this study by using principles of time series matching. The

observed concentration time series is treated as a test sequence that is matched

to the entire estimated concentration breakthrough curve for that monitoring

location.

Often, observed information is sparse. In practice, it is very common

to either miss or delay one or more concentration observations at a given

monitoring location. Existing state-of-the-art methodology incorporates the
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use of Euclidean distance as a measure of similarity between the observed

and the estimated time sequences. This approach is not very efficient in

addressing the problem of misaligned data series of missing/sparse data. In

this study, it is proposed to use dynamic time warping distance as a similarity

measure to address these issues.

Heterogeneity in hydrogeological parameters such as hydraulic

conductivity and porosity has been considered for all illustrative as

well as real-life examples. In the illustrative examples, layered heterogeneity

was considered. It was assumed that the hydraulic conductivity and porosity

are uniform in each individual geologic layer while the layers represented

vertical heterogeneity. In real-life examples, different spatial zones of the

hydrogeological parameters were considered in each layer based on the

parameter values measured at a number of locations in the study area.

Applicability of the developed methodologies has been demonstrated by

the use of illustrative or real-life contamination scenarios, and study areas.

The developed methodology for release history reconstruction has also been

extended to the characterization of distributed pollutant sources.

Results of performance evaluation of each of the methodologies indicate

their potential for field application. However, there are some limitations

to the methodologies developed in this study and these limitations need

to be addressed in future studies. The extension of the methodology to

include distributed pollutant sources and incorporating surface-groundwater

interactions should be useful in applying the source characterization

methodology to abandoned mine sites. Widespread pollution of subsurface

and groundwater due to pollutants originating from unknown sources in such
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mine sites is a widespread problem in many parts of Australia, including

North Queensland. This study enhances the probability of reliable source

characterization in these critical sites. Some of the major limitations are:

1. The methodology developed incorporating DTW for preliminary

estimation of actual pollutant sources, although capable of taking into

account multiple potential sources, the inference is limited to one actual

source.

2. The methodologies developed in this study are sensitive to uncertainties

in hydrogeological parameters. The spatial random nature of the

hydrogeologic parameters needs to be incorporated more rigorously.

Although, such heterogeneities were incorporated in simulating the field

conditions for performance evaluation purposes.

3. This study assumes that groundwater flow follows Darcy’s Law.

Fractures or cracks in the subsurface have not been incorporated. In

some of the mine sites, fissures and fractures may be present. This aspect

needs further consideration.

4. Some of the performance evaluations are based on the assumption that

the calibrated model represents actual field conditions as closely as

possible.

5. The developed methodologies are computationally intensive. It is

possible to further explore computational efficiency.
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