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Abstract

Hepatitis C virus (HCV) chronically infects over 180 million people worldwide, with over 350,000 estimated deaths attributed
yearly to HCV-related liver diseases. It disproportionally affects people who inject drugs (PWID). Currently there is no
preventative vaccine and interventions feature long treatment durations with severe side-effects. Upcoming treatments will
improve this situation, making possible large-scale treatment interventions. How these strategies should target HCV-
infected PWID remains an important unanswered question. Previous models of HCV have lacked empirically grounded
contact models of PWID. Here we report results on HCV transmission and treatment using simulated contact networks
generated from an empirically grounded network model using recently developed statistical approaches in social network
analysis. Our HCV transmission model is a detailed, stochastic, individual-based model including spontaneously clearing
nodes. On transmission we investigate the role of number of contacts and injecting frequency on time to primary infection
and the role of spontaneously clearing nodes on incidence rates. On treatment we investigate the effect of nine network-
based treatment strategies on chronic prevalence and incidence rates of primary infection and re-infection. Both numbers
of contacts and injecting frequency play key roles in reducing time to primary infection. The change from ‘‘less-’’ to ‘‘more-
frequent’’ injector is roughly similar to having one additional network contact. Nodes that spontaneously clear their HCV
infection have a local effect on infection risk and the total number of such nodes (but not their locations) has a network
wide effect on the incidence of both primary and re-infection with HCV. Re-infection plays a large role in the effectiveness of
treatment interventions. Strategies that choose PWID and treat all their contacts (analogous to ring vaccination) are most
effective in reducing the incidence rates of re-infection and combined infection. A strategy targeting infected PWID with the
most contacts (analogous to targeted vaccination) is the least effective.
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Introduction

Hepatitis C virus (HCV) is a blood-borne virus which

chronically infects over 180 million people worldwide [1], and

disproportionately affects people who injects drugs (PWID). The

sharing of needles, syringes and ancillary equipment is believed to

be the primary means of transmission, accounting for the majority

of new infections [2–4] (,90% in Australia, ,72% in Canada,

and ,54% in the United States). HCV has significant morbidity

and mortality with an estimated 350,000 deaths annually

attributed to HCV-related diseases including cirrhosis and

hepatocellular carcinoma [1]. In the United States more deaths

are now attributed to HCV than HIV [5]. Unlike for hepatitis A or

B, currently there is no preventative vaccine for HCV.

Current treatment for HCV generally ranges from 24–48 weeks

of pegylated interferon and ribavirin depending on the HCV

genotype, IL28B genotype and stage of hepatic fibrosis. Increas-

ingly, HCV treatment is becoming ‘‘response based’’ with the

length of treatment varying based on how quickly a patient’s viral

load becomes undetectable. Current treatments are estimated to

be effective in about 60% [6–8] of cases, again varying depending

on HCV genotype, IL28B genotype and level of hepatic fibrosis.

Treatment rates of infected PWID remain low for a combination

of reasons including lack of awareness by PWID of their infected

status, reluctance by some PWID to undergo treatment due to

significant treatment side effects, reluctance by some clinicians and

health services to treat PWID due to concerns about low levels of

treatment success despite increasing evidence that this is not the

case [9], and concern about high levels of HCV re-infection in

PWID despite limited evidence that this occurs [10–12].

Over the next five years there will be major changes in HCV

treatment. With the advent of direct-acting antiviral medications,

treatment will become more efficacious, of shorter duration and

will have less severe side effects. As well as benefiting individual

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78286



patients, recent mathematical modelling suggests that treating

PWID can lead to a considerable reduction in HCV prevalence

over time due to a decrease in HCV transmission within the

PWID community [13,14].

Previous models of HCV transmission have typically made

some assumption of ‘‘mixing’’ rather than consider the contact

network of PWID (e.g. [15–22], and [2,14,23,24] in the Australian

context) or have lacked an empirically grounded contact network

[25]. Under a homogeneous mixing assumption, members of a

population are assumed to have contact with all other members of

the population [26]. It is increasingly recognised that contact

networks are relevant to the transmission of disease [27,28],

especially close-contact diseases [29]. In the context of HCV and

the ‘‘hidden population’’ of PWID, data collection [30–35] using

network-based methods is largely in its infancy. Network-based

modelling efforts into HCV and PWID contact networks are even

newer. Recently Rolls et al. [36] developed a transmission model

for HCV in conjunction with an empirical snowball sampled

network of PWID and an empirically grounded contact network

model of PWID [37], while Khan et al. [38] have produced a

contact network model of PWID using data from the Social

Factors and HIV Risk study [39,40]. (Limitations of the network

model in [38] are discussed in [37].) To date no modelling of HCV

transmission and treatment with empirically grounded contact

networks has been done.

Most of the research into network-based interventions to limit

disease transmission has involved network contact modification

such as isolation (e.g., for SARS [41]) or vaccination rather than

treatment (e.g., for HCV [21]). Some network-based vaccination

strategies require knowledge about the entire network whereas

others only require information local to individuals. Targeted

vaccination (e.g., [42,43]) involves targeting nodes in decreasing

order of number of contacts, which requires knowing the number

of contacts of all members of the network. Other measures such as

betweenness or closeness centrality, instead of number of contacts,

have also been considered (e.g., [44]). In contrast, ring vaccination

targets all the primary contacts of target cases (as for hepatitis B

[45]), or primary contacts and secondary contacts (i.e., contacts of

primary contacts) as for smallpox eradication [46,47]. Acquaintance

vaccination and its variants [43,48,49] target primary contacts

whose number of contacts are above some predetermined value.

In practice, the entire network is usually unknown, so strategies

requiring local information are most clinically relevant. Research

into these strategies usually assumes the contact network has rare

nodes with very large numbers of contacts (e.g., ‘‘scale-free’’

networks [50]). Such highly connected nodes are sometimes called

‘‘hubs’’. For such a network, compared to vaccinating randomly

chosen nodes, acquaintance vaccination strategies have been

demonstrated to be more effective in reducing outbreak size (e.g.,

[42,43,48,49]). For a contact network without such hubs, the

difference in strategies appears much smaller (e.g. [42,44,51])

although the modelling study by Hartvigsen et al. [52] showed

targeted vaccination against influenza reduced outbreak size

somewhat better than random node selection in simulated

networks without hubs. In the context of HCV treatment, lack

of hubs in the contact network would mean strategies based on

finding and removing hubs as a source of infection will probably

not be particularly advantageous. Moreover, the possibility of re-

infection after treatment means network modelling results that

assume immunity is possible may not apply to HCV.

The study by Porco et al. [47] is notable for considering ring

vaccination including secondary contacts for a smallpox outbreak

on a network without hubs. Instead they use a network model

capturing household structure, in which each individual is a

member of both a fully-connected ‘‘household’’ of mean size four

and a fully-connected non-household workplace/social group of

mean size eight. Probability of transmission is assumed to be

higher in the household group. They find ring vaccination can be

a successful strategy for halting a smallpox epidemic, but do not

compare with other strategies, or use empirically grounded

networks. Furthermore, in contrast to our study, they study

vaccination rather than treatment, after which there is no

possibility of re-infection.

Simulation models provide an effective method to investigate

disease transmission and to conduct controlled experiments to

explore the potential benefits of possible treatment strategies. Here

we explore HCV transmission and possible treatment strategies on

empirically grounded simulated PWID contact networks. Our

work builds on our previous efforts creating both an individual-

based transmission model [36] and an empirically grounded

contact network model of PWID [37] using data collected in

Melbourne, Australia, in a study that used network methods

[34,35]. Using molecular epidemiological techniques, it has

recently been demonstrated that clusters of related HCV infection

in the Melbourne study cohort are correlated with network

distance in the snowball sampled empirical contact network [53],

justifying the use of the empirical contact network as a basis for

studying HCV transmission.

Our network model [37] is from the class of exponential

random graph models (ERGMs) [54–56]. ERGMs are a class of

probabilistic network models grounded in hypotheses about social

processes underlying network formation, and are commonly used

in social network analysis. ERGMs capture network features and

structures relevant to human interaction such as transitive closure,

homophily and social circuit dependence. Transitive closure, sometimes

called clustering, is a key feature of social networks, and refers to the

propensity for triangles to form. It is typified by the adage ‘‘the

friend of my friend is also my friend’’. Homophily is the tendency

to form contacts with others that share similar attributes (e.g., age,

gender). It is typified by the adage ‘‘birds of a feather flock

together’’. Loosely, social circuit dependence captures the idea

that people whose contacts are connected are themselves more

likely to be connected. Recent advances with new ERGM

specifications [57,58] provide sophisticated methodology such that

empirical networks with these features can often be modelled

parsimoniously.

This work studies HCV transmission and treatment in the

context of empirically grounded contact networks. In the context

of treatment we investigate an anticipated HCV treatment rather

than preventative vaccines, starting in a situation where HCV is

essentially endemic, infecting about half the network. We directly

compare a number of network-based interventions in this

population, including ring vaccination with secondary contacts.

In the context of transmission we investigate the role of the

number of contacts and injecting frequency on time to primary

infection and the role of spontaneously clearing nodes on

incidence rates. Importantly, in this study the PWID contact

network model is empirically grounded and the transmission

model includes ‘‘imported infections’’ which recognise both the

limitations around including all network partners in empirical

studies and the limitations of using a static network to model time

intervals longer than those used to define a contact.

Methods

Transmission Model
Details of our transmission model have appeared elsewhere

[36]. In short, it is a stochastic individual-based model which

HCV Transmission and Treatment in PWID Networks
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simulates HCV transmission within a static network on a week-by-

week basis. Any node in the network can be infected by an infected

network neighbour according to a yes/no probability of sharing

followed by a yes/no probability (p1x) of transmission from a

sharing event. Probabilities of sharing depend on the injecting

frequency of the two nodes (each either less than daily or at least

daily). In addition to infection by network transmission, infections

can also be ‘‘imported’’ meaning the source of infection is not a

network neighbour. Imported infections provide a way to include

risks from under-reporting of network neighbours and small

changes to the network which would otherwise not be included

using a static network model. Most parameter values are based on

values published in the literature. Exceptions to this are the

sharing probabilities and mean incidence rate of imported

infection which are estimated from sharing and infection data

collected in the Melbourne study [34–36], and the probability of

transmission from a sharing event (p1x) which was found by

calibration using infection data and an empirical network from the

Melbourne study [36].

A feature of our model is that a fraction (25% [59] unless

otherwise mentioned) of infected nodes can clear spontaneously in

the acute phase. No acquired immunity is assumed in spontane-

ously clearing nodes so these nodes can and do cycle between

being susceptible and infected. The ability to spontaneously clear

is assigned to nodes randomly prior to simulating transmission,

independent of other features. The set of spontaneously clearing

nodes varies from one simulation to the next. This is further

clarified below in connection with ‘‘burn-in’’. For such nodes, the

duration of each infection is simulated from an exponential

distribution, independent of other durations.

Model calibration for p1x is based on an RNA prevalence of

56% (i.e., 56% of the network is infected.) Thus, simulations

include a burn-in phase in which 30% of the nodes are initially

infected and the simulation proceeds until the prevalence reaches

56% (on average across 200 simulations.) One key difference from

the model described in [36] is that the incidence rate of imported

infection is now allowed to vary according to the prevalence at the

end of the previous week. This recognises that a community-based

treatment strategy would typically also lower the prevalence

beyond the network that we have modelled, and so the rate of

imported infections should be reduced. The mean incidence rate

of imported infection (rimported ) is related to the prevalence (pRNA)

through the equation

rimported~9=56|pRNA ð1Þ

where rimported is measured in person-years (PY) at risk. Notice this

is a linear relationship for which there are no infections if the

prevalence is zero, and the mean rate is 9 per 100 person-years at

risk when the prevalence is 0.56, which agrees with the calibration

in [36]. (The use of a linear relationship can also be supported as a

reasonable approximation, for example, if the numbers of unseen

network partners for a network node have a Poisson distribution.

The result is not shown here for brevity.)

Network Model
Details of our contact network model have been described

elsewhere [37]. In short, the Melbourne study was a network

based data collection from three urban locales in the Melbourne

area from which an empirical contact network was created. Using

molecular epidemiogical techniques [53], correlation between

distances in the empirical contact network and clusters of related

HCV infection have been demonstrated, providing re-assurance

that the empirical contact network is the right network to look at.

For various reasons [36,37], in order to model the transmission

network a contact was defined as two people participating in

injecting behaviour in the same room or place and roughly the

same time, as opposed to a narrower definition requiring a

participant to report actual sharing of a syringe, in the previous

three months. (There was no study question about sharing of

ancillary equipment.) In this sense, the empirical network created

is a network of opportunity for HCV transmission.

Using this empirical network and results from social network

analysis [57,60,61], an ERGM was fit to the data [37]. Table 1

shows the model specification. It is a model for the contact

network in the street drug scene in three suburbs of Melbourne,

Australia. Specifically it models connected components with at

least three people (so no isolates or isolated pairs). The size of the

network was estimated to be about 524 people. The model

includes five parameters for network structure: edge (for control-

ling edge density), isolates (for keeping the number of isolates near

zero), alternating-k-star (which is useful for modelling the node

degree distribution), and alternating-k-triangle and alternating-k-

2-path (useful for modelling both clustering and social circuit

dependence). In addition, four parameters model homophily

effects: location (1, 2, 3), gender (M/F), age (less than 25, greater

than 25), and injecting frequency (less than daily, at least daily). A

positive homophily parameter indicates a propensity for two

PWID to share a network tie when they have that attribute in

common. In this ERGM all four homophily parameters are

positive, although homophily on gender was included for

completeness but not found to be a significant effect [36]. With

this model we can simulate empirically grounded contact networks

with which to simulate HCV transmission.

For the results reported here we use 100 simulated networks,

each of which has 274 nodes. We form these networks by using the

ERGM to simulate many networks with 524 nodes, and keep the

first 100 largest components that have 274 nodes. The size 274

was chosen simply because it was the mode of the distribution of

largest component sizes across 48,000 simulated networks reported

previously [37]. We expect similar results for other big compo-

nents, although using a consistent component size provides the

most controlled comparisons. We focus on the largest component

for the obvious reason that the role of the network is more

Table 1. ERGM specification for PWID contact network.

Parameter Parameter Value

Edge 28.384

Isolates 29.308

Alternating-k-star 0.611

Alternating-k-triangle 1.707

Alternating-k-2-path 20.563

Same location 2.111

Same gender 0.280

Same age,25 0.787

Same daily user freq. 0.429

Specification for the PWID contact network ERGM. The first five parameters
model network structure while the last four model homophily effects: location
(1, 2, 3), gender (M/F), age (less than 25, greater than 25), and injecting
frequency (less than daily, at least daily). Positive homophily parameters
indicate a propensity for two PWID to share a network tie when they have that
attribute in common.
doi:10.1371/journal.pone.0078286.t001
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interesting for investigation than in isolated pairs and triples. In

addition, there are modelling challenges around the number of

isolated nodes, pairs and triples in the community because they are

harder to find in a study, and there may even be a separate

network mechanism by which some people actively try to stay in a

small contact network. Such issues are beyond the scope of our

network model, so we focus on the largest component only.

Figure 1 shows a typical network used in this study. Figure 2 shows

the histogram for the number of contacts, or ‘‘node degree’’, of the

same network. In particular, notice these networks do not have

‘‘hubs’’ (i.e., the node degree distribution does not have extreme

outliers characteristic of a ‘‘fat tailed’’ distribution). While we deal

with a single component in isolation, a community model could

easily be imagined as a collection of such components. Since

results reported here are averages across 100 different compo-

nents, combining several such components in a population model

would not change our conclusions.

Model Scenarios
We conducted three sets of simulations. The first set was

designed to investigate the role of network features on the time to

primary infection in the baseline transmission model. (Through-

out, an infection is ‘‘primary’’ if the node was never previously

infected, including in the burn-in phase. Otherwise, an infection is

counted as a ‘‘re-infection’’.) Key parameter values are listed in

Table 2. Other values are the same as previously described [36].

No community treatment strategies were included. To investigate

time to primary infection, 3,000 simulations were performed for

520 weeks beyond the end of burn-in for each of 100 networks.

Each simulation used a different burn-in with its own collection of

randomly assigned seed nodes and spontaneously clearing nodes.

For nodes never infected during the burn-in, the time to primary

Figure 1. Typical simulated PWID network with 274 nodes.
doi:10.1371/journal.pone.0078286.g001

Figure 2. Histogram of node degree for the network shown in
Figure 1.
doi:10.1371/journal.pone.0078286.g002
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infection was recorded if infected during the simulation. If the

node did not become infected, the censored value of 520 was

recorded.

The second set of simulations was designed to investigate the

impact of network features (e.g., arrangement of spontaneously

clearing nodes, number of spontaneously clearing nodes) on the

incidence rate of total infection (i.e., primary or re-infection) in the

baseline transmission model. Again, no community treatment

strategies were included. By creating sets of nested simulations and

fixing certain features (e.g., spontaneously clearing group, number

of spontaneously clearing nodes, etc.) we can isolate their effect on

the incidence rate of total infection. First, groups of spontaneously

clearing nodes were created (referred to as S1, S2, . . ..) Since

spontaneous clearing is assigned randomly, the number and

location of these nodes within the network varies between the

groups. For each group of spontaneously clearing nodes, 15 burn-

ins were simulated each. (So, for the spontaneously clearing group

Si the burn-ins are SiB1, SiB2, . . ., SiB15 and so on.) Across burn-

ins the location of initially infected seed nodes varies. Finally, for

each burn-in, 15 simulations were performed for 52 weeks after

burn-in. (So for burn-in SiBj the simulations are SiBjsim1,

SiBjsim2, . . ., SiBjsim15.) The duration is long enough to perform

investigations while being conservative to the possibility that the

network changes over time.

The third set of simulations was designed to investigate the

effect of treatment strategies on both the incidence rate of infection

and prevalence. For each of the nine treatment strategies, 500

simulations were performed (a different burn-in for each) for each

of seven treatment initiation frequencies (i.e, treatment ‘‘epochs’’

to find and begin treating new people are regularly spaced every 1,

2, 4, 8, 13, 26 or 52 weeks.) This is equivalent to treatment

coverage varying from 3.7–190 treatment initiations per

1000 PWID per year if each epoch corresponds to one treatment

initiation. These simulations cover a period of 156 weeks (i.e.,

three years) following burn-in which provides enough time that

differences between the strategies emerge. We made the following

assumptions about treatments based on projected characteristics of

direct-acting antivirals that are currently under development [62].

Treatment is effective in 80% of people. Only infected people are

treated, and they will not start a new course of treatment if in the

middle of a course of treatment. The duration of treatment is 12

weeks. If treatment is effective the duration of infectiousness was

conservatively estimated to be 10 weeks and if treatment is not

effective they remain infectious throughout treatment. Those who

fail to obtain a sustained virological response (treatment success)

are not eligible to be retreated. Thus, nodes ‘‘available’’ for

treatment are those infected nodes not currently in treatment

without a history of previous treatment failure. For strategies that

treat network contacts as well, all referred contacts begin

treatment in the same week as the person who referred them

(whom we call ‘‘ego’’ in reference to the social network literature).

For these simulations, different burn-ins have different random

collections of spontaneously clearing nodes, different random

collections of nodes for whom treatment is effective, and different

random arrangements of infected nodes at the end of burn-in. By

averaging over the 500 simulations the differences between

strategies can be separated from random ‘‘noise’’. Averaging over

the 100 networks has a similar effect on the random selection of

networks. To further minimise the effects of random noise, the

post-burn-in simulations were also organized as a series of

controlled experiments, where the control group was the baseline

simulations using the results from the 50 000 burn-ins (500 per

network, 100 networks) as initial configurations. Simulations for

each of the nine treatment strategies used the same 50 000 burn-

ins as initial configurations. In total, the investigation of treatment

strategies involved over 3 million post-burn-in simulations (500

simulations69 strategies67 frequencies6100 networks).

We consider nine treatment strategies in all. One strategy uses

no network information, two strategies use ‘‘global’’ information

about the network, and six use information local to individual

nodes. We further describe these strategies here. They are

summarised in Table 3.

1. Treatment strategy: random node selection. The

treatment strategy (‘‘random’’) selects a node at random at each

treatment epoch from the collection of available nodes. Thus, no

network information is used. For this strategy there is a clear, non-

random relationship between the treatment frequency and the

mean number of treatment starts per 1000 PWIDs. For example,

new treatment epochs every fourth week would see 13 people

treated per year or about 47 people yearly per 1000 in a network

component of size 274.

Table 2. Key Model Parameters for Simulations.

Model Parameter Definition Value Reference

Prob. of transmission from one sharing event (p1x) 0.00995 [36]

Rate of importing infection into a node (rimported ) varies [36]

Proportion of spontaneously clearing nodes 0.25 [59,79]

Prevalence at end of burn-in phase 0.56 [36]

Edgewise weekly probability of sharing (both less-frequent users) 0.19 [36]

Edgewise weekly probability of sharing (one less-frequent user) 0.18 [36]

Edgewise weekly probability of sharing (two more-frequent users) 0.24 [36]

Incidence rate ratio for imported infections of freq. vs. non-freq. users 1.3 [36]

Mean time to chronic spontaneous clearance (years) 200 [80]

Duration of latent period (weeks) 2 [81]

Mean time to acute spontaneous clearance (weeks) 7 [79]

Duration of acute phase (weeks) 26 by definition

Key model parameters used for transmission and treatment simulations. Less-frequent users have injecting behaviour less than weekly (on average) while more-
frequent users have injecting behaviour at least weekly (on average). Rate of importing infection [36] is modified to account for varying prevalence.
doi:10.1371/journal.pone.0078286.t002

HCV Transmission and Treatment in PWID Networks

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e78286



2. Treatment strategies: priority by node degree. We

consider two treatment strategies that use ‘‘global’’ information

about the network. That is, at each treatment epoch, the strategies

rank the available nodes in priority order for treatment, either by

order of increasing (‘‘inc. degree’’) or decreasing (‘‘dec. degree’’)

node degree and choose the highest ranked node for treatment.

Taking nodes in decreasing order is analogous to targeted

vaccination. Since knowing all node degrees and knowing the

current infection status of all nodes in the PWID network will both

generally be impossible, these are not practical strategies.

However, they can serve as useful benchmarks. Indeed, amongst

vaccination strategies the best known strategy on scale-free

networks is believed to be targeted vaccination [43]. As with

random node selection, there is a clear, non-random relationship

between the treatment frequency and the mean number of

treatment starts per 1000 PWIDs.

3. Treatment strategies: primary contacts. By analogy

with ring vaccination, for ring treatment (‘‘ring’’), at each

treatment epoch one node (‘‘ego’’) is chosen at random from

those available for treatment, and treated. In addition, all of ego’s

primary contacts (i.e., ego’s ‘‘ring’’) which are available for

treatment, are treated. Across simulations the number of treatment

initiations will vary depending on node degrees and the number of

neighbours actually infected.

We also consider two treatment strategies, analogous to

enhanced acquaintance immununization, in which we treat ego,

chosen at random, and certain members of ego’s ring that are

available for treatment. The criteria for their treatment is that

their number of contacts (i.e., node degree) is at least some cutoff:

either 5 (‘‘acq5’’) or 3 (‘‘acq3’’). Note that unlike enhanced

acquaintance immununization, we also treat ego. Also note that

‘‘acqM’’ (where M is larger than the maximum node degree)

would correspond to random node treatment while acq0 would

correspond to ring treatment (in the absence of isolated nodes.).

4. Treatment strategies: primary and secondary

contacts. We consider two treatment strategies that include

primary and secondary contacts. There are two strategies because

a secondary contact could be defined as all the additional

neighbours of all of ego’s ring (‘‘2-ring all’’), or just the additional

neighbours of the infected members of ego’s ring (‘‘2-ring’’). As with

other strategies, only those available for treatment are treated. As

with the ring strategy, across simulations the number of treatment

starts will vary.

Thus the four strategies ‘‘random’’, ‘‘acq5’’, ‘‘acq3’’, and ‘‘ring’’

capture a spectrum of strategies that begin with a randomly chosen

ego at each treatment epoch and treat an increasing fraction of

ego’s primary contacts, while the ‘‘2-ring’’ and ‘‘2-ring all’’

strategies go even further by treating an increasing fraction of ego’s

secondary contacts too.

5. Treatment strategy: primary contacts of uninfected

nodes. Finally, we consider an additional treatment strategy

(‘‘naive ring’’) which treats the infected primary contacts of

randomly selected HCV-naive (i.e., never infected) nodes. This is

the only strategy for which the randomly chosen node is not

available for treatment. We caution that results for this strategy

must be viewed as preliminary. Our network model does not

explicitly model the contacts of new injectors. Thus, it assumes

their contacts are similar to more experienced injectors, and so

results for this strategy will be the most sensitive to departures from

this assumption. We discuss this further in the Discussion.

Analysis
Network visualisation was created using Pajek [63]. Simulations,

analyses and boxplots were completed using MATLAB [64]. For

incidence rates of infection, infections are counted from the start of

the post-burn-in phase. Incidence rates are computed using the

number of infections and weeks susceptible in the post-burn-in

phase. Nested ANOVA analyses use the anovan function.

Confidence intervals for mean incidence rates and mean

proportions use a Gaussian approximation. Kaplan-Meier esti-

mates were generated using the ecdf function.

Results

Transmission
As expected, both increased numbers of contacts (i.e., node

degree) and increased injecting frequency play key roles in

reducing the time to primary infection. Figure 3 shows median

time to primary infection for node degrees 1–6 and both injecting

frequencies as boxplots across 100 networks. Results for each

network are calculated as the median for each node separately as a

less frequent and a more frequent injector across 3000 HCV

Table 3. Treatment Strategies.

Strategy Short Name Node Selection at each Treatment Epoch

Decreasing node degree dec. degree Choose node avail. for treatment with largest node degree.

Increasing node degree inc. degree Choose node avail. for treatment with smallest node degree.

Random node selection random Choose avail. ego randomly. Treat ego.

Acquaintance, degree $5 acq5 Choose avail. ego randomly. Treat ego & ego’s avail. contacts with node
degree $5.

Acquaintance, degree $3 acq3 Choose avail. ego randomly. Treat ego & ego’s avail. contacts with node
degree $3.

Primary contacts ring Choose avail. ego randomly. Treat ego & ego’s avail. contacts.

Primary & some sec. contacts 2-ring Choose avail. ego randomly. Treat ego, avail. prim. contacts and some
avail. sec. contacts.

Primary and all sec. contacts 2-ring all Choose avail. ego randomly. Treat ego, avail. prim. contacts, and all avail.
sec. contacts.

Contacts of uninfected nodes naive ring Choose uninfected ego randomly. Treat all of ego’s avail. prim. contacts.

Abbreviations: ‘‘avail.’’: available, ‘‘prim.’’: primary, ‘‘sec.’’: secondary.
Treatment strategies considered. In all cases, only infected nodes not currently in treatment and without a history of treatment failure are ‘‘available’’ for treatment.
doi:10.1371/journal.pone.0078286.t003

HCV Transmission and Treatment in PWID Networks

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78286



simulations. These are then combined by forming the median for

each of the 12 categories for that network. Boxes show the 25-th

and 75-th percentiles. The central line denotes the median, the

whiskers show the range of data not considered outliers, and

outliers are shown individually. Several results are clear. Time to

primary infection is noticeably reduced for each additional sharing

partner when the number of sharing partners is small (e.g. by

about one year between degree 1 and 2). It is also clear that

compared to a node injecting less than daily, the reduced time to

primary infection for nodes injecting at least daily is roughly the

same as the reduced time from having an additional sharing

partner. Finally, the variation in the time to primary infection

across the 100 random networks for fixed node degree and

injecting frequency is small compared to the variation across node

degrees and injecting frequencies. This shows that for our

simulated ERGM networks, once network-wide prevalence and

incidence rate are accounted for (i.e., by burn-in and calibration,

respectively), node heterogeneity plays a larger role than network

variation in determining a node’s time to primary infection.

We investigated the role of spontaneously clearing nodes on the

incidence rate of total infection (i.e., primary or re-infection) using

analysis of variance (ANOVA) and nested models in which the

burn-in group is nested within the particular group of spontane-

ously clearing nodes. The number and locations of spontaneously

clearing nodes varies randomly across the groups of spontaneously

clearing nodes. For a single fixed network of size 274, simulation

results from 15 randomly chosen groups of spontaneously clearing

nodes (S1, S2, . . ., S15) were investigated. The nested ANOVA

results show the effect of the particular group of spontaneously

clearing nodes on the incidence rate of total infection is statistically

significant (Pv0:001). That is, there is a connection between the

spontaneously clearing group and the incidence rate of total

infection, either from their number, location or both. On the other

hand, if 15 groups of spontaneously clearing nodes are chosen such

that all have either 64 or 65 spontaneously clearing nodes (the two

most common values), the spontaneously clearing group is no

longer significant (P~0:47). Since location is the only remaining

feature of the spontaneously clearing nodes that can vary, this

shows that the locations of spontaneously clearing nodes is not

statistically significant for the network-wide incidence rate of total

infection. Given the earlier result, it also means their number (or

proportion since network size is fixed here) is statistically significant.

We repeated the nested ANOVA analysis using simulation

results from nine additional networks of size 274 chosen at

random, to make ten in total. For all ten networks the

spontaneously clearing group was a significant effect in determin-

ing the incidence rate of total infection (i.e., Pv0:001 for all ten).

On the other hand, when the number of spontaneously clearing

nodes in the network was either 64 or 65, the spontaneously

clearing group was not a significant effect on the incidence rate of

total infection at the 5% level in nine of the ten networks (i.e,

Pw0:05 for nine, P~0:035 for one). This is consistent with the

conclusions from the first network.

Treatment
Figure 4 shows the effect of the treatment strategies on incidence

rate of total infection. Results reported here are for weeks 131 to

156 (where week 1 is the first week beyond burn-in and also the

first possible week of treatment.) The vertical axis shows the rate

Figure 3. Median time to primary infection across 100 simulated networks. Boxplots are for results for each of 12 categories (node degrees
1–6; two injecting frequencies) over 100 networks. Injecting behaviour frequency is denoted as ‘‘less’’ (i.e., less than daily) or ‘‘more’’ (i.e., at least
daily). For each network, results are formed from 3000 HCV simulations as the median for each node as both a less frequent and a more frequent
injector, and then the median for each of the 12 groups. Boxes show the 25-th and 75-th percentiles. The central line denotes the median, the
whiskers show the range of data not considered outliers, and outliers are shown individually. More frequent injecting behaviour is approximately
equivalent to being a less frequent injector with one additional network contact.
doi:10.1371/journal.pone.0078286.g003
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per 100 person-years at risk, and is calculated as the means across

500 simulations per network, then the mean (with 95% confidence

intervals) across 100 networks. The horizontal axis shows the

average number of treatment initiations started in weeks 1–156. It

is calculated as the means across 500 simulations per network, then

the mean across 100 networks, and then the mean across 156

weeks. It is reported as the number per year per 1000 PWIDs. For

coordinates in the horizontal direction, 95% confidence intervals

are smaller than +/21 (not shown). The incidence rate of total

infection with 95% confidence interval for the baseline simulations

(‘‘baseline (with 95% CI)’’) is shown for comparison. Mean

treatment starts for ‘‘naive ring’’ are smaller because there are

limited numbers of infected nodes available for treatment around

randomly chosen uninfected nodes. With the exception of ‘‘naive

ring’’ (which starts from never-infected nodes, unlike the other

strategies), for a fixed number of treatment initiations below about

10% per year there is a clear order to the strategies. For all but

‘‘inc. degree’’, as the average number of people commencing

treatment increases, the incidence rate is reduced. In particular,

‘‘dec. degree’’ (often viewed as the best strategy for vaccination) is

shown to be the least effective for treatment. Finally, ‘‘naive ring’’,

starting from never infected nodes, appears most effective at

reducing the total rate of infection.

The use of the network strategies can be seen as a way of

reducing the number of treatments to achieve a desired effect. For

example, the effect from treating 47 randomly chosen infected

people per 1000 PWID (i.e., 13 in a network of 274) is

approximately the same as treating 35 infected people per 1000

using the ring strategy. This difference increases as the treatment

frequency increases.

Figures 5 and 6 show comparable results for incidence rate of

re-infection and primary infection, respectively, for the various

treatment strategies and baseline simulations in weeks 131 to 156.

At least four observations can be drawn. Firstly, incidence rates for

re-infection are noticeably higher than for primary infection,

demonstrating an effect seen in practice in this population [34].

This effect was also observed from simulations in [36] in the

context of spontaneously clearing nodes, where it was explained as

a ‘‘boomerang’’ effect whereby A infects B, A clears spontaneous-

ly, then B re-infects A. The same explanation would apply if A

clears by treatment, since in our simulations neither spontaneous

clearance nor successful treatment convey any acquired immunity.

Secondly, except for ‘‘naive ring’’, an ordering of the strategies

using the incidence rate of re-infection is the same as one using the

incidence rate of total infection. (Recall that ‘‘naive ring’’ is

specifically designed to protect never-infected individuals from

infection by treating their contacts.) To better understand the

effect of treating nodes but not their infected contacts, and to

distinguish the effect of network transmission from the effect of

imported infections, Figure 7 shows the average proportion of

infections that are network-based (i.e., not imported). The vertical

axis shows the proportion of infections in weeks 131 to 156 that

are network-based, calculated as the means over 500 simulations

per network, then the mean (with 95% confidence interval) over

100 networks. Recall that the number of imported infections in

any week depends on the number of susceptibles and the incidence

rate of imported infection through equation (1), while the number

Figure 4. Incidence Rate of Total Infection for Weeks 131–156. Vertical coordinate shows the mean incidence rate of total infection in weeks
131–156, calculated as the mean incidence rates across 500 simulations and then the mean (with 95% confidence interval) across 100 networks.
Horizontal coordinate shows the mean number of treatments started in weeks 1–156, calculated as the means across 500 simulations per network,
then the mean across 100 networks, and then the mean across 3 years. Strategies that choose nodes at random and ignore the infection status of
some (‘‘acq5’’) or all (‘‘dec. degree’’, ‘‘random’’) primary contacts have the largest incidence rate of infection. Conversely, the 2-ring strategies and
‘‘naive ring’’ have the lowest incidence rate of infection. Mean treatment starts for ‘‘naive ring’’ are smaller because there are limited numbers of
infected nodes available for treatment around randomly chosen uninfected nodes.
doi:10.1371/journal.pone.0078286.g004
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of network-based infections depends on the number of susceptibles

and the number of infected nodes in each susceptible node’s

primary contacts. For similar prevalences a higher proportion of

network-based infections is a clear sign that a strategy is less

effective in reducing transmissions from primary contacts.

Unsurprisingly, the strategies that choose nodes at random and

ignore the infection status of some (‘‘acq5’’) or all (‘‘dec. degree’’,

‘‘random’’) primary contacts see the largest increase in the role of

network-based infections. Also notable is the ‘‘inc. degree’’

strategy. At small treatment frequencies, the treated nodes have

few contacts and so are at low risk of re-infection. As treatment

frequency increases the collection of egos getting treatment grows,

and the egos in those collections have increasing numbers of

contacts. With more primary contacts comes increased risk of re-

infection. The results for ‘‘naive ring’’, on the other hand, show a

comparably larger decrease in the proportion of network-based

infections. This is another clear sign that ‘‘naive ring’’ is effectively

reducing infections attributable to network transmission.

Thirdly, with the exception of ‘‘naive ring’’, the differences in

the rate of primary infection between the strategies are negligible.

For ‘‘naive ring’’, a trade-off is at work. By focussing on never

infected nodes, the incidence rate of primary infections can be

lowered, but at the expense of a higher incidence rate of re-

infection for other nodes. Whether there is a net benefit from this

trade-off is a different matter, but Figure 4 suggests there is.

Finally, we note that the additional benefit from ‘‘ring’’ to ‘‘2-

ring’’ is small. In practice, the benefit from using a 2-ring strategy

may be outweighed by the additional complexity of finding and

treating secondary contacts. Cost-benefit analysis comparing these

strategies is left for future work.

Figure 8 shows similar results for the chronic prevalence at week

156 (defined as the proportion of nodes that have been infected

constantly for the last 26 weeks). (Results for prevalence are similar

and not shown for brevity.) Baseline chronic prevalence is 61.0%.

(It rises above the calibration value of 56% in the three years after

burn-in.) Differences between the strategies are small, but the same

ordering is apparent, in which ‘‘dec. degree’’, ‘‘acq5’’ and

‘‘random’’ have the smallest impact and both the ‘‘naive ring’’

and the 2-ring strategies have the largest impact. The relative

prevalence reduction is approximately 3.1% and 5.9% for 10 and

20 treatments per year per 1000 PWID at week 156. Also

apparent is that the differences between strategies are negligible

for treatment frequencies below about 20 per 1000.

Sensitivity Analysis
We conducted a number of additional analyses to assess the

sensitivity of our results to various assumptions. Since we use a

static network model, we assessed the sensitivity of our treatment

results to the choice of the particular weeks after burn-in used for

reporting results. Specifically, we limit the time period of interest

to the first 52 weeks following burn-in. On this shorter period the

assumption of a static network is more realistic. To do this we

calculate the incidence rate of total infection for each of the nine

strategies on weeks 27 to 52 which provides 26 weeks for the

treatments to produce an effect. We calculate the number of

treatments on weeks 1 to 52. Results for the treatment strategies

are qualitatively similar. That is, a ranking of the strategies from

most to least effective is the same. The main difference is that the

size of the impacts were not as great, due to a smaller period for

treatment to have an effect. This is not shown for brevity.

Importantly, this shows that even over a shorter time period in

Figure 5. Incidence Rate of Re-infection for Weeks 131–156. Vertical coordinate shows the mean incidence rate of re-infection infection in
weeks 131–156, calculated as the mean incidence rates across 500 simulations and then the mean (with 95% confidence interval) across 100
networks. Horizontal coordinate shows the mean number of treatments started in weeks 1–156, calculated as the means across 500 simulations per
network, then the mean across 100 networks, and then the mean across 3 years. Strategies that choose nodes at random and ignore the infection
status of some (‘‘acq5’’) or all (‘‘dec. degree’’, ‘‘random’’) primary contacts have the largest incidence rate of infection. Conversely, the 2-ring strategies
have the lowest incidence rate of infection. Mean treatment starts for ‘‘naive ring’’ are smaller because there are limited numbers of infected nodes
available for treatment around randomly chosen uninfected nodes.
doi:10.1371/journal.pone.0078286.g005
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which the assumption of a static network is more realistic, our

conclusions ranking the various treatment strategies do not

change.

We conducted additional simulations to account for uncertainty

in input parameters to our model. In total, 14 additional scenarios

were investigated under five treatment strategies (decreasing

degree, random, ring, 2-ring, naive ring). These are described in

Supporting Information S1. With the exception of a scenario in

which p1x~0 so all infections are from the importing source, our

results consistently show that incidence rates of total infection

under treatment can be ranked in the following order: decreasing

degree.random.ring.2-ring.naive ring.

Finally, to investigate the suitability of our assumption of a static

network, we performed additional analysis on the duration of

edges in our empirical network [36]. As part of the Melbourne

study, respondents reported on the time since first using and last

using with each nominee. Of the 263 edges in our empirical

network, we have such data for 250 edges. In the case of multiple

responses per edge by the same respondent, the first was used. In

the case both respondents reported these durations, those with the

smaller network identifier were used (an arbitrary choice). For this

group, 104 (i.e., 41.6%) report first using with the nominee at least

three years ago. But this ignores right censoring, which occurs if

there is still activity between members of the dyad. We say a dyad’s

duration is right-censored if the last activity was reported to be at

most 75 days ago. Then, 11 durations are not censored (time since

last use: median 91, range 91–1095), 239 are censored, and from

the Kaplan-Meier estimator, 97.0% (95% CI: 94.6% –99.4%) of

these edges have duration at least three years. The 75 day cutoff is

conservative since it is less than the period between interviews.

Larger cutoffs increase the estimated percentage of dyads with

duration at least three years. These estimates do not account for

any possible bias from the network-based sample design.

Discussion

Our results demonstrate the PWID network plays an important

role in hepatitis C transmission through both the number of

contacts and the attributes of one’s sharing partners. Understand-

ing the PWID network is likely to play an important role in the

effective and efficient roll out of HCV treatment of PWID over the

next 20 years. In this study, strategies that include treatment of

both primary and secondary contacts are the most effective in

reducing incidence rates of re-infection and total infection, for

similar numbers of treatment starts.

We have shown that the number of network partners plays an

important, direct role in determining the time to primary

infection. The time to primary infection for someone with six

contacts may be less than half that of someone with one contact.

Our network model also suggests location, age and frequency of

injecting contribute to the configuration of the network, thus

playing an indirect role in risk of infection too. We have also

shown that the difference in time to primary infection between

‘‘less-frequent’’ and ‘‘more-frequent’’ injector is roughly the same

as having one additional network contact. Thus, it may be more

effective for health promotion campaigns to focus on the social

context in which risk behaviours take place (e.g., with whom, with

how many different people), rather than simply focusing on the

behaviours themselves (e.g., sharing injecting equipment).

In the context of treatment, treating an individual without

treating their contacts leaves a reservoir of virus as a source of re-

infection (in the absence of acquired immunity) and so those

Figure 6. Incidence Rate of Primary Infection for Weeks 131–156. Vertical coordinate shows the mean incidence rate of primary infection in
weeks 131–156, calculated as the mean incidence rates across 500 simulations and then the mean (with 95% confidence interval) across 100
networks. Horizontal coordinate shows the mean number of treatments started in weeks 1–156, calculated as the means across 500 simulations per
network, then the mean across 100 networks, and then the mean across 3 years. Differences between strategies are smaller than for the incidence
rate of total infection and re-infection. The ‘‘naive ring’’ strategy, which treats the primary contacts of randomly-chosen never infected nodes (if they
exist) is quite effective. Mean treatment starts for ‘‘naive ring’’ are smaller because there are limited numbers of infected nodes available for treatment
around randomly chosen uninfected nodes.
doi:10.1371/journal.pone.0078286.g006
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treated are at high risk of re-infection. Treatment strategies that

take advantage of the contact network of PWID are more effective

in lowering both the incidence rates of re-infection and total

infection. For similar numbers of treatment starts above about

20 per year per 1000 PWID, the most effective strategies at

lowering incidence rates of re-infection in this study treat infected

primary and secondary contacts of infected PWID as well (i.e., ‘‘2-

ring’’, ‘‘2-ring all’’). The strategy treating primary contacts but not

secondary contacts (‘‘ring’’) was almost as effective. The least

effective strategies treat infected PWID selected at random

(‘‘random’’), or chosen by decreasing numbers of primary contacts

(‘‘dec. degree’’). The lack of effectiveness of ‘‘dec. degree’’ as a

treatment strategy is in stark contrast to the widespread belief that

targeted vaccination is the most effective vaccination strategy. The

possibility of re-infection appears to play an important role in our

results. But our networks lack hubs. An interesting question for

future work is whether the ‘‘dec. degree’’ strategy is relatively more

effective for networks with hubs.

A common way to think of an infectious disease spreading is to

imagine the disease spreading away from an index case at the start

(e.g. SARS, influenza) or end (e.g. smallpox eradication) of an

outbreak. In the context of HCV in Melbourne, Australia, where

half or more of the population of interest (PWIDs) are already

infected, it may more more helpful to think of infection

transmitted into uninfected people. Thus we also studied a strategy

(‘‘naive ring’’) that treats infected primary contacts of uninfected

PWID as a means of protecting their uninfected status. Although

not clinically practical (clinicians will not normally have contact

with uninfected PWID and their close contacts) it serves to

demonstrate what is possible with a network strategy. It was by far

the most effective strategy at reducing the incidence rate of

primary infection and subsequently the incidence rate of total

infection too.

We have demonstrated a reduction in chronic prevalence

through treatment. Martin et al. ([13], Figure 6) reported larger

relative prevalence reductions of about 6.7% and 13% over a

longer five year period for an 80% effective treatment, which are

roughly similar results considering we report over a three year

period. Our results also show a similar ranking to results for

incidence rates, in which decreasing degree shows the smallest

effect, the 2-ring strategies show the largest effect, and the random

strategy is somewhere in between. However, with the exception of

one strategy (‘‘dec. degree’’) the differences between the strategies

are small. This is a consequence of the limited time period under

consideration. Recall that even a difference of two people infected

in a network of size 274 is less than 1% difference in prevalence.

For the differences to appear large requires more time for the

strategies to have an impact. So, here we can show the relative

impact of the strategies on chronic prevalence, but a dynamic

network simulating a longer period is really needed to assess the

size of the differences on the time scale of a long-term public

health intervention.

In the context of HCV transmission we have shown that the

number (and proportion) of spontaneously clearing nodes has a

statistically significant effect on the network-wide incidence rate of

total infection. On the other hand, for a fixed number of such

nodes, their arrangement within the network does not have a

statistically significant effect on incidence rate of total infection.

This suggests that apart from their risk of re-infection, the effect of

Figure 7. Mean proportion of infections that are network-based. Vertical coordinate shows the mean proportion of new infections in weeks
131–156 that are network-based (i.e., not imported), calculated as the mean proportions across 500 simulations and then the mean (with 95%
confidence interval) across 100 networks. Horizontal coordinate shows the mean number of treatments started in weeks 1–156, calculated as the
means across 500 simulations per network, then the mean across 100 networks, and then the mean across 3 years. Strategies that choose high-risk
nodes (i.e., more primary contacts) at random while ignoring the infection status of some (‘‘acq5’’) or all (‘‘dec. degree’’, ‘‘random’’) primary contacts
show a larger fraction of network-based infections. At higher treatment frequencies, ‘‘inc. degree’’ shows an increasing fraction of network-based
infections as higher-risk nodes are treated. The ‘‘naive ring’’ strategy, which treats the primary contacts of randomly-chosen never infected nodes (if
they exist), effectively reduces network-based transmission.
doi:10.1371/journal.pone.0078286.g007
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spontaneously clearing nodes is a local effect [36] in which they

are a lower risk as a source of infection to their primary contacts.

Our work is novel for a number of reasons. 1) Our study

investigates an anticipated HCV treatment, rather than preven-

tative vaccines. 2) Unlike other network-based intervention studies

we do not consider the beginning or the end of an epidemic.

Rather, HCV is essentially endemic, infecting about half the

network. 3) We directly compare a number of network-based

interventions in this population, including ring vaccination with

secondary contacts. 4) The contact network model of PWID is

empirically grounded [37] and demonstrated to capture a number

of features of an empirical contact network. The model uses

recently developed statistical approaches in social network analysis

to include features previously demonstrated to be relevant to

human interaction, such as clustering, attribute-based homophily

and social circuit dependence. Indeed, it is the first PWID network

model to explicitly model social circuit dependence. Moreover,

our network model is not scale-free. 5) The individual-based

transmission model [36] includes nodes that can spontaneously

clear and be re-infected, and transmission of infection from

sources other than network neighbours, at a rate estimated from

empirical data. These ‘‘imported infections’’ recognise both the

limitations of including all network partners in empirical studies

and of using a static network to model time intervals longer than

those used to define a contact.

This study has several limitations. We have modelled a three

year period following burn-in using a static network, which we

recognise is an approximation. As described in Welch et al. [28], a

static network is a natural place to begin research. There is also

strong evidence that the empirical network used as the basis for

our contact network model has a large proportion of injecting

relationships that have persisted over the last three years. This

should not be taken to mean that activity along each dyad occurs

consistently. It was previously estimated that activity along each

edge occurred in about 19% of weeks [36]. How this activity

clusters in time is an interesting issue for a dynamic model.

Nevertheless, the simulations of various treatment strategies show

qualitatively similar results over the first year, so the use of a three

year period is not crucial to our general conclusions on treatment.

Combining HCV transmission with an empirically grounded

dynamic network model is an interesting direction for future work.

Work on this is already under way.

We deliberately considered the use of a treatment rather than a

vaccine because this is a major issue with the considerable

advances in direct-acting antiviral agents, and there is currently no

vaccine for HCV. Necessarily, treatment is targeted at sero-

positive PWID. This differs from the results in Hahn et al. [21]

which considered a prophylactic vaccine. A key difference, of

course, is the latter is also given to HCV-naive individuals which

can provide a greater opportunity to lower primary infection rates.

In addition, those antiviral treatment regimens are expected to

have substantially better tolerability and it should therefore

become possible to treat individuals and their close contacts

simultaneously.

We have not explicitly modelled the arrival of new injectors to

the network. This means our results on the time to primary

infection and ‘‘naive ring’’ treatment strategy assume the contacts

of new injectors are similar to others in the network. Our results on

‘‘naive ring’’ in particular highlight the need for a dynamic

network model as future work, with special emphasis on new

members to the drug-injecting scene. Those people represent a

pool of uninfected people. How they form contacts early in their

injecting careers must play a key role in both their risk of primary

infection and strategies to prevent primary infection. Such a model

would also give an indication of the role of population turnover in

the infecting scene as newer, never-infected people enter the

injecting scene while more experienced, infected people leave.

Figure 8. Chronic prevalence at week 156. Vertical coordinate shows the mean chronic prevalence (defined as the proportion of nodes infected
constantly for the last 26 weeks, calculated as the mean proportions across 500 simulations and then the mean (with 95% confidence interval) across
100 networks. Horizontal coordinate shows the mean number of treatments started in weeks 1–156, calculated as the means across 500 simulations
per network, then the mean across 100 networks, and then the mean across 3 years.
doi:10.1371/journal.pone.0078286.g008
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The treatment strategies considered here do not explicitly target

recent infections or new PWID. As a result differences in the rate

of primary infection between the strategies are negligible (with the

exception of the ‘‘naive ring’’ strategy). We leave study of such

strategies for future work.

We have assumed the probability of infection is constant

throughout the duration of an infection. Currently there is no

consensus on the variability in infectivity following infection, and

we feel any other choice would be arbitrary in the absence of

supporting data. We think the role of increased infectivity in the

first acute phase of infection would be minor over short durations

when over 50% of nodes in the network have already been

infected by the end of burn-in. We also suspect increased

infectivity in the acute phase will be more important for a

dynamic model where the arrival and early days of HCV-

uninfected people in the network are explicitly modelled.

Our transmission model assumes no acquired immunity. Under

this assumption, ‘‘boomerang’’ infections, in which A infects B, A

becomes uninfected, then B infects A, can play an important role

in re-infection. We feel this is a conservative assumption in the

context of a model of the effects of treatment on HCV incidence

and prevalence. Results from empirical studies of HCV re-

infection following spontaneous clearance of prior HCV infection

have been variable, with some reporting much lower rates of re-

infection compared to primary infection [65–69], and others

reporting rates of re-infection equal to or higher than the rates of

primary infection [34,70–73]. Recently, it has been recognised

that much of this variation can be attributed to variation in HCV

testing intervals between studies, where studies with lengthy test

intervals miss spontaneously clearing re-infection that occurs

between HCV tests and therefore underestimate the re-infection

rate [74]. Whilst most empirical studies of HCV re-infection

following successful antiviral treatment have found low rates of re-

infection [10,11,65,67,75,76], studies of HCV re-infection follow-

ing successful antiviral treatment in PWID in prison and HIV-

infected men who have sex with men have found high rates of re-

infection [12,77,78]. With the advent of new highly-effective and

increasingly tolerable treatment regimens, the characteristics of the

people receiving treatment may change and re-infection rates

following successful treatment will need to be closely monitored. If

later clinical results establish that spontaneous clearance or

successful treatment leads to acquired immunity, our model will

overestimate the rate of re-infection and the relative advantages of

the various intervention strategies would change.

The imported infections included in the transmission model

provide a way to model risk of infection from sources other than

primary contacts. It is a modelling device that reflects limitations

in modelling the contact network, which in turn reflects difficulties

with collecting data on this difficult-to-reach population of

individuals. Since this risk of infection is independent of the

contact network and lacks heterogeneity (except for the difference

in incidence rate between less-frequent and more-frequent

injectors), our results should be conservative with respect to

differences between network-based treatment strategies.

Our investigation of contact referral strategies like ring

treatment assumes all infected contacts are treated. In reality,

only a fraction of those contacts would be treated. For example,

some contacts may be unwilling to have their HCV status

determined, while others may reject treatment despite being

infected. Although we have not explicitly modelled these effects, a

number of aspects of our simulation mitigate these differences. We

assume the treatments are only effective in 80% of people, so

incomplete elimination of infection in primary contacts is already

included. Futher, we include importing of infection which means a

node continues to have risk even if all contacts are uninfected.

Finally, the acquaintance immunisation strategies ‘‘acq3’’ and

‘‘acq5’’ treat only a fraction of a node’s primary contacts, thus

giving a sense of the difference incomplete treatment of primary

contacts can make (albeit when untreated primary contacts are not

randomly chosen, but chosen by node degree.).

It would be interesting to do a direct comparison of our network

based HCV model treating random nodes, for example, with a

deterministic mixing model using similar treatments and similar

treatment numbers. This would help aid interpretation of results

from mixing models. This is left for future work.
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