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Abstract

Fountains injected into stratified fluids are widely found in environmental and in-

dustrial settings. The onset of asymmetry and entrainment that occurs in transitional

fountains is the key to understanding turbulence generation and entrainment mechanisms

in fountains. In addition to the Reynolds number (Re) and the Froude number (Fr), the

stratification of the ambient fluid, represented by the dimensionless temperature stratifi-

cation parameter (s), also has a significant effect on the onset of asymmetry, unsteadiness,

and entrainment in a fountain, and on the maximum height that the fountain penetrates

in the ambient fluid. In this study, a series of three-dimensional direct numerical simu-

lations (DNS) were carried out using ANSYS Fluent for transitional plane fountains in

linearly-stratified fluids with Re and s in the ranges of 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5, all

at Fr = 10. The transient behaviour of the fountains, in particular the effects of Re and s

on the asymmetric transition and the maximum fountain penetration heights, is analysed

and quantified using the DNS results. It is found that fountains are generally symmetric

in the early developing stage, but become asymmetric and unsteady subsequently. The

stratification of the ambient fluid is shown to stabilize the fountain flow and to reduce its

asymmetry and unsteadiness. However, the effect of s on the asymmetric behaviour of a

fountain is found to be weaker than that of Re. Empirical correlations were developed,

using the numerical results, to quantify such effects on the time for the asymmetric transi-

1Corresponding author: Email: wenxian.lin@jcu.edu.au, Phone: +61-7-4781-5091, Fax: +61-7-4781-
6788 (W. Lin)

Preprint submitted to Int. J. Heat Mass Transfer July 14, 2015



tion. The effects of Re and s on the initial and time-averaged maximum fountain heights

(zm,i and zm,a, respectively), and the time to attain zm,i are also analysed. Quantified

correlations are developed using the DNS results, which demonstrate that both zm,i and

zm,a increase with Re, but decrease with s, apparently due to the increasing negative

buoyancy that the fountain must overcome to penetrate the ambient fluid. The results

further show that the effect of s on zm,i and zm,a is much stronger than that of Re.

Keywords: Direct numerical simulation, Plane fountain, Asymmetry, Stratification,

Transitional flow, Maximum fountain height.

1. Introduction

Fountains are abundant in nature and in many industrial and environmental set-

tings, such as natural ventilation, volcanic eruptions, cumulus clouds, reverse cycle air-

conditioning, to name just a few. A fountain occurs whenever a denser fluid is injected

vertically upward into a less dense fluid or a less dense fluid is injected vertically down-

ward into a denser fluid. In both cases buoyancy opposes the momentum of the jet flow,

leading to gradually reduced vertical jet velocity until it becomes zero at a certain finite

height. After that, the jet flow reverses its direction and comes back around the core of

the upward or downward flow and an intrusion forms on the base which moves outwards.

When injected into a homogeneous ambient fluid, the behavior of a fountain is governed

by the Reynolds number, Re, and the Froude number, Fr, defined as follows,

Re =
W0X0

ν
, (1)

Fr =
W0

[gX0(ρ0 − ρa)/ρa]1/2
=

W0

[gβX0(Ta − T0)]1/2
, (2)

where X0 is the radius of the orifice at the fountain source for a round fountain or the

half-width of the slot at the source for a plane fountain, W0 is the mean inlet velocity of

the jet fluid at the source, g is the acceleration due to gravity, ρ0, T0 and ρa, Ta are the

densities and temperatures of the jet fluid and the ambient fluid at the source, and ν and

β are the kinematic viscosity and coefficient of volumetric expansion of fluid, respectively.

The second expression of Fr applies when the density difference is due to the difference in

temperatures of the jet and ambient fluids using the Oberbeck-Boussinesq approximation.
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When the ambient fluid is linearly stratified, the fountain behaviour will also depend

on the density stratification parameter, Sp, which is defined as,

Sp = −
1

ρa,0

dρa,Z
dZ

, (3)

where ρa,0 and ρa,Z are the initial densities of the ambient fluid at the bottom (i.e.,

at Z = 0) and at the height Z, with Z being the coordinate in the vertical direction

as sketched in Fig. 1, which depicts the physical system under consideration and the

coordinates used in this paper. If the Oberbeck-Boussinesq approximation is valid, Sp

can also be represented by the following temperature stratification parameter, S,

S =
dTa,Z

dZ
=

Sp

β
, (4)

where Ta,Z is the initial temperature of the ambient fluid at Z. However, the dimensionless

form of S, as defined below, is normally used instead,

s =
dθa,z
dz

=
X0

(Ta,0 − T0)
S =

X0

β(Ta,0 − T0)
Sp, (5)

where θa,z = (Ta,Z − Ta,0)/(Ta,0 − T0) and z = Z/X0 are the dimensionless initial temper-

ature of the ambient fluid at Z and the dimensionless height, respectively, and Ta,0 is the

initial temperature of the ambient fluid at the bottom, i.e., at Z = 0.

Although studies on fountains commenced in the 1950s (see, e.g., [1]), they are still

being extensively investigated (see, e.g., [2–12]). However, the studies have focused on

round fountains, which may be either ‘very weak’ when Fr . 1, or ‘weak’ when 1 . Fr .

3, or ‘forced’ when Fr & 3, as classified by Kaye and Hunt[13] and Burridge and Hunt [7].

The behavior of a forced round fountain is found to be significantly different from that

of a weak or very weak round fountain, as summarized in, e.g., [7, 13–16]. For example,

in a forced round fountain, zm, which is the dimensionless maximum height that the

fountain will penetrate in a homogeneous ambient fluid (nondimensionalized by X0), is

proportional to Fr and has no dependence on Re, as found by numerous studies (e.g., [4–

8, 13, 17–26]), whereas in a weak or very weak round fountain, due to the weaker discharge

momentum flux compared to the negative buoyancy flux, zm is also strongly dependent on

Re, in addition to its dependence on Fr, as noted, e.g., by Lin and Armfield [14, 27–29],

Philippe et al. [30], and Williamson et al. [15]. Williamson et al. [15] then proposed to
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classify a round fountain in terms of its Re as well, i.e., a ‘laminar’ round fountain when

Re < 120, a ‘transitional’ round fountain when 120 < Re < 2000, and a ‘turbulent’ round

fountain when Re > 2000, based on their extensive experimental observations. Such

fountains are common in a number of settings. Specific examples are very weak fountains

used for the replenishing of cold salt water at the bottom of solar ponds [31]; weak and

forced fountains dominating in building ventilation when cool air is injected vertically

into a room through vents in the floor, with typical values of Fr and Re in the ranges

1 ≤ Fr ≤ 25 and 100 ≤ Re ≤ 1000, as estimated by Burridge, Mistry and Hunt [32]; and

forced fountains occurring in volcanic eruptions [20]. Many more examples of very weak,

weak and forced fountains can be found in environmental, geophysical, and atmospheric

settings and in industrial applications (see, e.g., [16, 18, 22, 26, 33]).

The behavior of plane fountains, which are formed by injecting upwards continuously

a denser fluid into a homogeneous light ambient fluid from a long narrow slot, is also

investigated by some researchers, as summarized recently in [9, 34], although apparently

not so extensively as round fountains. For turbulent plane fountains, it was found that,

similar to forced round fountains, zm is also independent of Re; however, its dependence

on Fr is in the form zm ∼ Fr4/3, as obtained by, e.g., [20, 21, 35–37], although other

forms were also proposed (e.g., [36–38]). For example, Hunt and Coffey [36] found that

zm ∼ Fr2 for weak plane fountains with 2.3 . Fr . 5.7, but it becomes zm ∼ Fr2/3 for

very weak plane fountains, which is the same as that obtained by Lin and Armfield [28].

For laminar and transitional plane fountains, similar to their counterpart round foun-

tains, Re also affects zm, as demonstrated by Lin and Armfield [29, 39] who gave the

following scaling based on dimensional and scaling analysis,

zm ∼
Fr

Re1/2
, (6)

which was confirmed by their DNS results for 0.2 ≤ Fr ≤ 1 and 5 ≤ Re ≤ 800. This

scaling was also confirmed by a recent experimental study by Srinarayana et al. [3] for

2.1 . Re . 127 and 0.4 . Fr . 42.

The onset of asymmetry, instability and unsteadiness in fountains is the key to elu-

cidating the mechanism for the generation of turbulence and entrainment in fountains,

but is not well understood, although some recent investigations have been undertaken,
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as follows. Lin and Armfield [14] studied the onset of entrainment in transitional round

fountains in a homogeneous fluid over the ranges of 1 ≤ Fr ≤ 8 and 200 ≤ Re ≤ 800 using

DNS, and found that entrainment is strongly dependent on Re while the effect of Fr is

much smaller. Williamson et al. [2] investigated the transitional behaviour of weak turbu-

lent round fountains in a homogeneous fluid over a wide range of Re (20 to 3494), although

Fr was relatively small with 0.1 ≤ Fr ≤ 2.1. They observed that there is a continuum of

behaviour over this transitional Fr range, from hydraulically driven buoyancy dominated

flow to momentum dominated flow. Srinarayana et al. [3] investigated the plane fountain

behavior at low-Reynolds numbers using a series of experiments for 2.1 . Re . 127 and

0.4 . Fr . 42 and found that the behavior of plane fountains can be categorized broadly

into four regimes: the steady; flapping; laminar mixing; and jet-type mixing behavior. It

was also found that the critical Froude number for transition from a steady to unsteady

flow varies with Re. Srinarayana et al. [9, 40] also conducted a series of two-dimensional

DNS of laminar plane fountains in homogeneous ambient fluids with both a uniform and

a parabolic inlet velocity profile at the fountain source, to study the instabilities and

variation of the fountain height and obtained the critical Froude number for unsteadiness

at full development. More recently, Gao et al. [41] used three-dimensional DNS results

to explore the asymmetry and three-dimensionality in transitional round fountains in a

linearly stratified fluid over the ranges of 1 ≤ Fr ≤ 8 and 100 ≤ Re ≤ 500 at a constant

dimensionless stratification s = 0.03. Their results show that a critical Re exists between

100 and 200 for Fr = 2 fountains, and similarly a critical Fr exists between 1 and 2

for fountains at Re = 200, which divide the fountains into either axisymmetric and two-

dimensional or asymmetric and three-dimensional. Both Williamson et al. [2] and Gao et

al. [41] investigated the behavior of round transitional fountains for relatively small Fr

values. No study has been found in which the onset of asymmetry in transitional plane

fountains in stratified fluids has been investigated, which motivates the current study.

In this study, a series of three-dimensional DNS runs were carried out for transitional

plane fountains in linearly stratified fluids over the ranges of 25 ≤ Re ≤ 300 and 0 ≤ s ≤

0.5 at a constant high Froude number of Fr = 10 to demonstrate the effect of Re and s

on the onset of asymmetry, instability and unsteadiness of these plane fountains.

The remainder of this paper is organized as follows. The physical system under consid-
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eration, the governing equations and the initial and boundary conditions for the flow, and

the numerical methods for DNS are briefly described in § 2. The asymmetric transition

of the Fr = 10 plane fountains over the ranges of 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5 is de-

scribed and discussed in § 3, both qualitatively and quantitatively, with the DNS results.

In § 4, the initial and time-averaged maximum fountain penetration height, as well as the

time to attain the initial maximum fountain height, are analysed and quantified with the

DNS results. Finally, the conclusions are drawn in § 5.

2. Methodology

The physical system under consideration is a rectangular container of the dimensions

H × B × L (Height × Width × Length), containing a Newtonian fluid initially at rest

and with a constant temperature gradient dTa,z/dZ, as sketched in Fig. 1. At the center

of the bottom of the container, a narrow slot with a half-width of X0 in the Y direction

functions as the source for a plane fountain, with the remainder of the bottom being a

rigid non-slip and adiabatic boundary. The two vertical surfaces in the X − Z plane, at

Y = ±B/2, are assumed to be periodic whereas the two vertical surfaces in the Y − Z

plane, at X = ±L/2, are assumed to be outflows. The top surface in the X −Y plane, at

Y = H, is also assumed to be an outflow. The origin of the Cartesian coordinate systems

is at the center of the bottom. The gravity is acting in the negative Z-direction. At time

t = 0, a stream of fluid at T0 (T0 < Ta,0) is injected upward from the slot with a uniform

velocity W0 into the container to initiate the plane fountain flow and this discharge is

maintained over the whole course of a specific DNS run.

The flow is governed by the three-dimensional incompressible Navier-Stokes and tem-

perature equations with the Oberbeck-Boussinesq approximation, which are written in

conservative form in Cartesian coordinates as follows,

∂U

∂X
+

∂V

∂Y
+

∂W

∂Z
= 0, (7)

∂U

∂t
+

∂(UU)

∂X
+

∂(V U)

∂Y
+

∂(WU)

∂Z
= −

1

ρ

∂P

∂X
+ ν

(

∂2U

∂X2
+

∂2U

∂Y 2
+

∂2U

∂Z2

)

, (8)

∂V

∂t
+

∂(UV )

∂X
+

∂(V V )

∂Y
+

∂(WV )

∂Z
= −

1

ρ

∂P

∂Y
+ ν

(

∂2V

∂X2
+

∂2V

∂Y 2
+

∂2V

∂Z2

)

, (9)
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Figure 1: Sketch of the physical system under consideration, the computational domain and the boundary

conditions.

∂W

∂t
+

∂(UW )

∂X
+

∂(VW )

∂Y
+

∂(WW )

∂Z
= −

1

ρ

∂P

∂Z
+ ν

(

∂2W

∂X2
+

∂2W

∂Y 2
+

∂2W

∂Z2

)

+gβ(T − Ta,Z), (10)

∂T

∂t
+

∂(UT )

∂X
+

∂(V T )

∂Y
+

∂(WT )

∂Z
= κ

(

∂2T

∂X2
+

∂2T

∂Y 2
+

∂2T

∂Z2

)

, (11)

where U , V , and W are the velocity components in the X, Y , and Z directions, t is time,

P is pressure, T is temperature, and ρ, ν, and κ are the density, viscosity, and thermal

diffusivity of fluid, respectively.

The appropriate initial and boundary conditions are:

U = V = W = 0, T (Z) = Ta,0 + s(Ta,0 − T0)
Z

X0

at all X, Y, Z

when t < 0, and

U = V = 0, W = W0, T = T0 at Z = 0, −X0 ≤ X ≤ X0 and −
B

2
≤ Y ≤

B

2
;

U = V = W = 0,
∂T

∂Z
= 0 at Z = 0, X0 ≤ X ≤

L

2
and −

B

2
≤ Y ≤

B

2
;
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U = V = W = 0,
∂T

∂Z
= 0 at Z = 0, −

L

2
≤ X ≤ −X0 and −

B

2
≤ Y ≤

B

2
;

∂U

∂Z
=

∂V

∂Z
=

∂W

∂Z
=

∂T

∂Z
= 0 at Z = H, −

L

2
≤ X ≤

L

2
and −

B

2
≤ Y ≤

B

2
;

∂U

∂X
=

∂V

∂X
=

∂W

∂X
=

∂T

∂X
= 0 at X = ±

L

2
, −

B

2
≤ Y ≤

B

2
and 0 ≤ Z ≤ H;

U(Y =
B

2
) = U(Y = −

B

2
), V (Y =

B

2
) = V (Y = −

B

2
), W (Y =

B

2
) = W (Y = −

B

2
),

T (Y =
B

2
) = T (Y = −

B

2
) at −

L

2
≤ X ≤

L

2
and 0 ≤ Z ≤ H

when t > 0.

The above governing equations were discretized on a non-uniform rectangular mesh

using a finite volume method, with a standard 2nd-order central difference scheme used

for the viscous and divergence terms and the 3rd-order QUICK scheme for the advec-

tion terms. The 2nd-order Adams-Bashforth and Crank-Nicolson schemes were used for

the time integration of the advective and diffusive terms, respectively. The PRESTO

(PREssure STaggering Option) scheme was used for the pressure gradient.

There are totally 30 DNS runs carried out in this study using ANSYS Fluent 13, with

the key information about these runs listed in Table 1. The fluid used in the DNS runs

is water, with the density ρa = 996.6 kg/m3, the kinematic viscosity ν = 8.58 × 10−7

m2/s, and the volume expansion coefficient β = 2.76 × 10−4 1/K, respectively, at the

nominal temperature of Ta,0 = 300 K. These thermal property values were obtained by

interpolating the data presented in Table A-3 of [42], and were used for all DNS runs.

The maximum value of (Ta,0 − T0), among all DNS runs, is (300 - 298.0428) = 1.9572 K,

which is small enough to ensure the Oberbeck-Boussinesq approximation is valid. The

temperatures or temperature differences such as 298.0428 K or 1.9572 K are calculated

for water from the definitions of Re and Fr with the Oberbeck-Boussinesq approxima-

tion. Such temperatures around 300 K correspond to the common room temperatures.

Although these temperatures or their differences are stated to 4 decimal places in order

the targeted specific Re and Fr values to be accurately set, which are easily achievable for

numerical simulations, it is understood that in an experimental context it is not possible

to measure to that degree of precision. For all DNS runs, Fr is fixed at 10, Ta,0 is fixed at

300 K, the time step is fixed at 0.025 s, but Re and s vary in the ranges of 25 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5, respectively. In addition, the DNS runs with s = 0, which corresponds
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to a homogeneous fluid case, were also carried out for the purpose of comparison. Non-

uniform meshes were used, with total numbers of cells in the range of 3.72 to 6.67 million.

In the regions of −15 ≤ X/X0 ≤ 15, 0 ≤ Z/X0 ≤ 45 and -150 mm ≤ Y ≤ 150 mm, a

uniform and finer rectangular mesh was used, and in the remaining regions a relatively

coarse and non-uniform mesh with varying expansion rates was used. It should be noted

that “outflows” boundary conditions are applied at the lateral boundaries of the domain

(in the X-direction, i.e., at the locations X = ±L/2), which assumes a zero diffusion flux

for all flow variables. Such a zero diffusion flux condition applied by Fluent at “outflow”

boundaries is approached physically in fully-developed flows. The “outflow” boundaries

can also be defined at physical boundaries where the flow is not fully developed if the

assumption of a zero diffusion flux at the exit is expected to have a negligible impact on

the flow solution. In all DNS runs, H, B and L were chosen to be sufficiently large to

ensure that the “outflows” and periodic boundary conditions have negligible effect on the

flow quantities of interest.

Table 1: Key information about the DNS runs.

Re s X0 W0 T0 S H × B × L Grids

(-) (-) (m) (m/s) (K) (K/m) (m×m×m) (million)

25 0 0.002 0.01072 299.7876 0.0 0.215×0.3×0.8 3.72

25 0.1 0.002 0.01072 299.7876 10.6 0.172×0.3×0.8 3.72

25 0.2 0.002 0.01072 299.7876 21.2 0.172×0.3×0.8 3.72

25 0.3 0.002 0.01072 299.7876 31.9 0.172×0.3×0.8 3.72

25 0.4 0.002 0.01072 299.7876 42.5 0.172×0.3×0.8 3.72

25 0.5 0.002 0.01072 299.7876 53.1 0.172×0.3×0.8 3.72

50 0 0.002 0.02145 299.1505 0.0 0.215×0.3×0.8 3.72

50 0.1 0.002 0.02145 299.1505 42.5 0.172×0.3×0.8 3.72

50 0.2 0.002 0.02145 299.1505 85.0 0.172×0.3×0.8 3.72

50 0.3 0.002 0.02145 299.1505 127.4 0.172×0.3×0.8 3.72

50 0.4 0.002 0.02145 299.1505 169.9 0.172×0.3×0.8 3.72

50 0.5 0.002 0.02145 299.1505 212.4 0.172×0.3×0.8 3.72

100 0 0.003 0.02860 298.9932 0.0 0.325×0.3×0.8 5.77

100 0.1 0.003 0.02860 298.9932 33.6 0.260×0.3×0.8 5.77

100 0.2 0.003 0.02860 298.9932 67.1 0.260×0.3×0.8 5.77

100 0.3 0.003 0.02860 298.9932 100.7 0.260×0.3×0.8 5.77

100 0.4 0.003 0.02860 298.9932 134.2 0.260×0.3×0.8 5.77
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100 0.5 0.003 0.02860 298.9932 167.8 0.260×0.3×0.8 5.77

200 0 0.005 0.03432 299.1301 0.0 0.535×0.3×0.8 6.67

200 0.1 0.005 0.03432 299.1301 17.4 0.430×0.3×0.8 6.67

200 0.2 0.005 0.03432 299.1301 34.8 0.430×0.3×0.8 6.67

200 0.3 0.005 0.03432 299.1301 52.2 0.430×0.3×0.8 6.67

200 0.4 0.005 0.03432 299.1301 69.6 0.430×0.3×0.8 6.67

200 0.5 0.005 0.03432 299.1301 87.0 0.430×0.3×0.8 6.67

300 0 0.006 0.05148 298.0428 0.0 0.645×0.1×0.8 4.45

300 0.1 0.005 0.05148 298.0428 39.1 0.430×0.3×0.8 6.67

300 0.2 0.006 0.04290 298.8673 37.8 0.516×0.1×0.8 4.45

300 0.3 0.006 0.04290 298.8673 56.6 0.516×0.1×0.8 4.45

300 0.4 0.006 0.04290 298.8673 75.5 0.516×0.1×0.8 4.45

300 0.5 0.006 0.04290 298.8673 94.4 0.516×0.1×0.8 4.45

Extensive mesh and time-step dependency testing was carried out to ensure accurate

simulations have been produced. The results of one example of such a test are presented

in Fig. 2 for the case of Fr = 10, Re = 50 and s = 0.1, which shows the time series of

the maximum fountain height (Zm) and the horizontal temperature and vertical velocity

profiles at the height of Z = 0.015 m on the vertical plane at Y = 0 m. Zm was determined

as the vertical distance from the bottom to the vertex point of the iso-surface at the

temperature of T (Z) = T0−1%(Ta,0−T0) within the whole computational domain. These

results were obtained numerically with three different meshes, with the coarse mesh having

2.39 million cells, the basic mesh having 3.72 million cells and the fine mesh having 5.27

million cells, and at three different time steps of 0.025 s, 0.035 s, and 0.05 s, respectively.

It is clear from Fig. 2(a)-(c), where a comparison of the results obtained with the three

meshes, all at the same time-step of 0.025 s, is presented, that the results obtained with

the basic mesh and the fine mesh are essentially the same and only the results produced

with the coarse mesh have some noticeable deviations. Similarly, a comparison of the

results obtained with three time steps, all with the same basic mesh (3.72 million cells),

as shown in Fig. 2(d)-(f), shows that the differences are very small. Hence it is believed

that the combination of the basic mesh with 3.72 million cells and the time step at 0.025 s

produces sufficiently accurate solutions and is the best compromise between the accuracy

and the time and computing resources among the meshes and time steps considered, and

is then chosen as the main mesh and time step for the numerical simulations at small Re
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(Re ≤ 50). For larger Re cases, the mesh and time-step dependency tests found that finer

meshes, ranging from 4.45 to 6.67 million cells, as presented in Table 1, all at the time step

of 0.025 s, are needed to produce sufficiently accurate solutions. For a typical DNS run,

it usually took 10 ∼ 18 days on a Dell OptiPlex(TM) 9010 MT desktop computer with

Intel Core i7-3770 Processor, 8M Cache, 3.90 GHz, and 32GB DDR3 SDRAM Memory.
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Figure 2: The time series of the maximum fountain height (Zm) and the horizontal temperatue and

vertical velocity profiles at t = 10 s at the height Z = 0.015 m on the vertical plane at Y = 0 m, which

were obtained numerically for the case of Fr = 10, Re = 50 and s = 0.1 with three different meshes (left

column, all at the same time step of 0.025 s) and at three different time steps (right column, all with the

same basic mesh of 3.72 million cells).
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3. Asymmetric transition

3.1. Qualitative observations

3.1.1. Evolution of transient temperature and velocity fields

Figure 3 presents the transient temperature contours of a typical plane fountain with

Fr = 10, Re = 100 and s = 0.1 at the instants of τ = 25, 120, 145, 165, 260, and

570, respectively, on three specific planes in each of the X, Y , and Z directions, where

τ is the dimensionless time, made dimensionless by X0/W0. The results show that at

Y = 0 in the X − Z plane the fountain flow maintains symmetry in the X − Z plane

with respect to X = 0 at its early development stage, until at τ ≈ 165, when it starts

to become asymmetric and unstable, leading to flapping motions (i.e., the horizontal

oscillations) around X = 0 in the X direction. The transition from a symmetric flow to

an asymmetric one in the Y direction in the Y − Z plane occurs at a later time, as the

temperature contours at X = 0 in the Y −Z plane demonstrate that the fountain height

is basically the same along the Y direction for each time instant until τ ≈ 260, when

the height is observed to fluctuate along the Y direction, indicating that the symmetry

has collapsed and the fountain has become asymmetric in the Y direction. This is also

true in the horizontal, X − Y plane, as the temperature contours at Z = 10X0 in the

X−Y plane show that the fountain width at this specific height is essentially the same in

the X direction for each time instant until τ ≈ 260, when the width varies considerably

along the X direction, confirming that the symmetry collapses and the fountain becomes

asymmetric in the Y direction of the X − Y plane. The behavior of the fountain flow

becomes quasi-steady at the later development stage because the time-averaged behavior

essentially attains a steady state, although the instantaneous behaviour still changes with

time.

The onset of asymmetry and unsteady behaviour, observed above in the temperature

fields, is also exhibited by the corresponding transient velocity contours, as shown in

Fig. 4 where the transient contours of U/W0 and V/W0 at X = 0 in the Y − Z plane

are presented. When a plane fountain maintains symmetry with respect to X = 0 in the

X − Z plane, U should be zero everywhere at X = 0 in the Y − Z plane. Any non-zero

U value on this plane will indicate asymmetric behaviour in the X direction. Similarly,

12



Figure 3: Evolution of transient temperature contours of the plane fountain with Fr = 10, Re = 100 and

s = 0.1 at Y = 0 in the X−Z plane (top row), X = 0 in the Y −Z plane (middle row), and Z = 10X0 in

the X − Y plane (bottom row), respectively. The temperature contours in each subfigure are normalized

with [T (Z)− T0]/(Ta,Z=60X0
− T0).

when a plane fountain maintains symmetry in the Y direction on the Y − Z plane, V

should be zero everywhere at X = 0 in the Y −Z plane. Any non-zero V on this plane will

indicate asymmetric behaviour in the Y direction. From Fig. 4, it is clearly seen that when

τ ≤ 120, both U/W0 and V/W0 are zero, indicating that symmetry is maintained both in

the X direction in the X−Z plane and in the Y direction in the Y −Z plane. At τ ≈ 145,

significant asymmetric features are observed in the X direction in the X − Z plane and

the extent of the asymmetry increases when τ is further increased. At τ ≈ 165, marginal

asymmetric features are shown in the Y direction in the Y − Z plane and the extent of

the asymmetry also increases for large τ , although the magnitude of the asymmetry in

the Y direction is much smaller than that in the X direction at the corresponding time

instants.

Figure 4: Evolution of transient contours of U/W0 (top row) and V/W0 (bottom row), both in percentage,

at X = 0 in the Y − Z plane for the plane fountain with Fr = 10, Re = 100 and s = 0.1.

13



3.1.2. Effect of Re

The effect of Re on the asymmetric and unsteady behaviour of plane fountains is

demonstrated in Fig. 5 where representative temperature contours at the quasi-steady

state on three individual planes with Re varying in the range 25 ≤ Re ≤ 300, all with

Fr = 10 and s = 0.1 are shown. The results show that at the quasi-steady state all these

plane fountains become asymmetric and unsteady. The fountain flow in the X −Z plane

flaps in the X direction and the fountain heights at higher Re values (200 and 300) are

considerably larger than those at smaller Re values. It is also observed that the extent

of entrainment increases with Re. In the Y − Z plane, the increase of Re leads to larger

fluctuations of the fountain height along the Y direction. Similarly, the increase in Re

results in a larger fountain width and increased fluctuation of the width in the X − Y

plane as well.

Figure 5: Representative temperature contours of plane fountains at the quasi-steady state for different

Re values with Fr = 10 and s = 0.1 at Y = 0 in the X − Z plane (top row), X = 0 in the Y − Z plane

(middle row), and Z = 0.5Zm,i in the X − Y plane (bottom row), respectively, where Zm,i is the initial

maximum fountain height.

Figure 6 presents the corresponding representative contours of U/W0 and V/W0 at the

quasi-steady stage at X = 0 in the Y −Z plane for the same plane fountains as for Fig. 5.

It is seen that non-zero U values are present at X = 0 in the Y − Z plane, indicating

that the fountain flow in the X −Z plane flaps in the X direction, which is in agreement

with the observation from the temperature contours shown in Fig. 5 and confirms that

all these plane fountains become asymmetric and unsteady. It is further observed that
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the extent of flapping and entrainment increases when Re increases. In the Y direction

of the Y − Z plane, the increase in Re leads to an increased non-zero V value, although

the magnitude is smaller than that of the corresponding U value, indicating an increasing

extent of asymmetric behaviour in this direction.

Figure 6: Representative contours of U/W0 (top row) and V/W0 (bottom row) of plane fountains at the

quasi-steady stage for different Re values with Fr = 10 and s = 0.1 at X = 0 in the Y − Z plane, where

U/W0 and V/W0 are in percentage.

A more evident demonstration of the effect of Re on the asymmetric behaviour of

plane fountains in both the X and Y directions of the Y −Z plane is presented in Fig. 7,

where the time series of Umax/W0 and Vmax/W0 at X = 0 in the Y − Z plane with Re

varying in the range 25 ≤ Re ≤ 300, all at Fr = 10 and s = 0.1, are presented. Umax

and Vmax represent the maximum values of U and V at X = 0 in the Y − Z plane,

respectively. From this figure, it is seen that both Umax/W0 and Vmax/W0 are essentially

zero at the early developing stage for all cases considered, indicating that these plane

fountains are initially symmetric in both the X and Y directions. However, subsequently

all fountains under consideration exhibit asymmetric behaviour, with their Umax/W0 and

Vmax/W0 values becoming significant. When Re is small, the fountain starts to show the

asymmetric behaviour at a much later time. For example, the Re = 25 fountain starts

to become asymmetric in the X direction of the Y − Z plane at τ ≈ 450 whereas when

Re increases to 50, 100, and 200, the time for the onset of the asymmetric behaviour in

this direction reduces to τ ≈ 200, 120, and 105, respectively. It is further observed that

the magnitude of Umax/W0 increases when Re increases, although the rate of increase

decreases with Re. Similar behaviour is observed in the Y direction of the Y − Z plane,

but the onset of the asymmetric behaviour in this direction occurs at a much later time
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than that in the X direction for each corresponding case when Re is no more than 100.

For higher Re cases, the onset of the asymmetric behaviour in the Y direction occurs

at essentially the same time as that in the X direction for each corresponding case. A

quantitative analysis on the time for the onset of the asymmetric behavior (also termed

the asymmetric transition time) in both the X and Y directions of the Y − Z plane will

be presented in Section 3.2.
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Figure 7: Time series of (a) Umax/W0 and (b) Vmax/W0 for plane fountains at X = 0 in the Y −Z plane

with Re varying in the range 25 ≤ Re ≤ 300 but all at Fr = 10 and s = 0.1.

3.1.3. Effect of s

Figure 8 presents the representative temperature contours at the quasi-steady stage on

the same three individual planes as those in Fig. 5 when s varies in the range 0 ≤ s ≤ 0.5,

with Fr and Re kept constant at Fr = 10 and Re = 100. The results with s = 0, which

represents the case with a homogeneous ambient fluid, are also included for comparison.

Again all these plane fountains become asymmetric and unsteady, although the extent
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of asymmetry and unsteadiness decreases with increasing s. It is also observed that

the fountain height, as shown by the contours in the X − Z plane, decreases when s

increases, due to the increasing negative buoyancy that the fountain fluid has to overcome

to penetrate in the linearly-stratified ambient fluid. In the Y −Z plane, the increase in s

leads to a lower fountain height and a smaller extent of the fluctuation of the height along

the Y direction. Similarly, the increase in s leads to a smaller extent of the fluctuation of

the width in theX−Y plane as well. All these clearly demonstrate that the stratification of

the ambient fluid plays a positive role to stabilize the flow and to alleviate its asymmetric

and unsteady behavior.

Figure 8: Representative temperature contours of plane fountains at the quasi-steady stage for different

s values in the range 0 ≤ s ≤ 0.5, all at Fr = 10 and Re = 100, at Y = 0 in the X − Z plane (top row),

X = 0 in the Y −Z plane (middle row), and Z = 0.5Zm,i in the X −Y plane (bottom row), respectively.

Figure 9 presents the corresponding representative contours of U/W0 and V/W0 at

the quasi-steady stage at X = 0 in the Y − Z plane for the same plane fountains as for

Fig. 8. It is observed that significant non-zero U values are present at X = 0 in the Y −Z

plane at the quasi-steady stage, indicating that these fountains flap in the X direction

in the X − Z plane and become asymmetric and unsteady, which is in agreement with

that observed from Fig. 8. However, due to the influence of the stratification to stabilize

the flow and to reduce the asymmetric and unsteady behavior, as discussed above, it is

observed that the extent of flapping and entrainment decreases when s increases, although

the effect of s on the asymmetry and unsteadiness of the fountains is not as strong as

that of Re. Similar observation can be made in the Y direction of the Y − Z plane as

well, although the magnitudes are smaller than those in the X direction.
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Figure 9: Representative contours of U/W0 (top row) and V/W0 (bottom row) of plane fountains at the

quasi-steady state for different s values with Fr = 10 and Re = 100 at X = 0 in the Y −Z plane, where

U/W0 and V/W0 are in percentage.

Figure 10 presents the time series of Umax/W0 and Vmax/W0 at X = 0 in the Y − Z

plane with s varying in the range 0.1 ≤ s ≤ 0.5, all at Fr = 10 and Re = 100, which

provides a better exhibition of the effect of s on the asymmetric behaviour of plane

fountains in both the X and Y directions in the Y −Z plane. For all s values considered,

it is found that the fountains maintain symmetry in both directions at their respective

early developing stages and become asymmetric and unsteady after that, which is in

agreement with the above observation. Another noticeable observation is that the times

for the onset of asymmetry in both directions do not change significantly when s varies,

although it is evident that the onset of asymmetry in the Y direction occurs at a later

time than that in the X direction for each corresponding case, as will be further analyzed

quantitatively in the next section. A further observation is that the extent of asymmetry

and unsteadiness in either direction, from a time-averaged perspective, is essentially the

same for all s considered.

3.2. Quantitative analysis of the asymmetric transition time

3.2.1. In the X direction

To conduct a quantitative analysis of the time for the onset of the asymmetric be-

haviour of a plane fountain (i.e., the asymmetric transition time) in the X direction,

which is denoted as τasy,x, an appropriate threshold in terms of Umax/W0 must be deter-

mined. To this end, τasy,x determined by the thresholds of Umax/W0 =2%, 3% and 4%,

respectively, are presented in Fig. 11 for varying s and Re. From this figure, it is seen that,

for all three thresholds, τasy,x decreases when s increases, which is in agreement with the
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Figure 10: Time series of (a) Umax/W0 and (b) Vmax/W0 for plane fountains at X = 0 in the Y − Z

plane with s varying in the range 0.1 ≤ s ≤ 0.5 but all at Fr = 10 and Re = 100.

qualitative observations as described above, although τasy,x changes in a relatively narrow

range (from about 100 to 135) when s varies in the range 0.1 ≤ s ≤ 0.5. Similarly, it

is observed that τasy,x decreases when Re increases, which is again in agreement with

the above qualitative observations, but with a much wider range of changes (from about

530 to 100) when Re varies between 25 and 300. The figure also demonstrates that all

three thresholds produce consistent results with similar trends and their differences are

relatively small, in particular those between the thresholds with Umax/W0 = 3% and 4%.

Hence the threshold of Umax/W0 = 3% is considered to be the appropriate threshold to

determine τasy,x and is thus used in this study.

It is assumed that the effects of Re and s on τasy,x can be quantified by the following

relation,

τasy,x = Casy,xRe−as−b, (12)
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Figure 11: τasy,x, determined by the thresholds of Umax/W0 =2%, 3% and 4%, respectively, plotted

against (a) s when Fr = 10 and Re = 100 and (b) Re when Fr = 10 and s = 0.1.

where Casy,x is the constant of proportionality and the indices a and b are constants which

can be determined by a multivariable regression technique applied to the DNS results.

Over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the DNS results for the Fr = 10 plane

fountains, as shown in Fig. 12(a), give the following quantified relations for τasy,x when

the threshold of Umax/W0 = 3% is used,

τasy,x = 4064.1Re−0.731s−0.189 − 42.1. (13)

The regression coefficient of this correlation is 0.9362, indicating that this is a reasonably

good relation. However, it is clearly seen from Fig. 12(a) that the DNS results at Re =

25 are significantly removed from the rest of the data, in terms of the relation (12).

Such significant deviations at Re = 25 can also be seen in Fig. 11(b) where τasy,x drops

dramatically when Re increases from 25 to 50. All these imply that the behavior of the
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fountains at Re = 25, in terms of τasy,x, is not in the same regime as the other fountains

considered. This needs further study but is not considered here. It is also found that the

datum for the case of s = 0.5 and Re = 50 is noticeably away from the rest of the data

in terms of the relation (12) and thus should also be excluded. With the exclusion of this

datum and all the data for Re = 25, the remaining DNS data presented in Fig. 12(a) are

found to be in very good agreement with the relation (12), as shown in Fig. 12(b), which

leads to the following quantified correlation,

τasy,x = 632.5Re−0.433s−0.252 − 3.8. (14)

The regression coefficient of this correlation is 0.9711, confirming that this is a very good

fit.

The noticeable deviation of the Re = 50 and s = 0.5 data from the quantified corre-

lation is most likely due to the extremely large temperature gradient of the ambient fluid

used in this DNS run, at S = 212.4 K/m as listed in Table 1, which is the largest among

all DNS runs considered in this study. One consequency of the use of such an extremely

large temperature gradient is that the Oberbeck-Boussinesq approximation assumed in

the DNS run may not be appropriate. Furthermore, the use of such an extremely large

temperature gradient for the Re = 50 and s = 0.5 case is found to lead to large deviations

in other situations as well, as will be detailed subsequently in this paper.

As the index a for Re is signficantly larger than the index b for s, the effect of Re on

τasy,x is stronger than that of s, which confirms the qualitative observations as described

above.

3.2.2. In the Y direction

Similarly, the asymmetric transition time in the Y direction, denoted as τasy,y, also

needs to be determined by using an appropriate threshold in terms of Vmax/W0. Fig-

ure 13 presents τasy,y, determined by different Vmax/W0 thresholds for varying Re and

s. However, unlike the τasy,x case, it is seen that the thresholds with Vmax/W0 ≥ 1%

lead to inconsistent and significantly different values of τasy,y for varying Re and s. But

thresholds with Vmax/W0 of no more than 0.5% are found to produce consistent results

with similar trends and slight differences. In particular, the numerical results presented in

this figure demonstrate that the thresholds of Vmax/W0 = 0.1% and 0.2% produce almost
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Figure 12: τasy,x, determined with the Umax/W0 =3% threshold, plotted against (a) Re−0.731s−0.189 over

the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 and (b) Re−0.433s−0.252 over the ranges 50 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5. The solid lines are the linear fits of the data, with the s = 0.5 and Re = 50 datum

excluded in (b).

identical values of τasy,y. Hence, the threshold of Vmax/W0 = 0.2% is considered to be the

appropriate threshold to determine τasy,y and is thus used in this study.

Similar to τasy,x, the effects of Re and s on τasy,y is assumed to be quantified by the

following relation,

τasy,y = Casy,yRe−cs−d, (15)

where again the indices c and d and the constant of proportionality Casy,y are constants

which are determined by applying the multivariable regression technique to the DNS

results. With the DNS results for τasy,y, over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5,

as shown in Fig. 14(a), the following quantified relation is obtained for τasy,y with the
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Figure 13: (a) τasy,y, determined by the thresholds of Vmax/W0 = 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, and

4%, respectively, plotted against s when Fr = 10 and Re = 100, and (b) τasy,y, determined by the

thresholds of Vmax/W0 = 0.1%, 0.2%, and 0.5%, respectively, plotted against Re when Fr = 10 and

s = 0.1.

threshold of Vmax/W0 = 0.2%,

τasy,y = 34038.0Re−0.992s−0.027 − 154.1. (16)

From Fig. 14(a), it is apparent that the DNS results are not in good agreement with the

relation (15), which is also confirmed by the low regression coefficient, at R = 0.7964, for

the above quantified correlation. Similar to that for τasy,x, the behavior of the fountains

at Re = 25, in terms of τasy,y, is also in a different regime from that of the other fountains

considered, and thus should be excluded from the regression. Furthermore, the DNS

datum for the case of Re = 50 and s = 0.5 should also be excluded from the regression for

the same reason as that for τasy,x, as discussed above. With the exclusion of this datum

and all the data at Re = 25, the remaining DNS data presented in Fig. 14(a) are found
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in very good agreement with the relation (15), as shown in Fig. 14(b), which leads to the

following quantified correlation,

τasy,y = 1533.2Re−0.542s−0.129 − 4.2. (17)

The regression coefficient of this correlation is 0.9904, confirming that this is a very good

fit.

As the index c for Re is more than three times larger than the index d for s, the

effect of Re on τasy,y is much stronger than that of s. A comparison of the values of a,

b, c and d in the quantified relations (14) and (17) further shows that the effect of Re on

τasy,y is also stronger than on τasy,x, whereas on the contrary the effect of s on τasy,y is

much weaker than on τasy,x. All these are consistent with the qualitative observations as

described above.

4. Maximum fountain height

4.1. Time series of the maximum fountain height

A typical time series of the dimensionless maximum fountain height, zm (zm = Zm/X0,

where Zm is the maximum fountain height), obtained from DNS, is presented as an

example in Fig. 15 for the case of Fr = 10, Re = 300 and s = 0.2. It is seen that

initially the fountain rises continuously after initiation until at τm,i when it attains an

initial maximum height zm,i. After that, zm falls slightly before it rises again, followed

by a short period of transition before it becomes fully developed subsequently, with zm

fluctuating around an almost constant value, zm,a, which is denoted as the time-averaged

maximum fountain height. τm,i (the time for the fountain to attain the initial maximum

height zm,i), zm,i, zm,a, σ which is the standard deviation of zm around zm,a at the fully

developed stage (the quasi-steady state), and the time period used for determining zm,a

are illustrated in Fig. 15.

The DNS results for the time series of zm for fountains with s and Re varying over

the ranges 0.1 ≤ s ≤ 0.5 and 25 ≤ Re ≤ 300, all at Fr = 10, are presented in Fig. 16. It

is observed that in general zm decreases when s increases due to the increasing negative

buoyancy, but increases when Re increases, largely due to the increased mixing and en-

trainment effects. It is also observed that τm,i reduces when s increases, again due to the
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Figure 14: τasy,y, determined with the Vmax/W0 = 0.2% threshold, plotted against (a) Re−0.992s−0.027

over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 and (b) Re−0.532s−0.129 over the ranges 50 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5. The solid lines are the linear fits of the data, with the s = 0.5 and Re = 50 datum

excluded in (b).

increasing negative buoyancy which results in reduced zm. τm,i is also observed to reduce

when Re increases.

4.2. Initial maximum fountain height

4.2.1. Effect of Re

The effect of Re on zm,i is demonstrated by the DNS results presented in Fig. 17

for fountains over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. It is seen that when

Re ≤ 100, zm,i increases when Re increases. However, the dependence of zm,i on Re when

Re > 100 is not monotonic and is strongly s dependent. For s = 0.1, zm,i continues to

increase when Re increases, but for s = 0.2, it reduces at Re = 200 but increases again

25



0 200 400 600 800
0

5

10

15

20

25

30

Time period for time averaging

zm,i

τ

zm

m,i

zm,a
z   

zm,a
m,a− σ

+ σ

τ

Figure 15: Illustration of zm,i, τm,i, zm,a and σ based on the time series of the dimensionless maximum

fountain height, zm, obtained from DNS for the case of Fr = 10, Re = 300 and s = 0.2. σ is the standard

deviatons of zm around zm,a at the fully developed stage (i.e., quasi-steady state).

when Re = 300, and for s = 0.3 it continues to reduce when Re increases, whereas for

s = 0.4 and 0.5, zm,i is almost constant for Re ≥ 100. This implies that the fountain

behavior, in terms of zm,i, may be in different regimes when Re ≤ 100 and when Re ≥ 100.

It is also observed that the dependence of zm,i on Re is in general not linear.

It is assumed that the dependence of zm,i on Re can be represented by the following

relation,

zm,i = Cm,i,ReRea, (18)

where Cm,i,Re is a constant of proportionality and the index a is also a constant. The

regression results with this relation using the DNS data presented in Fig. 17(a), as demon-

strated in Figs. 17(b) and 17(c) for 25 ≤ Re ≤ 300 and 25 ≤ Re ≤ 100, respectively, are

listed in Table 2. It is found that over the range of 25 ≤ Re ≤ 300, only the data with

s = 0.1 agrees well with the relation (18), and at other s values, no very satisfactory

agreement can be obtained. However, over the range of 25 ≤ Re ≤ 100, the dependence

of zm,i on Re is well predicted by the relation (18).

4.2.2. Effect of s

The effect of s on zm,i is shown in Fig. 18 for the fountains over the ranges 25 ≤ Re ≤

300 and 0.1 ≤ s ≤ 0.5. In contrast to the effect of Re, it is seen from Fig. 18(a) that zm,i

decreases monotonically with increasing s, which is the result of the increasing negative

buoyancy that the fountains have to overcome when penetrating the stratified ambient
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Figure 16: Time series of the maximum fountains height (zm) within the whole computational domain for

different value of s in the range 0.1 ≤ s ≤ 0.5 at (a) Re = 25, (b) Re = 50, (c) Re = 100, (d) Re = 200,

and (e) Re = 300, respectively, all at Fr = 10.

fluid. Similarly, the dependence of zm,i on s is in general not linear, and the DNS results

presented in Fig. 18(b) clearly demonstrate that this dependence can be expressed by the

following relation,

zm,i = Cm,i,ss
b, (19)

where Cm,i,s is a constant of proportionality and the index b is also a constant. The

regression results are listed in Table 3. It is found that over the ranges 25 ≤ Re ≤ 300
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Figure 17: (a) zm,i plotted against Re and (b) ln(zm,i) plotted against ln(Re) for 25 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5, and (c) ln(zm,i) plotted against ln(Re) for 25 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.5, all at

Fr = 10. The solid lines are linear fit lines.

and 0.1 ≤ s ≤ 0.5, all data agree very well with the relation (19), indicating that the

dependence of zm,i on s is well represented by this relation.
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Table 2: Regression results for the dependence of zm,i on Re for 25 ≤ Re ≤ 300 and 25 ≤ Re ≤ 100,

respectively.

For 25 ≤ Re ≤ 300 For 25 ≤ Re ≤ 100

s Cm,i,Re a R Cm,i,Re a R

0.1 17.409 0.083 0.9744 15.904 0.108 0.9709

0.2 15.191 0.067 0.8738 12.566 0.118 0.9882

0.3 13.208 0.068 0.8306 10.509 0.129 0.9814

0.4 11.082 0.086 0.8528 8.034 0.172 0.9741

0.5 10.753 0.074 0.7803 7.492 0.171 0.9597

Table 3: Regression results for the dependence of zm,i on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

Re Cm,i,s b R

25 10.124 -0.350 0.9955

50 12.344 -0.303 0.9998

100 13.328 -0.290 0.9990

200 12.742 -0.320 0.9886

300 12.419 -0.353 0.9963
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4.2.3. Combined effect of Re and s

As the dependences of zm,i on Re and s are represented by the relations (18) and (19),

respectively, the combined effect of Re and s on zm,i can be quantified by the following

relation,

zm,i = Cm,iReasb, (20)

where Cm,i is a constant of proportionality and the indices a and b are again constants.

The values of these constants are determined by the multivariable regression method using

the DNS results over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, which gives the

following quantified correlation,

zm,i = 8.527Re0.076s−0.323 + 0.200. (21)
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The regression coefficient of this correlation is R = 0.9835, indicating that the DNS results

over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are in very good agreement with

the relation (20), as demonstrated in Fig. 19(a) where the DNS results for zm,i over the

ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are plotted against Re0.076s−0.323. In view

of the not very satisfactory agreement between the DNS results over the whole range of

25 ≤ Re ≤ 300 with the relation (18), as described above, this is a surprising outcome.

Nevertheless, this is the result of the much weaker dependence of zm,i on Re than on s, as

the magnitude of b for s is more than three times larger than that of a for Re, as shown by

the quantified correlation (21), and hence the contribution from Re to zm,i is significantly

weakened in the combined effect of Re and s and the contribution from s is dominant.

There is no doubt that the separation of the range of Re, into the ranges 25 ≤ Re ≤ 100

and 200 ≤ Re ≤ 300 respectively, will further improve the agreement between the DNS

results and the relation (20). Nevertheless, the improvements are found to be marginal,

as shown in Fig. 19(b) for the range of 25 ≤ Re ≤ 100 and Fig. 19(c) for the range of

200 ≤ Re ≤ 300. The regression analysis gives

zm,i = 6.673Re0.140s−0.315 + 0.490, (22)

for the range of 25 ≤ Re ≤ 100, and

zm,i = 9.828Re0.044s−0.336 + 0.021, (23)

for the range of 200 ≤ Re ≤ 300. The regression coefficients for these two quantified

correlations are 0.9922 and 0.9925, respectively, which confirm that the improvements

are indeed very marginal. These results further show that the effect of Re on zm,i is

significantly weakened when Re is large, with the value of a for the range of 200 ≤ Re ≤

300 less than one third of that for the range 25 ≤ Re ≤ 100. It is expected that a further

increase of Re, beyond Re = 300, will further weaken the effect of Re, and ultimately

zm,i will be independent of Re when Re is sufficiently high. In fact, even for the range of

200 ≤ Re ≤ 300, as shown in Fig. 19(d), the complete elimination of Re from the relation

(20) is found to only very marginally weaken the agreement between the DNS results and

the reduced relation (20), i.e.,

zm,i = 12.583s−0.336 + 0.013, (24)

31



with the regression coefficient of 0.9906, which is only very slightly lower than 0.9925 for

the relation (23).

A further observation from Fig. 19 is that the value of b in the relation (20) barely

changed when Re is in different regimes or no Re is included at all. This further demon-

strates that in the combined effect of Re and s on zm,i, the contribution from s is dominant.
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Figure 19: (a) zm,i plotted against Re0.076s−0.323 over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, (b)

zm,i plotted against Re0.140s−0.315 over the ranges of 25 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.5, (c) zm,i plotted

against Re0.044s−0.336 over the ranges of 200 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, and (d) zm,i plotted against

s−0.336 over the ranges of 200 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, respectively, all at Fr = 10. The solid lines
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4.3. Time to reach the initial maximum fountain height

The effects of s and Re on the time to reach the initial maximum fountain height, τm,i,

which is made dimensionless by X0/W0, are shown in Fig. 20 over the ranges 0.1 ≤ s ≤ 0.5
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respectively, for the Fr = 10 fountains over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid

lines are linear fit lines.

and 25 ≤ Re ≤ 300. From Figs. 20(a) and 20(b) it is seen that in general τm,i decreases

when s or Re increases, which is similar to that for the asymmetric transition time as

discussed in § 3.2. The dependence of τm,i on s or Re is again not linear, and may be

assumed to have the following relations,

τm,i = Cτ,ss
b, (25)

and

τm,i = Cτ,ReRea, (26)

where Cτ,s and Cτ,Re are constants of proportionality, and the indices a and b are also

constants. The regression analysis of the DNS results presented in Figs. 20(a) and 20(b)
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Table 4: Regression results for the dependence of τm,i on s and Re respectively for 25 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5.

For τm,i = Cτ,ss
b For τm,i = Cτ,ReRea

Re Cτ,s b R s Cτ,Re a R

25 128.1 -0.471 0.9971 0.1 1715.4 -0.486 0.9950

50 105.6 -0.354 0.9826 0.2 906.6 -0.389 0.9874

100 104.0 -0.236 0.9938 0.3 691.6 -0.357 0.9853

200 80.3 -0.204 0.9855 0.4 556.8 -0.332 0.9943

300 66.5 -0.240 0.9937 0.5 522.0 -0.329 0.9954

with these two relations gives the values of Cτ,s, Cτ,Re, a and b as listed in Table 4. The

DNS results are in very good agreement with the relations (25) and (26), as shown in

Figs. 20(c) and 20(d). The results presented in Table 4 show that the magnitude of the

index a, which represents the extent of the dependence of τm,i on s, generally decreases

when Re increases, indicating that the dependence of τm,i on s becomes weakened when

Re increases. Similarly, the magnitude of the index b, which represents the extent of

the dependence of τm,i on Re, generally decreases when s increases, indicating that the

dependence of τm,i on Re becomes weakened when s increases.

As the dependence of τm,i on Re and s is represented by the relations (25) and (26),

respectively, the combined effect of Re and s on τm,i can be quantified by the following

relation,

τm,i = Cτ,iReasb, (27)

where Cτ,i is a constant of proportionality and the indices a and b are again constants.

With all data over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the regression analysis

gives the values of -0.379 and -0.3 to a and b, respectively. However, as demonstrated in

Fig. 21, the DNS results for Re = 25 and s = 0.1 and s = 0.2 are considerably removed

from the other data in terms of the relation (27), most likely for a similar reason to that

of the asymmetric transition time as discussed above (i.e., the behavior at Re = 25 is in

a different regime) and should be excluded in the regression. With the exclusion of the

data at Re = 25 and s = 0.1 and s = 0.2, the regression analysis with the remaining DNS
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results presented in Fig. 21 gives the following quantified correlation,

τm,i = 493.2Re−0.379s−0.3 + 7.101. (28)

The regression coefficient of this correlation is R = 0.9836, confirming that this is a very

good agreement.
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Figure 21: τm,i plotted against Re−0.379s−0.3 over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The

solid line is the linear fit of the data with the data at Re = 25 and s = 0.1 and s = 0.2 excluded.

4.4. Time-averaged maximum fountain height

4.4.1. Effect of Re

The effect of Re on zm,a is demonstrated by the DNS results presented in Fig. 22 for

fountains over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all at Fr = 10. From

Fig. 22(a), it is observed that in general zm,a increases when Re increases for each s value,

which is slightly different from that for zm,i in which the fountain behavior, in terms of

zm,i, may be in different regimes when Re ≤ 100 and when Re ≥ 100, as discussed above.

The results also show that the dependence of zm,a on Re is in general not linear, and thus

the following relation may be assumed,

zm,a = Cm,a,ReRea, (29)

where Cm,a,Re is a constant of proportionality and the index a is again a constant. The

regression results with this relation using the DNS data presented in Fig. 22(a), as demon-

strated in Fig. 22(b), are listed in Table 5. It is found that over the ranges 25 ≤ Re ≤ 300,
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Figure 22: (a) zm,a plotted against Re, (b) ln(zm,a) plotted against ln(Re), and (c) σm,a plotted against

Re for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all at Fr = 10. The solid lines are linear fit lines.

the data for each s value, except for s = 0.3, are in very good agreement with the relation

(29). For s = 0.3, it is noted that the data at Re = 50 is noticeably removed from the

quantified linear fit line. This is expected to have a similar cause to that discussed above
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Table 5: Regression results for the dependence of zm,a on Re for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

s Cm,a,Re a R

0.1 14.579 0.119 0.9745

0.2 14.907 0.074 0.9907

0.3 13.480 0.065 0.9038

0.4 11.433 0.080 0.9953

0.5 9.996 0.094 0.9758

for τasy,x in the case of s = 0.5 and Re = 50, but a further investigation on this, which is

beyond the scope of the current study, is needed. The DNS results for the time-averaged

standard deviation of zm around zm,a at the fully developed stage, σm,a, as illustrated in

Fig. 15, are presented in Fig. 22(c). It is seen that over the ranges of 25 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5, σm,a varies between 0.5 and 2.0, and has no noticeable dependence on

either Re or s.

4.4.2. Effect of s

The effect of s on zm,a is shown in Fig. 23 for the fountains over the ranges 25 ≤ Re ≤

300 and 0.1 ≤ s ≤ 0.5, all at Fr = 10. The DNS results presented in Fig. 23(a) show that

zm,a decreases monotically with increasing s, which is similar to that for zm,i, as described

above. This is again due to the increasing negative buoyancy that the fountains have

to overcome when penetrating the stratified ambient fluid when s increases. Similarly,

the dependence of zm,a on s is in general not linear, and the DNS results presented in

Fig. 23(b) clearly demonstrate that this dependence can be expressed by the following

relation,

zm,a = Cm,a,ss
b, (30)

where Cm,a,s is a constant of proportionality and the index b is also a constant. The

regression results are listed in Table 6. It is found that over the ranges 25 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5, all data agree very well with the relation (30), indicating that the

dependence of zm,a on s is well represented by this relation. The DNS results for σm,a are
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Figure 23: (a) zm,a plotted against s, (b) ln(zm,a) plotted against ln(s), and (c) σm,a plotted against s
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presented in Fig. 23(c), which again demonstrate that σm,a has no noticeable dependence

on either Re or s.
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Table 6: Regression results for the dependence of zm,a on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

Re Cm,a,s b R

25 11.948 0.255 0.9638

50 11.581 0.323 0.9954

100 11.971 0.337 0.9959

200 13.110 0.312 0.9972

300 13.769 0.314 0.9992

4.4.3. Combined effect of Re and s

Similar to zm,i, the combined effect of Re and s on zm,a can be quantified by the

following relation,

zm,a = Cm,aReasb, (31)

where Cm,a is a constant of proportionality and the indices a and b are again constants.

With all data over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the regression analysis

gives the following quantified correlation,

zm,a = 8.434Re0.086s−0.310 − 0.042. (32)

The regression coefficient of this correlation is R = 0.9902, indicating that the DNS results

over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are in very good agreement with the

relation (31), as illustrated in Fig. 24 where the DNS results for zm,a are plotted against

Re0.086s−0.310. It is found that the values of the indices a and b, 0.086 and -0.310, are very

close to those obtained for zm,i (0.076 and -0.323, respectively), which also demonstrates

that the dependence of zm,a on Re is much weaker than that on s, again similar to zm,i.

4.5. Variation of maximum fountain height at X = 0 on the Y − Z plane

Before the onset of the asymmetric behavior, the maximum fountain height at X = 0

on the Y −Z plane should be constant along the Y direction. However, after the onset of

the asymmetric behavior, it is expected that the maximum fountain height on the Y −Z

plane will vary along the Y direction, as depicted in Fig. 25, where the Y -direction profile
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of the maximum fountain height (zx=0) at X = 0 on the Y −Z plane, at time τ = 1072.4,

is presented for the case of Re = 100, s = 0.2, and Fr = 10. The parameter to quantify

the variation of zx=0 in the Y direction is the standard deviation of zx=0 around its average

in the Y direction, zx=0,a, which is denoted as σx=0 and is made dimensionless by X0.

The time series of σx=0 for the Fr = 10 plane fountains over the ranges 25 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5, obtained by DNS, are presented in Fig. 26. The results show that

for 25 ≤ Re ≤ 100, in general the value of σx=0 increases when Re increases, and at

Re = 25 the value is small, normally within 0.3, but dramatically increases to up to 4

when Re increases from 25 to 50. However, a further increase of Re, to beyond Re = 100,

does not lead to a further increase in σx=0, as the results show that at Re = 200 and

300, the values of σx=0 are very close to those at Re = 100 for each s value. Another

noticeable observation is that in general the values of σx=0 decrease when s increases,

which is apparently due to the positive role of the stratification of the ambient fluid in

stabilizing the flow and reducing the asymmetric and unsteady behavior of the fountains,

as discussed above.

The dependence of σx=0 on s can be further demonstrated by the DNS results presented

in Fig. 27 where σx=0,a, which is the time average of σx=0 over the period from the instant

when σx=0 becomes significant to the end of the DNS run (which is essentially the fully

developed stage), is plotted against s over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.
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It is seen that for each Re value, the data with different s values fall approximately on

the same straight line, with a negative gradient, confirming that σx=0 decreases when s

increases. The relation between σx=0,a and s for each Re value can then be quantified by

the following linear relation,

σx=0,a = c+ ds, (33)

where c and d are constants. The values of c and d are obtained by the regression analysis

of the DNS results presented in Fig. 27 and the results are listed in Table 7. From these

results, it is observed that in general the DNS results are in good agreement with the

linear relation (33) for each Re value. It is further observed that the magnitudes of c and

d for Re = 25 are significantly smaller than those for the other Re values, which further

indicates that the behavior of the fountains at Re = 25 is in a different regime from the

fountains at the other Re values considered. Again the datum at Re = 50 and s = 0.5 is

considerably away from the other data in the trend, apparently due to the similar reason

as discussed above for τasy,x.
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Figure 25: The DNS results for the Y -direction profile of the maximum fountain height zx=0 at X = 0 on

the Y − Z plane at time τ = 1072.4 for the case of Re = 100, s = 0.2, and Fr = 10, and the illustration

of zx=0,a, which is the average of zx=0 along the Y direction, and the standard deviation σx=0 of zx=0

around zx=0,a along the Y direction, where y = Y/X0 is the dimensionless form of Y .

5. Conclusions

The three-dimensional DNS results for transitional plane fountains in linearly-stratified

fluids with 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5, all at Fr = 10, have been used to analyze,
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Figure 26: Time-series of σx=0 at X = 0 on the Y − Z plane for the Fr = 10 fountains over the ranges

of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5: (a) Re = 25, (b) Re = 50, (c) Re = 100, (d) Re = 200, and (e)

Re = 300.

both qualitatively and quantitatively, the transition of the fountains to asymmetry, their

asymmetric behavior, and their maximum penetration heights.

It is found that over the ranges of Re and s considered, fountains are symmetric
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Table 7: Regression results for the dependence of σx=0,a on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

Re c d R

25 0.255 -0.490 0.891

50 2.637 -4.702 0.982

100 3.035 -3.379 0.985

200 3.258 -3.678 0.993

300 3.676 -4.217 0.964

in the early developing stage, but become asymmetric and unsteady after that. The

fountains flap around X = 0 in the X-Z plane, with the fountain heights and the extent

of entrainment increasing with Re. The increase of Re also leads to a larger fluctuation of

the fountain height in the Y direction of the Y −Z plane and a larger fountain width and

increased fluctuation in the X −Y plane. However, the stratification of the ambient fluid

(i.e., s) is shown to play a positive role in stabilizing the flow and reducing its asymmetric

and unsteady behavior.

The results further demonstrate that the asymmetric behaviour of plane fountains in

both the X and Y directions of the Y − Z plane can be well represented by Umax/W0

and Vmax/W0 at X = 0 of the plane, where Umax and Vmax are the maximum values of U
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and V at X = 0 in the Y − Z plane, respectively. Any non-zero Umax or Vmax indicates

the asymmetric behaviour in the X or Y direction on the plane. It is found that the

magnitude of Umax/W0 increases when Re increases, although the rate of the increase

decreases with Re. Similar behaviour is observed in the Y direction of the Y − Z plane,

but the onset of the asymmetric behaviour in this direction in general occurs at a much

later time than that in the X direction. It is also observed that the extent of flapping and

entrainment decreases when s increases, although the effect of s on the asymmetry and

unsteadiness of the fountains is not as strong as that of Re. Empirical correlations which

quantify the effects of Re and s are developed for the times for the onset of the asymmetric

behaviour of plane fountains both in the X and Y directions, using the numerical results.

The numerical results further show that s has a stronger effect on zm,i and zm,a than

Re does, but the dependence of τm,i on Re weakens when s increases, where zm,i and zm,a

are the initial and time-averaged maximum fountain heights, and τm,i is the time to attain

the initial maximum fountain height. Empirical correlations are developed to quantify

the individual and combined effects of Re and s on these three parameters.

The numerical results also demonstrate that the behavior of the plane fountains at

Re = 25 is not in the same regime as the other fountains considered, which needs further

investigation but is beyond the scope of the current study.
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