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Practical application 

A feasibility study for the production of bio-polymers (mainly polyhydroxybutyrate-PHB) from CH4 

in bioreactors was conducted. The project targeted major CH4-emitting industries such as landfills, 

coal mine and anaerobic digestion units where CH4 is collected-flared/simply oxidized. The PHB-

accumulating, bacterial methanotroph consortia were enriched independently from landfill top-cover 

and compost soils and tested in continuously operating bioreactors. The project is expected to provide 

a common solution for three different environmental issues upon successful implementation/ 

demonstration, i.e. (i) a potential carbon sequestration method to reduce GHGs emissions; (ii) bio-

polymers production from CH4 for the potential reduction of usage of conventional plastic and fossil 

resources; and (iii) reduced usage of organic carbon sources for bio-polymer production.  

Abstract 

Methane (CH4) is a potent greenhouse gas (GHG) and mitigation is important to reduce the global 

warming impacts. In this study, we aimed to convert CH4 to polyhydroxybutyrate (PHB; a 

biopolymer) by enrichment of methanotrophic consortia in bioreactors. Two different methanotrophic 

consortia were established form landfill top-cover (landfill biomass [LB]) and compost soils 

(compost biomass [CB]), through cultivation under CH4:CO2:air (30:10:60) in batch systems. The 

established cultures were then used as inoculi (0.5 g LB or CB.L-1) in continuous stirred tank reactors 

aerated with CH4:CO2:air at 0.25 L.min-1. Under stable CSTRs operating conditions, the effect of 

spiking with 1:1 copper:iron (final concentrations of 5µM) was tested. Methane oxidation capacity 

(MOC), biomass dry-weight (DWbiomass), PHB and fatty acid methyl esters (FAMEs) contents were 

used as effect parameters. A maximum MOC of 481.9±8.9 and 279.6±11.3 mg CH4.g
-1

 DWbiomass.h
-1

 

was recorded in LB-CSTR and CB-CSTR, respectively, but PHB production was similar for both 

systems i.e., 37.7 mg.g-1 DWbiomass. Treatment with copper and iron improved PHB production (22.5 

% of DWbiomass) in LB-CSTR, but a reduction of 13.6 % was observed in CB-CSTR. The results 

indicated that CH4 to PHB conversion is feasible using LB-CSTRs and addition of copper and iron is 

beneficial.  
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1 Introduction 

Polyhydroxybutyrate (PHB) is a biopolymer and was the first characterized monomer of the 

polyhydroxyalkaonate (PHA) members [1-4].  It is a short chain length biopolymer containing four 

carbon atoms and a methyl-R functional group [3, 5, 6], with physical properties very similar to 

conventional plastics but completely biodegradable and biocompatible [2, 4, 7]. Therefore, it is 

widely used in industries for the production of bioplastics, biofuels and fine chemicals and in medical 

fields as implant materials and for drug deliveries, such as antibiotics [2, 3, 5, 6, 8-11].  

PHB/PHA monomers are accumulated in number of bacteria, microalgae, cyanobacteria and yeasts 

derived from variety of carbon sources such as simple sugars, fatty acids and plant oils [1, 12-14]. 

However, the availability of carbon sources as feed-stock and provisions for the PHB/PHA producing 

microbes are limiting and cost-prohibitive for industrial mass production, i.e. 30 to 50% of the 

production cost is attributed to feed-stocks [15]. Therefore, recent research studies explored a number 

of unexploited carbon-based wasted resources, such as organic-rich domestic/industrial wastewaters, 

hydrolyzed solid wastes and industrial gases including methane (CH4) and carbon-di-oxide (CO2), as 

potential feed-stocks [16-25].  

CH4 is a prevailing greenhouse gas with global warming potential of 25 times higher than that of 

CO2; contributing to 18 % (i.e. 0.509 W.m-2) of the total atmospheric radiative forcing; and has an 

extended life span of 7 to 12 years in the atmosphere [7, 26-31]. According to a report by the Global 

Methane Initiative [32], anthropogenic CH4 emissions were projected to reach 7,904 MMT-CO2eq by 

2020, which is 15 % higher than recorded 2010 emissions (6,875 MMT-CO2eq). Therefore, it is vital 

to mitigate CH4 emissions to combat global climate change. Mitigation could potentially be coupled 

with PHB/PHA production using methanotrophic bacteria [7, 22, 24], which would provide an 

economic incentive under the right environmental legislations.  

Methanotrophs are gram-negative proteobacteria that utilize CH4 as a sole carbon source for their 

growth/metabolism and convert it to the less potent GHG CO2 [7, 33-35]. Among the three different 

methanotroph types classified, type II species can assimilate atmospheric nitrogen and are most 

widely reported to accumulate PHB/PHA (under nutrient stress) with lower CO2 emissions (~30-50 

%) compared to type I or type X strains [7, 10, 18, 20, 25, 36-39].  In addition, fatty acids with a 
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chain length of 18 carbons (C18) were reported as signature fatty acids for type II methanotrophs, 

while C16 dominance is characteristic for type I [39-42]. Type II methanotrophs generally rely on 

particulate – (pMMO) and soluble methane-monoxygenase (sMMO) for converting CH4 to methanol 

in the first step of oxidation, which is a critical, highly energy-intensive step in the process  [7, 35]. 

These two enzymes contain copper and iron centres, respectively, and it should therefore be possible 

to up-regulated their expression/activity through adequate provision of these two trace elements [43-

46].  

In addition, there are number of other factors, i.e. macro nutrients, other trace metals and 

environmental conditions which regulate CH4 to PHB/PHA conversion (as detailed in [7]). Very few 

type II methanotrphos have been tested for PHB/PHA accumulation efficiencies as pure cultures [18] 

and results are variable for different species. Moreover, in an industrial setting, mono-culture systems 

are subjected to failure/contamination negatively affecting predictability of performance and yields 

[8, 24, 39, 47]. A few recent studies applied lab-scale bioreactors/biofilters (i.e. continuously stirred 

tank reactors, bubble columns, pressure bioreactors and fluidized packed beds), enriched with mixed 

methanotrophic consortia and tested for CH4 to PHB/PHA conversion efficiencies [20, 22, 24, 25, 39, 

48-52]. PHB/PHA accumulation potential by mixed methanotrophic consortium achieved in 

bioreactors under different nutrient-deplete/-replete conditions is detailed in Table 1.  These studies, 

suggest that mixed-methanotrohic consortia are beneficial, (i) as the co-inhabiting bacteria improves 

physiological growth conditions of methanotrophic bacteria through removal of toxic and 

overproduced metabolites (e.g. methanol); (ii) essential vitamins and growth supplements are 

supplied by the excretion of accompanying bacteria; (iii) consortia remains stable for long period 

even in non-sterile  conditions and (iv) higher PHB/PHA accumulations were achieved [8, 39, 47, 

51]. However, there are number of unknowns and conflicting information exist in this budding 

research as detailed in our recent publication [7].  

The present study aimed to enrich and test two different cultured methanotrophic consortia from two 

different soil sources (compost and landfill cover soil) to evaluate CH4 to PHB/PHA conversion 

efficiencies in bioreactors. Both, compost and landfill top cover soils are reported to harbour active 

methanotrophic communities [53-58] and were therefore used in this study. First, cultures were 
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enriched for both type I and II methanotrophs under nutrient-sufficient conditions with 20-25% CH4 

atmosphere. To enrich the mixed consortia for type II methanotrophs and to reduce the cost of 

cultivation and CH4 to PHB/PHA production, nitrate was sequentially limited once every 5 days over 

20 days, as type II methanotrophs have been reported to fix atmospheric nitrogen, and high CH4 

concentrations (30%) were used. The enriched cultures were used in bioreactors for continuous 

PHB/PHA production under nutrient limited conditions and continuous flow of CH4 supplied at 0.25 

L.min-1. Cultures were then subjected to conditions that activate pMMO and/or sMMO activity 

(copper and iron (at 1:1 ratio; 5 µM final concentration) to improve CH4 removal rates and 

PHB/PHA accumulation. In order to investigate the potential for an economic incentive for biological 

CH4 remediation, the effect on PHB/PHA accumulation under stable operating conditions are 

discussed.  

2 Materials and Methods 

2.1 Preparation of methanotroph-enriched inoculi  

Top cover soil of a 7 year-old landfill facility located in South Townsville, Queensland, Australia (lat. 

19°15'0"S / long. 146°48'0"E), were auger drilled and samples were collected in an airtight pouch. 

Around 6 week-old compost was collected from a pile at McCahills landscaping supplies, Townsville. 

Slurries of 10 g soil with 200 mL of nitrate minimal salt medium (NMS [36]) were prepared in mini-

bench top reactors (gas-wash bottle from Schott-Duran®, Germany) and purged with 20-25 % CH4 

using calibrated mass flow regulators in BioFlo®310 fermenter (New Brunswick, USA). The reactor 

bottles were incubated under 25oC and continuously stirred at 200 rpm by magnetic stirrer. Head 

space CH4 was sampled after 24 h and concentrations were measured using gas chromatography 

equipped with thermal conductivity and flame ionization detectors (GC-TCD-FID, Varian-CP 3800, 

detailed in sub-section 2.4).  Head space CH4 was replenished every 24 h during the 20 days 

cultivation. CH4 removal efficiencies ([CH4in - CH4out /CH4in]*100) and biomass growth (OD600; 

optical density at 600nm) were used for confirming activity of the mixed methanotroph consortia. 

After 20 days, a 10 mL inoculum was transferred into fresh NMS medium and cultivated under above 

growth conditions for further enrichment and the cycle was repeated for at least 4 sequential transfers 

to obtain healthy inoculi (these cultures are termed mother culture).  Mother cultures were labelled as 
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LB and CB to designate the soil type from which they were established from; LB: landfill top cover 

soil-derived biomass and CB: compost soil-derived biomass, respectively. Enriched methanotrohic 

communities from landfill and compost soil where characterized, by amplifying the V4 region of the 

16S rDNA gene using the 515f and 806r primers (total read length ~ 300 bp) and sequenced using the 

Illumina Miseq platform (Karthikeyan et al. Chemosphere in review). 

2.2 Nutrient stress and methane oxidation 

After the above transfers and methanotroph enrichment cultivation of mother cultures, the LB and 

CB were subjected to nutrient stress. 50 mL of NMS medium was diluted with 50 mL of sterile de-

ionized water every 5th day of the cultivation cycle to induce nutrient depletion until day 20th. For 

these cultures, the head space of the mini-bench-top reactors were purged with 30:10:60 of 

CH4:CO2:air every 24 h. This biomass was then used to seed cultures for continuous PHB/PHA 

production in bioreactors. All experiments were carried out in triplicate and samples were treated 

separately for analysis of dry weight (DWbiomass) and fatty acid methyl ester-FAMEs (detailed in sub-

section 2.4). Negative controls without the inoculum were maintained to calculate the dissolution rate 

of gases in the NMS medium, which was found to be negligible.  

2.3 Continuous PHB/PHA production from CH4 in bioreactors  

Two 15 L continuous stirred tank reactors (CSTR; BioFlo®310, New Brunswick, USA, Fig. 1) were 

used for PHB/PHA production from CH4. 10 L diluted NMS medium (1:5 dilution with sterile de-

ionised water (DNMS)) adjusted to pH 5.5 were inoculated with 0.5g DWbiomass of methanotroph 

consortia cultures of LB and CB. Cultures were continuously aerated with CH4:CO2:air of 30:10:60 at 

0.25 L.min-1 and the outlet of the CSTRs were connected to an on-line quadrupole mass spectrometer 

(Cirrus-2, MKS instruments, Singapore), calibrated before the start of with the experiments using pure 

gases and mixtures.  

Cultures in the CSTRs were grown at a constant temperature of 25 °C and agitation of 200 rpm for 10 

days. CH4 removal was calculated ([CH4in - CH4out /CH4in]*100) in percentile and biomass growth 

(OD600) was measured every hour by the inline monitoring system.  After 5 days, 2 L of cultures were 

harvested for PHB/PHA extraction (detailed in sub-section 2.4) and replenished with fresh DNMS 

followed by spiking with 1:1 copper:iron ratio (5 µM final concentration). The CSTRs were 
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monitored for the next 5 days for CH4 removal and final metal concentrations were measured at the 

end using inductively coupled plasma - optical emission spectroscopy (ICP-AES, Varian Liberty 

Series II; detailed in sub-section 2.4). Culture sub-samples taken on day 1, 5 and 10 from CSTRs were 

stored (-80oC) and analysed for DWbiomass, protein and lipid contents, as well as FAMEs profiles 

(detailed in sub-section 2.4) for sub-samples collected.  

 2.4 Analytical methods   

2.4.1 Physico-chemical characterization of soil and biomass 

Triplicate soil samples were characterized for total and volatile solids, pH (WP-81, German), carbon 

(total organic carbon analyzer, LECO, Germany) and nitrogen (APHA, [59]). The DWbiomass were 

analyzed gravimetrically for both batches - (on days 1, 5, 10 and 15) and CSTR cultures (on days 1, 5, 

and 10). Biomass growth was monitored spectrophotometrically every day by measuring OD600 of the 

cultures (Enspire – 2300, PerkinElmer). Biomass protein was measured every two days using the 

Lowry method (TP0300, Sigma Aldrich). 

2.4.2 Gas chromatographic (GC) analysis of CH4 

CH4 was measured using a GC-TCD-FID fitted with a fused silica column (BR-Q PLOT; 30 m x 0.53 

mm x 20 µm (Bruker Pty., Ltd., Australia) and helium at a flow rate of 1mL.min-1 was used as the 

carrier and make up gas . Column temperature was programmed 50 °C for 1 minute, followed by 

ramping to 250 °C at a rate of 20 °C.min-1 every five minutes. Injector temperature was set to 200 °C 

with a split ratio of 15. The GC was calibrated using standard CH4 gas (10-50%) and a regression 

factor was calculated. The sample gas volume was 1000 µL, which was injected by an auto-sampler 

(Bruker, Australia). 

2.4.3 CH4 Oxidation potential  

LB and CB, CH4 oxidation capacities of both batch - and CSTR cultures were calculated using 

equation1 (eq. 1): 
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Where,     = CH4 oxidation capacity (µg CH4. gsoil
-1.h-1);  

    

  
    = slope of change in CH4 concentration (vol. %) per day 

          = Culture system gas volume (L) 

     
    = Molar Mass of CH4 = 16 g.mol-1 

            = molar gas volume at given temperature (L) 

           = dry weight of soil (g) 

 

2.4.4 PHB/PHA and FAMEs extraction and quantification  

Sub-samples of 100 mL biomasses were aseptically collected and centrifuged (5810 R, Eppendorf 

AG, Germany) at 3220 × g for 20 mins at 24 °C. The supernatants were discarded and the biomass 

pellets were frozen at -80 °C and freeze-dried for PHB/PHA extraction (as detailed in [60]). In brief, 

10 mg of freeze-dried biomass was weighed into clean screw cap extraction vials and extracted with 

2 mL of acidified methanol (3% v/v of sulphuric acid) containing 1 g.L-1 of benzoic acid and 2 mL.L-

1 of chloroform. The vials were agitated gently and extracted at 100 °C for 3.5 h. After cooling at 

room temperature, 1 mL of triple-distilled deionized water was added to each vial.  The vials were 

vortexed for 30-60 s and allowed to stand for phase separation. The organic phase was collected (100 

µL) and filtered (through 0.2 µm, PTFE membrane, Agilent) for gas chromatography-mass 

spectrometry (GC-MS, Agilent 7890). For trans-esterification of fatty acids, biomass was solvent-

extracted as above and transesterified following von Alvensleben [61].  

The GC-MS (Agilent 7890GC – 5975MS, Australia Pty Ltd.) was fitted with a DB-23 capillary 

column (0.15 µm cyanopropyl stationary phase, inner diameter - 60 m × 0.25 mm ID) and equipped 

with a flame ionisation detector (FID). The split ratio was 1/50 and helium was used as the carrier 

gas. Injector, FID inlet and GC column temperatures were programmed following David, Sandra 

[62]. For PHB/PHA analysis (Figure S1), a standard curve was prepared (range 0.1 - 6 mg) using 

pure PHB standards (Sigma-Aldrich, Australia). Fatty acids were quantified by comparison of peak 

areas of authentic standards (Sigma Aldrich, Australia). Benzoic acid and C19:0 was used as the 

internal standards for PHB/PHA and FAME analyses to correct for recovery and results were 

expressed in mg.g-1 DWbiomass. 
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2.4.5 Metal analysis using ICP-AES 

The samples were pre-filtered using 0.2 µM PTFE membrane filter (Agilent) and diluted 10-fold with 

deionized water. The samples were acidified (2% nitric acid final concentration) and used in ICP-

AES. 50 ppb concentration of high purity mixed standard (ICP-MSCS-M, Choice Analytical, 

Australia) were used for point calibration of the instrument. 

2.5 Gas bottles and reagents  

Gasses for calibrations (99.9% pure CH4, 10-50 % CH4 with air, CO2 1-30 %) and compressed air (N2-

78.08 %; O2-20.94 %) were supplied by BOC a member of the Linde group, Townsville and all were 

ISO certified. All chemicals and solvents were obtained from Sigma-Aldrich, Australia. 

3 Results and Discussion 

3.1 Physico-chemical characteristics of soil 

pH of the landfill top-cover and compost soil samples were circum-neutral (7.4-7.8) with a similar 

moisture content of 16±0.9 and 18±0.2 %, respectively. Compost soil had a higher percentage of 

volatile solids and corresponding carbon of 41±2.6 % and 25.8±0.7 % compared to 5.7±0.2 % and 

20±0.6 % of landfill top cover soil, respectively. Total nitrogen was also higher in compost soil than 

in landfill top-cover soil (10.60±0.28 vs 5.97±0.12 mg N.g-1 soil, respectively). High volatile total 

solids, carbon and nitrogen indicates that the compost soil was not completely stabilized [63]. 

3.2 Methane oxidation capacities of soil and methanotrophic-enriched consortia  

CH4 removal efficiencies of both soil slurries reached a maximum after 24 h of incubation fluctuating 

between 40 and 70 % for the 20 day-enrichment period (data not shown). Similar CH4 removal 

efficiencies have been reported for other soil types, where CH4 removal efficiencies improved after 

an initial lag phase of 48 h [64, 65]. At the end of 20 day-enrichment period, the average (avg.) CH4 

removal efficiency for landfill top-cover soil was ≈ 60±1.2 % being slightly higher than for compost 

soil (i.e., ≈ 55±0.8 %). The average MOCs were also similar for the methanotroph-enriched consortia 

(i.e., 194.54±17 and 175.35±17 µg CH4.gsoil type
-1.h-1, respectively) and stabilized over the 20 days. 

Achieved MOCs reported here was higher than published values, which had a minimum of < 20 µg 

CH4.gsandy loam soil
-1.h-1 for sandy loam soils and a maximum of 128 µg CH4.gbio-waste compost soil

-1. h-1 

(maximum) for organic-rich soil types [66-68]. The improved removal efficiencies and stable MOCs 
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in this study could be due to maintenance of optimal temperature for methanotrophs (25 °C) [43, 64, 

69] and/or improved CH4 gas exchange due to continuous mixing of slurries [70]. Our result suggest 

that healthy methanotroph-enriched consortia established in mini-bench top reactors from the two 

different soil types at the end of the 20 day-enrichment period. 

Next generation sequencing of enriched methanotrophic consortia from LB and CB showed similar 

community profiles. Methylomicrobium (96%) was dominant in LB and a presence of 

Methylomarinum (2%), Methylomonas (1%), Methylobacter (<1%), Methylosinus (<1%) and 

Methylosarcina (<1%) at much lower abundances were recorded. Methylomicrobium (88%) were 

also dominant in CB, and low abundances of Methylomonas (9%), Methylomarinum (1%), 

Methylosarcina (1%) and Methylosinus (1%) were also demonstarted.  Apart from methanotrophs, 

methylotrophs such as Methylophaga and Methylobacterium along with heterotrophs 

(Pseudomonas and Pseduoxanthomonas) were present in high abundances in both LB and 

CB. Of the genera recorded Methylosinus sp., Methylobacterium sp., and Pseudomonas sp., has 

been shown to accumulate PHA/PHB [5, 18, 21, 25].  Enrichment of mother cultures under nutrient-

deplete condition were expected to favour methanotrophic community shifts in LB and CB. FAME 

profiles (from Day 5 to Day 20; data not shown) changed to a dominance of C16 and C18, indicative of 

community shifts changes to type II enrichment under nutrient-deplete conditions. However, the 

precise consortia composition requires further molecular characterization which is ongoing.  

MOCs were 10-12 times higher in methanotroph-enriched cultures under nutrient-replete conditions 

than respective soil slurries (Fig. 2). MOCs of mother cultures further increased 2-2.5 times under 

nutrient-deplete conditions (Fig. 2). With regards to soil-specific methanotroph enrichment, CB had 

higher MOCs (2.10±0.48 and 5.76±0.54 mg CH4.g
-1 DWbiomass.h

-1 for mother cultures under nutrient-

replete and - deplete conditions, respectively) than LB (1.83±0.46 and 3.85±0.24 mg CH4.g
-

1DWbiomass.h
-1). In line with published data, repeated sub-culturing under CH4-rich conditions 

supported the selective growth of high-capacity, low-CH4 affinity obligate methanotrophs [71, 72]. 

The observed differences in MOCs of LB and CB under nutrient-replete and -deplete conditions 

could be due to the differences in CH4 concentrations (20 % vs 30 % CH4, respectively) and/or 
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community compositional shifts within the enriched consortia. Increasing CH4 concentrations, as well 

as nutrient (e.g. nitrate)-induced community shifts have been reported to increase MOCs, the latter 

due to an increase in the ratio of type II/type I methanotrophs by 10-fold within 100 h [50, 71, 73, 

74]. Changes in C16:C18 ratios provide evidence of nutrient depletion- and CH4 concentration-induced 

community shifts in LB and CB cultures. This was also observed by Bull et al. [41] and Helm et al. 

[39]. During the first 10 days, LB contained more of C16 than CB, indicating that the consortia were 

dominated by type I methanotrophs (Fig. 3). In contrast, CB contained C16 and C18 fatty acids (Fig. 3) 

indicating that both type I and type II methanotrophs were present in high abundances from the start 

of the enrichment period supporting the observed higher MOCs (Fig. 2). 

3.3 PHB/PHA production in CSTRs  

CH4 removal efficiencies ranged from 3 to 21 % in both CSTRs under continuous operational mode. 

With addition of 5 µm of copper and iron on day 5, CH4 removal peaked at 21 % on day 7 in both 

CSTRs. Although CH4 removal efficiencies increased over time, no increase in biomass 

concentrations was recorded from day 5 to day 10 i.e., 0.40 to 0.43 g/L and 0.46 to 0.43 g/L 

measured in LB- and CB-CSTRs, respectively. Lower removal rates compared to other published 

data on mixed methanotrophic consortia could be due to high gas flow rates, which may have also 

affected biomass yields. Listenwnik [8] reported 25g/L biomass under non-sterile operation, 

however, operating conditions (high nutrients, pressurised bioreactors and 90% Methylocystis 

dominance) were chosen to favour biomass yields and CH4 removal. In a natural setting, however, 

enriched consortia not derived from the soils present may not retain these set dominance profiles. As 

such, while natural consortia may not yield the same dominance profiles initially, they offer the 

opportunity to fine operational parameters to favour existing type II methanotrophs. We therefore 

believe that the data obtained in this study may provide more realistic performance data for 

unoptimised scale-up.  
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3.3.1 MOCs and PHB/PHA production without copper and iron 

Despite standardised initial biomass (0.5 g DW.10 L-1; OD600 - 0.036 and 0.043; Day 1), the MOCs 

were higher in the LB-CSTR than in the CB-CSTR (260.09±25 and 165.35±15 mg CH4.g
-

1DWbiomass.h
-1, respectively) as were protein content (10.11±0.8 vs 7.38 ±0.4 µg.mL-1) (Table 2). After 

5 days of nutrient limitation, LB-CSTR and CB-CSTR biomass - (OD600 0.27-0.28, respectively) and 

protein contents (100.8±2.2 and 112.3±1.8 µg protein.mL-1, respectively) and increases in MOCs 

were similar (46 % vs 40 %, respectively) (Table 2). Yet, MOCs of LB-CSTR was almost 2-fold 

higher (481.95±22 vs 279.64±32 mg CH4.g
-1 DWbiomass.h

-1) than for CB-CSTR, respectively (Table 

2). Protein is reported to be a measure of active biomass in the system [75]. As the CB-CSTR 

contained more protein from day 1 and CB batch cultures showed better MOCs than LB systems, a 

higher MOC was expected for this system. The better MOCs of the LB-CSTR can be explained by a 

dominance of type I methanotrophs, as the ratio C16:C18 (~11.88, Table 2) can be used as an indicator 

of type I/type II ratios within the methanotroph consortium. Reports that pMMO expressing cells 

(type I and type II) achieve steady state conditions and higher CH4 removal rates (~30%) compared to 

sMMO expressing cells (type II) [43, 76] support our conclusion.  

Detailed FAME profiles analyses for the LB-CSTR and CB-CSTR (Fig. 4a) also support the 

conclusion that the LB-CSTR was dominated by type I methanotrophs. Day 5-LB-CSTR was 

characterized by ~92 % of C16 methyl esters (67.73±3.1 mgFAME.g-1 DWbiomass; sum of C16:0, C16:1 

cis-Δ7, C16:1 cis-Δ9) and ~8 % of C18 esters (C18:1 cis-Δ9 and C18:1 trans-Δ11). In contrast, C16 and C18 

contents were 78 % and 22 %, respectively in the CB-CSTR. For both consortia, C16:1 cis-Δ9 was the 

dominant FAME species, whereas C18:1 cis-Δ9 was not detected in biomass from LB-CSTR and the 

CB-CSTR biomass contained both C18:1 cis-Δ9 and C18:1 trans-Δ11 (Fig. 4a).  

Lower MOCs also resulted in lower PHB/PHA content for the CB-CSTR (Table 2). Total PHB/PHA 

content on day-5 was 37.03±2.3 and 25.28±1.4 mg PHB.g-1 DWbiomass in LB-CSTR and CB-CSTR, 

respectively. Reported MOCs and PHB/PHA accumulation of mixed methanotrophic consortia were 

lower (~11%) than for pure cultures [25]. For example, pure cultures of the type II methanotroph 

Methylocystis hirsute had PHB/PHA contents ranging from  85 to 425 mg PHB.g-1 DWbiomass (8.5 to 

42.5 w%) in treatments with 20-80 % CH4 in vertical loop bioreactors, with nitrogen limitation not 
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leading to the expected improved accumulation (~135 mg PHB.g-1 DWbiomass) [20]. However 

Wendlandt [24] reported 51.3% PHB content in mixed methanotrophic consortia under nitrate-

deplete condition. Apart from nitrate, Wendlandt [24] and Helm [22] studied the effect of phosphorus 

(P)-, potassium (K)-, sulfur (S)-, iron (Fe)- and magnesium (Mg)-limitation on PHB accumulation in 

a mixed consortium with dominance of Methylocystis sp. GB 25 DSM 7674 (86 to 90%) reared in 7 

and 70 L pressure bioreactors under high pressure of methane (p⩽0.6 MPa 20 to 25% CH4) with a 

flow rate of 50-100 L.min-1, and reported PHB contents of 46.8, 33.6, 32.6, 10.4 and 28.3% after 24 h 

of nutrient-deprivation, respectively. The high PHB content reported is likely due to dominance of 

Methylocystis species. Nitrate depletion should have resulted in high PHB contents, however, the low 

amount of PHB/PHA (3.7%) in our study could be due to the addition of CO2 which increased the pH 

of the system at Day 5 (data not shown), favoring dominance of Type I methanotrophs which 

typically do not excel in PHB/PHA accumulation. Similar  results were obtained by Lopez [23], 

when culture conditions were chosen to favour dominance of type I methanotrophs (PHB/PHA 

content of inoculum 12.6 % compared to biomass PHB/PHA content in biomass raised at 20 g 

CH4 m
−3 (0.002% CH4 and nitrogen limiting conditions). In addition to strain-specific differences in 

PHB/PHA accumulation, cultivation system differences affecting gas residence time could also 

explain the higher PHB/PHA accumulation as vertical loop reactors, pressurised bioreactors, 

fluidised bioreactors dissolve CH4 better than CSTRs [20, 24, 25, 50]. 

3.3.2 MOCs and PHB/PHA production with copper and iron 

5 µM of copper and of iron was spiked on day-5 and monitored until day 10 (Table 2). Both copper 

and iron have been reported to regulate/improve pMMO and sMMO activities in methanotrophs 

thereby improving CH4 removal [18, 22, 44, 46, 77-79]. As expected MOCs for the CB-CSTR 

increased by ~72 % following trace metal addition, while only a ~3 % increase was recorded for the 

LB-CSTR (Table 2). Differences in LB- and CB-CSTR biomass (OD600) and protein content (Table 

2) could explain the large increase in MOCs. However, the LB-CSTR had a slightly higher MOC 

compared to the CB-CSTR possibly due to community differences (based on C16:C18 ratios, Table 2). 

Addition of copper has been reported to alter CH4 affinity due to changes in species composition [43, 

77]; 2-55-fold increases in MOC have been reported for pure and mixed cultures [43, 80]. For 
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example, 1 µM of copper was reported to completely inhibit sMMO activity in pure isolates [81-83] 

and inducing pMMO expression [79]. Thus pMMO expressing methanotrophs show better MOCs 

and higher biomass yields [84]. As evident from the C16:C18 ratio (Table 2), addition of 5 µM each of 

copper and iron did not shift the consortium composition of the CB-CSTR, thus the observed strong 

increase in MOC for the CB biomass could be interpreted as upregulation of pMMO. In contrast, 

copper and iron addition led to a strong shift in the C16:C18 ratio of the LB-CSTR, i.e. the dominance 

of type I methanotrophs was abolished. These conclusions are supported by the shifts in FAME 

profiles in response to trace metal addition for both the CB- and LB-CSTRs (for details see below).   

Previous studies have focused mainly on the individual effects of copper or iron [18, 22, 85]. Here, 

we investigated the combined effect of copper and iron under nitrate-deplete condition, the 

interactive effects of which may explain the shift in methanotroph type composition of the consortia. 

The 5-day copper uptake varied between LB-CSTR (36 %) and CB-CSTR (50 %), while the amount 

of iron uptake was the same for both cultures (~85 %) (data not shown). Iron, being a known cofactor 

for number of redox- reactions, plays a vital role in the regulation of cellular metabolism, and has 

been reported to increase sMMO activity [76, 81, 83, 86]. Based on this and the observed >2-fold 

increase in MOC in the CB-CSTR, we propose iron positively influenced sMMO activity (in parallel 

with copper influencing pMMO activity), and alleviated the inhibitory effect of copper on this 

enzyme.  

sMMO activity requires high energy and reducing equivalents [87]. As CSTR cultures were grown 

under nutrient-limiting conditions, energy requirements to support MMO activities could have been 

met through oxidizing stored fatty acids and stored PHB/PHA [60, 79]. Pieja [18] also found that the 

addition of copper improved the PHB/PHA content by 25 % in pure cultures, which is comparable 

with our results for the LB-CSTR (23 %). In contrast, PHB/PHA content decreased by 13 % in the 

CB-CSTR, suggesting that PHB/PHA was oxidized to support MOC (Table 2), as has been reported 

for pure type II cultures [60, 79]. In contrast to CB-CSTR cultures, required reducing equivalents and 

energy needs for MOC were not fueled by PHB/PHA oxidation in the LB-CSTR. This is supported 

by a study where the addition of 30 µM copper increased PHB/PHA accumulation by 8.3 % [79].  
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Total FAME contents (∑FAMEs) were reduced by 62 % and 25% after addition of copper and iron 

for the LB- and CB-CSTRs, respectively, whilst MOCs were not affected (Table 2), supporting the 

conclusion that energy and redox equivalent demands for sustaining MOCs were met by hydrolyzing 

fatty acids in both systems and additionally by PHB/PHA oxidation in the CB-CSTR. This 

conclusion is further supported when comparing FAME profiles before (Fig. 4a) and after copper and 

iron addition (Fig. 4b). 5-days after trace metal addition (day 10), the biomass of both CSTRs 

contained less C16 fatty acids, whilst C18 contents were unaffected. Whilst C18:1 trans-Δ11 was absent 

in biomass from both CSTRs after trace metal addition, C18:1 cis-Δ9 was present in high amounts (Fig. 

4b). The appearance of type II-characteristic C18-fatty acids supports the conclusion that copper 

addition (5µM) led to type II dominance, which is in agreement with other published data [18]. 

This could also suggest that copper and iron addition led to type II methanotroph-derived MOCs in 

both CSTRs. But the above hypothesis must be tested in future work through molecular analysis of 

consortia profiles, as a few type I and X methanotrophs have also been reported to contain sMMO 

[82, 88-91]. 

4 Concluding remarks 

MOCs of nutrient-replete, enriched mother cultures were found to be 10-12 folds higher than in the 

unenriched respective indigenous soils, i.e. landfill top-cover and compost. Nutrient limitation further 

improved the MOCs due to selective enrichment of fast growing methanotrophic consortia. These 

enriched cultures were robust and accumulated C16 and C18 as the major FAMEs which can be of 

interest for biofuel factories. MOCs were lower in batch cultures than in continuous operating 

systems for both the biomasses (LB and CB), suggesting that for techno-economic analyses data 

obtained from batch culture systems should not be used.  

From the bioreactor studies, the LB-CSTR was more robust in terms of MOCs, ∑FAMEs and 

PHB/PHA accumulation than the CB-CSTR. Based on C16 and C18 contents, community differences 

between LB-CSTR and CB-CSTR could be the key to the differences in performance, however, 

detailed molecular analyses are required to unequivocally demonstrate this (work in progress). 

Further addition of copper and iron at 5 µM each increased MOCs 2-fold in the CB-CSTR, but the 

∑FAMEs and PHB/PHA accumulation were reduced. These results can be explained in two ways: (i) 
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iron improved sMMO activity potentially by alleviating copper inhibition; and/or (ii) the stored 

PHB/PHA and FAMEs were used for delivering reducing equivalents for sMMO to accelerate CH4 

oxidation. Nonetheless the outcome suggests that continuous production of PHB/PHA under nutrient-

limiting and high copper conditions is not feasible using compost biomass. On the other hand, 

sustained MOC and the 23 % increase in PHB/PHA content of the LB-CSTR under nutrient-limiting 

and high copper conditions suggests that landfill top cover soil-derived methanotroph consortia are 

suitable for continuous PHA/PHB production from waste CH4 gas. However, compared to published 

data, the achieved PHB/PHA contents were low possibly due to low CH4 residence time and nutrient-

limiting conditions maintained in CSTRs, suggesting that further research should aim to improve 

PHB/PHA accumulation potential through improved system – and fertilisation regime designs. 
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Table 1. Comparison of PHB/PHA content accumulation in biomass with different reactors 

 

Seed culture/consortia 
CH4  Concentration 

and flow rate 
Reactor volume Conditions 

PHB (%) 

 
Reference 

Methane-utilizing mixed culture 

(dominant 

species Methylocystis sp. GB 25 

DSM 7674, >86% by biomass)  

  

20% CH4, 

 

50–100 L.min
-1

 

 

 Nitrogen depletion 51.3 

[24] 

 

70 L 

(Pressure 

bioreactor) 

Phosphorus depletion 46.3 

 Magnesium  depletion 28.3 

Methane-utilizing mixed culture 

(dominant 

species Methylocystis sp. GB 25 

DSM 7674, >86% by biomass)  

25% CH4, 

 

50–100 L.min
-1

 

70 L 

(Pressure 

bioreactor) 

Sulphur depletion 32.6 

     [22] Potassium depletion 33.6 

Iron depletion 10.4 

Methane-utilizing mixed culture 

(dominant 

species Methylocystis sp. GB 25 

DSM 7674)  

107 Kg Natural gas.h
-1

 

40 m
3
 

(deep-jet 

fermenter) 

- 70%       [8] 

Methylocystis parvus & 

Methylosinus 

trichosporium OB3b  

9–10 mg.L
-1

, 

15.2 L 

(Fluidised Bed 

Reactor) 

N2 as the N-source, and  

low influent DO (2.0 mg/L) 

6–10  

 
[50] 

Mixed consortium  
2 and 20 gCH4 m

−3
 

400 mL.min
-1

 

500 mL 

(Jacketed stirred 

tank reactors) 

Nitrogen 
12.6 and 

1 
[23] 

Mixed consortium  (Type I and 

type II) 

30% CH4 

250 mL.min
-1

 

10 L 

(Continuous 

Stirred Tank 

Reactor) 

 

Copper and Iron addition and 

Nitrogen deficiency 

4.7 (LB) 

2.1 (CB) 
This study 
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Table 2. Performance of LB-CSTR and CB-CSTR with and without copper and iron 

 

Parameters Unit 

LB-CSTR CB-CSTR 

Day 1 Day 5* Day 10 Day 1 Day 5* Day 10 

MOCs  mg CH4.g
-1

 DWbiomass.h
-1

 260.09±25 481.95±15 495.02±18 165.34±1515 279.64±32 480.27±20 

Biomass protein  µg.mL
-1

 7.35±0.4 100.81±2.2 138.74±2.1 10.11±0.8 112.3±1.8 159.19±3.3 

Biomass growth  OD600 0.036 0.285 0.316 0.04 0.27 0.41 

∑FAME  mg FAME.g
-1

 DWbiomass - 78±5.3 30±2.2 - 65±3.3 50±3.1 

ratio of C16:C18FAME - - 11.88 3.58 - 2.98 2.26 

PHB/PHA content mg.g
-1

 DWbiomass - 37.03±2.3 47.88±3.3 - 25.28±1.4 21.84±3.3 

Note:  MOC - Methane Oxidation capacity, FAME- Fatty acid methyl esters, PHB/PHA - Polyhydroxybutyrate/Polyhydroxyalkanoate. *5 µM of copper 

and iron (at 1:1 ratio) was spiked on day-5 and FAME profile, PHB/PHA content was measured on Day 10. 
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Figure 1 Continuous stirred tank reactors used for cultivation of heterotrophic-methanotrophic 

consortia and for CH4 remediation. 
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Figure 2 MOCs of soil, mother culture under nutrient-replete and nutrient-deplete conditions for 

consortia cultured from landfill top cover soil and compost soil. Note; soil and mother cultures were 

enriched with 20:80 % CH4:air gas mixture, while nutrient-deplete cultures received a gas mixture of 

30:10:60 % CH4:CO2:air. 
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Figure 3 C16:C18 profiles during enrichment of LB and CB under nutrient-deplete conditions.  
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Figure 4 FAME profiles of biomass from LB- and CB-CSTRs (A) without copper and iron addition 

(day 5) and (B) with copper and iron spiking (day 10). 

 

 

 


