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ABSTRACT: Offshore interactions of inter-nesting flatback turtles Natator depressus with resource
industry activities are potentially frequent, yet the associated impact is largely unquantified. Con-
sequently, there is a need to understand the degree of interaction and to provide data that can
assist with effective conservation and management. We used satellite tracking to highlight the
potential interaction of inter-nesting flatback turtles (n = 56) from 4 rookeries in Western Australia
with regional resource industry activities. Flatback turtles demonstrated varying inter-nesting
movements, with displacement distances ranging from 3.4 to 62.1 km. Some turtles at all 4 rook-
eries remained <10 km from the nesting beach. Core home range areas for inter-nesting flatback
turtles ranged from 1.4 to 601.1 km?2. The proportion of core home range areas for Thevenard and
Barrow Island turtles that overlapped offshore petroleum title areas was 85.7 and 88.6 %, respec-
tively. The proportion of median daily positions that overlapped petroleum title areas was also
high, 80.8% (Thevenard) and 87.3 % (Barrow). There was no overlap of home range areas and
median daily positions with petroleum title areas for Mundabullangana and Port Hedland turtles,
although some inter-nesting movements of Port Hedland turtles were in close proximity to a pro-
posed port expansion. The wide-ranging inter-nesting movement patterns highlight a need for the
Australian Government and industry to expand the scope of Environmental Impact Assessments,
ensuring adequate protection is provided to inter-nesting flatback turtles. The similar nearshore
inter-nesting movement pattern recorded by some flatback turtles at each rookery provides an
opportunity to establish boundaries for small-scale spatial and temporal protection measures.
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INTRODUCTION

Interaction between industrial development activi-
ties and protected fauna species is of worldwide con-
cern (Gill 2005, Halpern et al. 2008). Interactions can
negatively affect distribution (Carstensen et al. 2006,
Harewood & Horrocks 2008), behaviour (Leung Ng &
Leung 2003, Thompson et al. 2010) and health (Mad-
sen et al. 2006, Stewart et al. 2007) of terrestrial and
marine species during different phases of their life
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cycle. Expansion of traditional industrial development
activities (e.g. mineral extraction processes) and,
more recently, activities related to renewable energy
developments (e.g. wind farms, tidal barriers), into
‘untouched’ remote coastal and offshore regions, pro-
vides further opportunity for interaction between
breeding and migration life phases of marine species
(Gill 2005). While the potential impact of interactions
has been documented for some migrating marine
species (Bailey et al. 2010, Maxwell et al. 2013), for
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breeding and migratory marine turtles, the potential
overlap with industrial activities remains of concern.

Marine turtles lay multiple clutches of eggs, spend
several months in proximity to the nesting beach
between successive clutches (Miller 1997, Hamann
et al. 2002) and typically demonstrate strong site
fidelity, laying each of their clutches on the same
beach or island. As capital breeders, marine turtles
are understood to show inactive behaviour during
the inter-nesting period (the period between a suc-
cessful clutch and the next nesting attempt) (Hays et
al. 1999, Fossette et al. 2012), presumably to conserve
energy for successive reproductive events (see Hays
et al. 1999). However, little is known about the behav-
iour of females offshore during this period compared
to during nesting and post-nesting migration periods
(Hamann et al. 2010). Research on female behaviour
during the inter-nesting period is important, as off-
shore inter-nesting habitat adjacent to nesting beaches
is typically afforded fewer protection measures than
nesting beaches (see Dryden et al. 2008).

The movement of turtles during the inter-nesting
period varies considerably between and within pop-
ulations. Turtles from some populations remain in
close proximity to the nesting beach (loggerhead tur-
tles: e.g. Stoneburner 1982, Godley et al. 2003; green
turtles: e.g. Hays et al. 1999, Craig et al. 2004, Troéng
et al. 2005, Fuller et al. 2008; hawksbill turtles: e.g.
Troéng et al. 2005a, Whiting et al. 2006; Kemp's rid-
ley turtles: e.g. Seney & Landry 2008, Shaver & Rubio
2008; olive ridley turtles: e.g. Maxwell et al. 2011),
while turtles from other populations undertake long
distance migrations (loggerhead: e.g. Blumenthal et
al. 2006, Schofield et al. 2013; leatherback: e.g. Eck-
ert 2006, Shillinger et al. 2010; olive ridley: e.g.
Hamel et al. 2008). Similarly, the degree to which
inter-nesting habitats are anthropogenically used and
managed also varies considerably (see Zbinden et al.
2007, Maxwell et al. 2011).

The flatback turtle Natator depressus offers a use-
ful case study in this regard. Its nesting is endemic
to the Australian continental shelf and is widespread
and abundant in northern Australia (see Limpus
2007). Nesting sites and patterns of site fidelity are
well known (Limpus 2007), with 4 genetic units/
stocks currently recognised; Western Australia,
Northern Territory, Gulf of Carpentaria and eastern
Australia (Dutton et al. 2002). The breeding (nest-
ing) range of the flatback turtles in Western Aus-
tralia extends easterly from Cape Range to Cape
Domett, with the most significant concentration of
rookeries found in the Pilbara region (see Fig. 1)
(Limpus 2007). The Pilbara region is rich in hydro-

carbon and mineral resources, making it an area of
great economic importance for the State and Com-
monwealth governments (Human & McDonald
2009). The same region also hosts a substantial and
rapidly expanding industrial resource sector, with
dredging, coastal development and infrastructure
for mineral storage, processing and transport facili-
ties, located on, or near to, several flatback rook-
eries (Limpus 2007). Fatal interactions of inter-nest-
ing flatback turtles with resource sector activities
can potentially occur (e.g. Dickerson et al. 1991, Lut-
cavage et al. 1995), yet the associated impact is
understudied and unquantified (Limpus 2007), out-
side that presented in Environmental Impact As-
sessments (EIA). There is only one published
account of offshore habitat use by flatback turtles in
Western Australia (Waayers et al. 2011), with no
consideration for offshore interaction with resource
sector activities. Consequently, there is a clear need
to understand the degree of interaction between an-
thropogenic development and flatback turtles and,
ultimately, to provide data that can assist with effec-
tive management through EIAs and development-
orientated monitoring/management plans.
Inter-nesting habitats and interconnected migra-
tory pathways host dense aggregations of adult mar-
ine turtles (Godley et al. 2008, Pendoley et al. 2014).
The paucity of data on flatback turtle habitat use,
abundance and distribution among habitats during
key life stages, when considered together with the
scale of marine and coastal development, inhibits ef-
fective conservation and management planning which
would mitigate further potential threats of anthro-
pogenic development. Our aim was thus to identify
the abundance and distribution of inter-nesting tur-
tles using satellite telemetry, to gain a better under-
standing of how flatback turtle inter-nesting move-
ment patterns vary between rookeries. We also relate
flatback turtle distribution and the location of core
home range areas to resource sector developments
and lease title areas so as to identify the extent to
which they overlap and to support the development
and implementation of improved and effective
impact assessment and management practices.

MATERIALS AND METHODS
Study sites
We tracked female flatback turtles from 4 flatback

rookeries within the same genetic management unit
in the Pilbara region of Western Australia: Theve-
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Fig. 1. Location of Thevenard Island, Barrow Island, Mundabullangana and
Cemetery Beach, Port Hedland flatback turtle rookeries in relation to major
resource developments and offshore petroleum title areas in Western

Australia

nard Island (Thevenard), Barrow Island (Barrow),
Mundabullangana (Munda) and Cemetery Beach,
Port Hedland (Cemetery). The 4 rookeries are sepa-
rated by a maximum distance of ~350 km (Fig. 1).

Thevenard is situated 20 km off the mainland coast,
and flatback nesting occurs on the island's south
coast (Fig. 1). The beach ranges in width from 5 to
30 m (K. Pendoley unpubl. data). Thevenard Island is
a production hub for 6 oil and gas fields located
within a 17 km radius. It has an oil and gas process-
ing and storage facility located on the eastern end of
the island immediately adjacent to the flatback nest-
ing beach. Barrow is situated 60 km off the mainland
coast and has 6 flatback nesting beaches on the east
coast. The beaches range from 500 to 1100 m in
length and 10 to 15 m in width and are bounded by
rocky headlands at each end (Pendoley 2005). A
large-scale liquefied natural gas processing facility is
currently under construction on the central east coast
of the island and involves construction of substantial
offshore infrastructure and vessel activity (Fig. 1).
Munda is 60 km west of Port Hedland on the main-
land coast and is isolated from coastal development.
The main nesting site at Munda is Cowrie Beach, a
3.3 km long beach bounded by a mangrove creek to
the north-east and a rocky headland to the south-
west. Cemetery Beach is the main town beach for
Port Hedland, which is home to the largest bulk min-
erals export port in the world and the site of a planned
large port expansion project (Fig. 1). The beach is
1 km long and 10 to 15 m wide and has been substan-
tially modified by the creation of a dredge spoil spit
located to the west of the beach.

may not represent the overall season's
inter-nesting distribution for each
tracked turtle.

We used 4 different models of trans-
mitter over the course of this study, 2
models (KiwiSat101, n = 9 [Sirtrack] and MK-10, n =
6 [Wildlife Computers]) provided Argos only loca-
tions, and 2 models (Fastloc GPS-Argos transmitters,
n = 12 [Sirtrack] and Satellite Relayed Data Loggers
[SRDL], n = 29; [St Andrews Mammal Research Unit])
provided Fastloc GPS locations.

The standard method of attaching transmitters to
hard-shelled turtles using epoxy resin is unsuitable
for flatback turtles as they have a carapace covered
by a soft and easily abraded skin (Sperling & Guinea
2004). Transmitters were attached using a harness as
outlined in the protocol described by Sperling &
Guinea (2004) for eastern Australian flatback turtles.
Selected turtles were allowed to complete nesting
prior to transmitter attachment.

Each transmitter was programmed to transmit
data when at the surface, as indicated by a saltwater
switch present on each transmitter. Transmitted
data from both types of Argos tags (KiwiSat101 and
MK-10) were collected using the Argos satellite sys-
tem (CLS 2011) and downloaded and managed
using the Satellite Tracking and Analysis Tool
(STAT; Coyne & Godley 2005). The Argos satellite
system calculates the position of a transmitter by
doppler shift of the transmission frequency as the
satellite passes overhead, and the accuracy of the
'fix' (location class) is determined by the number of
uplinks received by the satellite in a single over-
pass. The standard Argos unit accuracy is cate-
gorised by location classes (LC): LC 3, LC2, LC 1 or
LC 0 locations, which are classified as within 150,
>150 to 350, >350 to 1000 or >1000 m, respectively.
Locations classified as Classes A and B indicate
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Table 1. Summary of transmitter deployment (2005/06 to 2010/11) at Thevenard Island (THV), Barrow Island (BWI), Mundabullangana
(MDA) and Cemetery Beach, Port Hedland (CM), Western Australia. Dates are given as dd/mm/yr. CCL: curved carapace length; KDE:
kernel density estimate; 50 % UD: 50 % utilisation distribution

Year Turtle CCL Attachment Tagtype Attachment End of Tracked Inter-nesting KDE (50%  Proportion of KDE (50 %
no. (cm) location date inter-nesting days (n) periods (n) UD) area (km? UD) in title area (%)
2005/06 1 90 BWI Argos 29/11/2005 28/12/2005 29 2 - -
2005/06 2 94 BWI Argos 06/12/2005 06/01/2006 31 2 - -
2005/06 3 90 BWI Argos 02/12/2005 01/01/2006 30 2 - -
2005/06 4 88 BWI Argos 01/12/2005 30/12/2005 29 2 - -
2006/07 5 85 BWI Argos 18/12/2006 14/01/2007 27 2 - -
2006/07 6 86 BWI Argos 09/01/2007 19/01/2007 10 1 - -
2006/07 7 88 BWI GPS 15/12/2006 03/01/2007 19 1 158.5 82.5
2006/07 8 87 BWI GPS 18/01/2007 13/02/2007 26 2 182.5 81.9
2007/08 9 91 BWI Argos 15/12/2007 30/12/2007 15 1 - -
2007/08 10 89 BWI GPS 16/12/2007 05/01/2008 20 1 6.3 100.0
2007/08 11 92 BWI GPS 13/12/2007 11/01/2008 29 2 11.8 100.0
2008/09 12 86 BWI GPS 18/12/2008 03/01/2009 16 1 141.7 100.0
2008/09 13 90 BWI GPS 18/12/2008 31/12/2008 13 1 5.3 100.0
2008/09 14 90 BWI GPS 17/12/2008 24/01/2009 38 3 244 .4 47.1
2008/09 15 90 BWI GPS 17/12/2008 13/01/2009 27 2 497.0 92.9
2009/10 16 90 BWI GPS 29/11/2009 13/12/2009 14 1 39.6 100.0
2009/10 17 88 BWI GPS 02/12/2009 15/12/2009 13 1 490.7 70.9
2009/10 18 91 BWI GPS 01/12/2009 11/01/2010 41 3 7.5 100.0
2009/10 19 89 BWI GPS 03/12/2009 09/01/2010 37 3 90.2 88.2
2009/10 20 91 BWI GPS 27/11/2009 08/01/2010 42 3 28.9 100.0
2009/10 21 96 BWI GPS 28/11/2009 28/12/2009 30 2 318.3 96.8
2009/10 22 90 BWI GPS 29/11/2009 09/01/2010 41 3 97.4 100.0
2009/10 23 87 BWI GPS 28/11/2009 07/01/2010 40 3 1.4 100.0
2009/10 24 91 BWI GPS 02/01/2010 19/01/2010 17 1 601.1 74.4
2009/10 25 90 BWI GPS 03/12/2009 14/01/2010 42 3 3.1 100.0
2009/10 26 93 BWI GPS 28/11/2009 26/12/2009 28 2 3.3 100.0
2009/10 27 96 BWI GPS 01/12/2009 11/01/2010 41 3 20.3 100.0
2009/10 28 90 BWI GPS 29/11/2009 10/01/2010 42 3 18.5 100.0
2009/10 29 88 BWI GPS 01/12/2009 29/12/2009 28 2 176.7 27.6
2009/10 30 88 BWI GPS 27/11/2009 20/01/2010 54 4 49.0 100.0
2009/10 31 87 BWI GPS 29/11/2009 14/12/2009 15 1 269.8 46.6
2009/10 32 91 BWI GPS 30/11/2009 08/01/2010 39 3 209.7 93.7
2009/10 33 88 BWI GPS 01/12/2009 20/01/2010 50 4 47.8 100.0
2005/06 34 85 MDA Argos 09/12/2005 20/12/2005 11 1 - -
2005/06 35 90 MDA Argos 10/12/2005 01/01/2006 22 2 - -
2008/09 36 87 CM GPS 08/12/2008 04/01/2009 27 2 64.5 0.0
2008/09 37 85 CM GPS 07/12/2008 25/12/2008 18 1 49.1 0.0
2008/09 38 89 CcM GPS 06/12/2008 30/12/2008 24 2 166.9 0.0
2008/09 39 89 CcM GPS 06/12/2008 19/12/2008 13 1 132.6 0.0
2009/10 40 92 CcM Argos 12/12/2009 15/01/2010 34 3 - -
2009/10 41 85 CM Argos 09/12/2009 02/01/2010 24 2 - -
2009/10 42 86 CM Argos 12/12/2009 22/12/2009 10 1 - -
2009/10 43 87 CcM Argos 10/12/2009 22/12/2009 12 1 - -
2009/10 44 86 CcM Argos 12/12/2009 05/01/2010 24 2 - -
2009/10 45 94 CcM Argos 11/12/2009 24/12/2009 13 1 - -
2010/11 46 88 CcM GPS 30/11/2010 27/12/2010 27 2 5.5 0.0
2010/11 47 91 CM GPS 27/11/2010 08/12/2010 11 1 21.9 0.0
2010/11 48 90 CcM GPS 30/11/2010 21/12/2010 21 2 89.7 0.0
2010/11 49 90 CcM GPS 01/12/2010 06/01/2011 36 3 146.1 0.0
2010/11 50 88 CcM GPS 26/11/2010 30/12/2010 34 3 4.6 0.0
2010/11 51 99 THV GPS 14/12/2010 18/01/2011 35 3 138.5 87.5
2010/11 52 92 THV GPS 12/12/2010 05/01/2011 24 2 256.7 88.2
2010711 53 89 THV GPS 12/12/2010 11/01/2011 30 3 337.1 86.1
2010/11 54 98 THV GPS 11/12/2010 05/01/2011 25 2 137.2 87.2
2010/11 55 92 THV GPS 11/12/2010 27/12/2010 16 1 191.3 75.2
2010/11 56 89 THV GPS 17/12/2010 29/12/2010 12 1 89.0 89.9

fixes of poor accuracy (Hays et al. 2001) and only
Argos locations LC 3, 2, 1 and 0 were used for
analysis. To exclude implausible locations, the
Argos dataset was filtered using the following crite-
ria: (1) a minimum speed of travel was calculated
between successive locations, and only those indi-

cating travel speeds of <5 km h~! from the previous
location were included (Hays et al. 2004, Shimada
et al. 2012), and (2) successive fixes with turning
angles >25° were also removed because acute turn-
ing angles are often indicative of erroneous ‘off-
track’ locations (Hawkes et al. 2007).
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The SRDL and Fastloc GPS-Argos tags incorporated
both a Fastloc GPS receiver and an Argos Platform
Terminal Transmitter (PTT). The Fastloc receiver
captures GPS constellation data over a very short
time period (within 100 ms) allowing GPS data to be
yielded from very brief surface intervals (Hazel 2009).
This rapid acquisition method removed a number of
transmission difficulties associated with recording
GPS data from diving marine animals (Hays 2008).
The GPS constellation data was saved onboard the
tag and subsequently transmitted via the Argos satel-
lite network. The accuracy of Fastloc GPS location
estimates varies and locations generated using a
higher number of satellites are known to be more
accurate (8 satellites: 26 + 19.2 m; 4 satellites: 172 +
372.5 m; Hazel 2009, Witt et al. 2010, Shimada et al.
2012). Therefore, we excluded Fastloc GPS positions
generated from <5 satellites.

Determination of inter-nesting periods

We identified subsequent successful nesting events
following transmitter deployment for each turtle to
enable determination of individual inter-nesting
periods. Exact dates and times of re-nesting events
were identified for those turtles equipped with SRDL
tags that transmitted ‘haul-out’ events, with the start
of a haul-out event triggered once the tag was con-
tinuously dry for >6 min, and ending once the tag
was continuously wet for >40 s. Successful nesting
was defined by a haul-out event of >40 min, recorded
on or near land (<200 m), with no subsequent haul-
out event recorded for the following 10 d. For all
other tag types, re-nesting events were inferred
based on (1) directed nearshore movement, and (2)
the position data, indicating that the turtle was not
on, or adjacent to, the beach for the following 10 d. A
period of 10 d was selected, as 9 d is regarded as the
physiological limit for the development of a new
clutch of eggs (Miller 1985, Hamann et al. 2003). The
nearshore bathymetry at all 4 study sites is consis-
tently shallow and it was not suitable to use a sudden
change in depth use as an indication of a nesting
event, as used in other studies (Schofield et al. 2007).
On occasion, turtles were also observed on the beach
by staff, confirming the exact time and date of the
occurrence of a nesting event. These direct observa-
tions were used to validate the process of using track-
ing data to infer re-nesting events.

The absolute end of inter-nesting was indicated by
the commencement of post-nesting migration, which
was deemed to have begun once movement away

from the nesting beach was directional and pro-
tracted (Zbinden et al. 2008).

Data analysis

To avoid pseudo-replication when analysing our
data, we used filtered location data (both Argos and
Fastloc) to calculate a median daily position for each
turtle (Schofield et al. 2010). Median daily positions
were used to determine total distance travelled and
maximum displacement distance from the previous
nesting site providing a representation of movement
during the inter-nesting period.

ArcGIS 10 (Environmental Systems Research Insti-
tute; Redlands, CA, USA) was used to plot turtle
movements from the filtered Argos and Fastloc GPS
location datasets. Patterns of inter-nesting movement
were determined based on the maximum displace-
ment distance of the turtle between nesting sites and
the general direction the turtle moved away from the
nesting beach.

Home range

Home range was estimated by the fixed kernel
density method (Worton 1989) for each turtle tracked
using Fastloc GPS. The filtered location data (Fastloc
only) was used to calculate a median position for
each 6 h period of tracking. This period was selected
to ensure the sample size was large enough for ker-
nel analysis (i.e. n > 30 locations; Seaman et al. 1999).
Turtles tracked using Argos transmitters were not
considered for home range analysis due to the lower
quantity of suitable locations received. We used
Geospatial Modelling Environment, an extension to
ArcGlIS, to calculate fixed kernel density estimates
(KDE) using the kde function (Beyer 2012, R Devel-
opment Core Team 2013). The KDE for each turtle
was calculated with least square cross validation as a
band width to calculate the smoothing parameter.
This approach has been used to delineate home
ranges for several other species of marine turtles (see
Seminoff et al. 2002, Schofield et al. 2010). A 50%
utilisation distribution (UD) was used to establish the
core area of use (Worton 1989, Hart & Fujisaki 2010).

Potential interaction with the resources industry

GIS shapefiles of proposed and operational major
resource developments in the Pilbara region were
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provided by the Western Australian Department of
Mines and Petroleum (DMP). A proposed develop-
ment is considered major if it has a capital expendi-
ture >$A20 million, and an operational development
is considered major if it has an actual value or anti-
cipated value of production >$A10 million. Major
resource developments not involving offshore con-
struction or dredging were removed from the data-
set; these were all terrestrial based with no likely
direct impact on coastal and marine ecosystems.
We considered interactions to potentially occur
between a tracked turtle during its inter-nesting
period and a major resource development if the
inter-nesting track extended to <5 km from the
development.

In Western Australia, offshore petroleum explo-
ration and development is regulated by a title sys-
tem. Petroleum activities can only occur if a company
holds a valid title, which in itself provides holders
with an exclusive right to apply for further approvals
to conduct safe petroleum operations in the area. The
title areas provide boundaries within which petroleum-
related activities currently occur or can potentially
occur in the future.

The type and location of currently active offshore
titles released for petroleum industry activities
were provided by the DMP. Title areas are divided
into graticular sections. Each section is 5 minutes of
latitude by 5 minutes of longitude, with sections to
the north of Western Australia having an area of
~84 km?. Five relevant title types exist: exploration
permits (for the purpose of seismic surveys and
oil/gas well drilling), retention leases (a 5 yr ex-
ploration lease), production licence (for the purpose
of extracting or producing oil/gas from the ground),
infrastructure licence (for the construction of off-
shore facilities for the storage and processing
of oil/gas) and a pipeline licence (for subsea
pipelines).

We used 2 metrics to determine which rookeries
have inter-nesting turtles that are potentially
exposed to current or future offshore activities asso-
ciated with the petroleum resource industry within
the title areas: (1) the proportion of daily median
positions for inter-nesting turtles that occurred
within the relevant offshore title areas; and (2) the
proportion of the core 50 % UD home range area for
each inter-nesting turtle that overlapped offshore
title areas. These metrics aim to provide a broad indi-
cation of the extent of spatial overlap between areas
released for petroleum activities and inter-nesting
habitat for each rookery and are not to be considered
as a direct indication of impact.

Statistical analysis

All data were tested for distribution normality. A
generalised linear mixed effects modelling approach
was used to test for differences between individual
turtles tracked from different rookeries for distance
travelled when inter-nesting, and maximum dis-
placement distance when inter-nesting. The model-
ling approach used individual turtles as a random
effect to account for pseudoreplication, and was fit-
ted in R (R Development Core Team 2013) using the
Ime4 contributed package (Bates et al. 2008). Data
used in the linear mixed models were tested for dis-
tribution normality and checked for homogeneity of
variance. p-values were based on likelihood ratio
tests conducted using the ImerTest package for R
(Kuznetsova et al. 2014). A non-parametric Mann-
Whitney test was used to test for differences between
home range areas for turtles tracked from offshore
island rookeries (i.e. Barrow and Thevenard) and
mainland rookeries (i.e. Munda and Cemetery).

The relationships between home range size and
body size, and home range size and total distance
travelled, for each individual turtle, were tested
using a Spearman's correlation test.

RESULTS

A total of 112 individual inter-nesting periods
(Thevenard n = 12; Barrow n = 70; Munda n = 3;
Cemetery n = 27) were determined for 56 flatback
turtles (Thevenard n = 6; Barrow n = 33; Munda n = 2;
Cemetery n = 15). Twenty-five inter-nesting periods
were recorded using Argos tags and 87 using Fastloc
GPS tags. Each tracked turtle recorded 2.0 + 0.9 (SD)
inter-nesting periods (range = 1-4, n = 56) prior to the
commencement of its post-nesting migration. Indi-
vidual inter-nesting periods were determined by
direct observation on the beach (n = 16), by haulout
data (n = 52) and from recorded positions (n = 44). All
inter-nesting periods determined by direct observa-
tion on the beach were validated by the process of
determining inter-nesting periods from recorded
positions. Mean inter-nesting period duration was 13
+2d (range =8 - 20, n=112).

Argos tags recorded a mean of 30.0 = 18.7 positions
per inter-nesting period (range = 6-75, n = 25) at a
mean of 3.0 £ 1.6 positions per day (0.7-6.3, n = 25)
and Fastloc GPS tags recorded a mean of 115.0 + 48.4
positions per inter-nesting period (range = 15-217,
n = 87) at a mean of 9.0 + 3.6 positions per day
(1.1-17.1, n = 87).
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Thevenard Island

The 6 flatback turtles tracked from Thevenard pro-
vided 12 inter-nesting tracks. The turtles travelled a
mean total distance of 78.4 + 31.6 km (range =
15.6-126.1, n = 12) and had a mean maximum dis-
placement distance away from the nesting beach of
25.7 +£ 11.9 km (range = 6.2-42.5, n = 12) during the
inter-nesting period. The mean duration of the inter-
nesting period was 11.8 + 1.8 d (range = 8-16, n = 12).
Turtles showed a high level of nest site fidelity, re-
turning to the same beach where the transmitter was
applied for their subsequent clutch.

Four patterns of inter-nesting movement were
identified (Fig. 2a—d); 3 inter-nesting periods (N = 3
turtles) were spent entirely within 10 km of the prior
nesting site, with all tracks circling the island (Fig. 2a).
One turtle spent an inter-nesting period moving in an
anti-clockwise loop to the north of the island reach-
ing a maximum displacement of 24.4 km from its
prior nesting site (Fig. 2b); 5 inter-nesting periods
(N = 5 turtles) were spent moving south towards the
mainland and then swimming in a westerly direction,
reaching a maximum displacement distance of 42.5 km
(Fig. 2¢); and 3 inter-nesting periods (N = 3 turtles)
were spent moving south towards the mainland
before migrating in an easterly direction, reaching a

maximum displacement of 32.0 km from the prior
nesting site (Fig. 2d).

Barrow Island

The 33 flatback turtles tracked from Barrow pro-
vided 70 inter-nesting period tracks. Turtles travelled
a mean total distance of 68.7 + 48.5 km (range =
12.5-221.8, n = 70) and had a mean maximum dis-
placement distance away from the nesting beach of
27.2 £ 20.9 km (range = 4.0-62.1, n = 70). There was
no statistically significant difference in distance trav-
elled and displacement distance compared to turtles
tracked from Thevenard (df = 1, p > 0.05). The mean
duration of the inter-nesting period was 13.7 £+ 1.8 d
(range = 10-20, n = 70). The turtles always returned
to Barrow to nest but once on the island showed a low
level of nest site fidelity to a specific beach, with 21 of
the 33 turtles returning to nest on a different beach to
the one where the transmitter was applied.

Four patterns of inter-nesting movement from the
Barrow flatback turtles were identified (Fig. 3a—d);
26 inter-nesting periods (N = 13 turtles) were spent
within 10 km of the prior nesting site to the east of
Barrow, with turtles spending time within a deep
water channel formed between 2 nearshore reefs
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Fig. 2. (a—d) Thevenard Island (THV; Western Australia) inter-nesting track distribution and potential interaction with major

resource projects. (e) Density distribution of all median daily positions (3 km? grid) and merged boundaries of core home range

areas (KDE [50 % UD]) (KDE: kernel density estimate; UD: utilisation distribution) for all turtles tracked from Thevenard Island
in relation to offshore title areas
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Fig. 3. (a—d) Barrow Island (BWI; Western Australia) inter-nesting track distribution and potential interaction with major re-
source projects. (e) Density distribution of all median daily positions (3 km? grid) and merged boundaries of core home range
areas (KDE [50 % UD]) for all turtles tracked from Barrow Island in relation to offshore title areas

(Fig. 3a); 6 inter-nesting periods (N = 4 turtles) were
spent moving in an easterly direction >10 km away
from Barrow, with none of the tracks extending to
within 10 km of the mainland (Fig. 3b); 14 inter-
nesting periods (N = 9 turtles) were spent moving
>10 km away from Barrow in a south-east direction,
with none of the tracks extending to within 10 km of
the mainland (Fig. 3c); and 12 inter-nesting periods
(N = 9 turtles) were spent moving away from Barrow
in a south-east direction, spending part of their inter-
nesting period within 10 km of the mainland coast
(Fig. 3d).

Mundabullangana

The 2 tracked flatback turtles provided 3 inter-
nesting period tracks. Turtles travelled a mean total
distance of 38.7 + 8.6 km (range = 31.9-48.4, n = 3)
and had a mean maximum displacement distance
away from the nesting beach of 11.7 + 4.0 km (range
=8.5-16.2, n = 3). The distance travelled was statisti-
cally similar to turtles tracked from Thevenard (df = 1,
p > 0.05) and Barrow (df = 1, p > 0.05). The mean
duration of the inter-nesting period was 11.0 £+ 1.0 d
(range = 10-12, n = 3). Turtles showed a high level of
nest site fidelity, returning to the same beach where
the transmitter was applied for subsequent clutches.

Two patterns of inter-nesting movement were iden-
tified (Fig. 4a,b); 1 turtle spent 2 inter-nesting periods
within 10 km of the prior nesting site adjacent to the
nesting beach (Fig. 4a), and 1 turtle spent an inter-
nesting period moving to the west of the nesting
beach, extending up to a maximum displacement of
16.2 km away from the previous nesting site (Fig. 4b).

Cemetery Beach

The 15 flatback turtles were tracked for 27 inter-
nesting periods. Turtles travelled a mean total dis-
tance of 57.6 + 37.2 km (range = 14.4-145.8, n = 27)
during each inter-nesting period and had a mean
maximum displacement distance of 22.9 + 16.4 km
(range = 3.4 — 56.6, n = 27). The distance travelled
was similar to turtles tracked from Thevenard (df = 1,
p > 0.05), Barrow (df =1, p > 0.05) and Munda (df = 1,
p > 0.05). The mean duration of the inter-nesting
period was 12.0 + 1.9 d (range = 10-18, n = 27). With
one exception the turtles showed a high level of nest
site fidelity, always returning to Cemetery to nest.
The exception was a turtle which moved approxi-
mately 60 km away from Cemetery to nest at Munda.

Four patterns of inter-nesting movement were
identified (Fig. 5a—d); 8 inter-nesting periods (N = 6
turtles) were spent within 10 km of the prior nesting
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with major resource projects. (e) Density distribution of all median daily positions (3 km? grid) and merged boundaries of core
home range areas (KDE [50 % UD]) for all turtles tracked from CM in relation to offshore title areas

site in a nearshore area north of Cemetery (Fig. 5a); 6
inter-nesting periods (N = 6 turtles) migrated to an
area >10 km but <30 km to the east of Cemetery
(Fig. 5b); 6 inter-nesting periods (N = 4 turtles)
migrated >10 km from Cemetery in a north-westerly
direction (Fig. 5c); and 7 inter-nesting periods (N = 6
turtles) migrated in an easterly direction to an area
>30 km from Cemetery (Fig. 5d).

Home range

The size of inter-nesting core-use areas (50 % UD)
for each tracked turtle ranged from 1.4 — 601.1 km?

at Barrow (mean 143.1 + 170.9 km? n = 26), 4.6—
166.9 km? at Cemetery (mean 75.7 + 61.7 km? n = 9)
and 89.0 — 337.1 km? at Thevenard (mean 191.6 +
91.3 km?, n = 6). Body size did not correlate with size
of core-use areas (n = 41, Spearman's rank correla-
tion coefficent [rg] = 0.022, p = 0.892). There was no
significant difference in home range area for turtles
tracked from offshore islands (Barrow and Theve-
nard), compared to turtles tracked from the mainland
(Cemetery) (Mann-Whitney U= 177, p >0.05). There
was a significant positive correlation between the
total distance travelled during the inter-nesting
period for each individual turtle and the size of their
home range area (n =41, rs = 0.751, p <0.0001).
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Potential interaction with the resources industry

No flatback turtles tracked from Munda and
Cemetery Beach recorded median daily positions
within an offshore petroleum title area. In contrast,
median daily positions of turtles from Thevenard
Island and Barrow Island showed a high degree of
overlap with offshore petroleum title areas during
their overall inter-nesting period, 80.8 + 8.0 % (range
=68.4-92.9, n = 6) and 87.3 = 17.8% (range = 40.6 —
100.0, n = 33), respectively (Figs. 2e & 3e).

There was no overlap between inter-nesting core
home range areas (50 % UD KDE) of individual tur-
tles tracked from Cemetery and offshore petroleum
title areas (Fig. 5e). The overlap of core home range
areas with offshore petroleum title areas for individ-
ual turtles tracked from Thevenard and Barrow
Island was 85.7 + 5.3 % (range = 75.2-89.9, n = 6) and
88.6 £ 19.9% (range = 27.6-100, n = 26), respectively
(Table 1, Figs. 2e & 3e).

Twelve major resource developments involving
offshore infrastructure or dredging were identified
between Exmouth and Port Hedland; 7 develop-
ments are currently operating, 3 are under construc-
tion and 2 are proposed. At Thevenard, 4 of 12 (33 %)
inter-nesting tracks passed within 5 km of 3 major
resource developments located on the mainland:
Wheatstone liquefied natural gas (LNG) plant (under
development), Ashburton North Multi-user Port and
Handling Facility (proposed), and the Onslow Salt
Jetty (operating), situated 26, 21, and 25 km to the
south of Thevenard, respectively. All 4 tracks fol-
lowed the same mainland-west distribution pattern
(Fig. 2c). All inter-nesting tracks from Barrow were
situated within 5 km of the Gorgon Gas Development
(under development), with 26 inter-nesting tracks
remaining <10 km from Barrow (Fig. 3a). No individ-
ual inter-nesting tracks from Munda were located
within 5 km of an existing or planned major resource
development. All inter-nesting tracks from Cemetery
were situated within 5 km of the port expansion at
Port Hedland (planned), with 8 inter-nesting tracks
remaining <10 km from Cemetery (Fig. 5a).

DISCUSSION

Flatback turtles from 4 rookeries within the same
genetic management unit demonstrated variable
patterns of inter-nesting movement. At each rookery
some flatback turtles remained <10 km from the
nesting beach; some turtles from offshore island
rookeries moved up to 62.1 km towards the Australian

mainland coast; and some turtles from 1 mainland
rookery moved adjacent to the coast, up to 56.6 km
away from the nesting beach. With the exception of
Mundabullangana, some turtles from each rookery
were recorded in marine areas that overlap with
existing and potential industry development.

Marine turtles are believed to be capital breeders
(Hamann et al. 2002) and thus need to conserve
energy during the nesting season. Hence, the main
driver behind the inter-nesting behaviour is hypothe-
sised to be related to optimisation of energy reserves
in a manner most suited to the localised conditions
to ensure maximum seasonal reproductive output
(Houghton et al. 2002). It is therefore likely that, sim-
ilar to other species, biophysical conditions play a
role in driving the variation that we found in inter-
nesting patterns among rookeries (Hays et al. 2002,
Sperling 2007, Schofield et al. 2010, Shillinger et al.
2010).

One environmental variable known to directly
influence the length of the inter-nesting interval is
sea surface temperature, with warmer sea surface
temperatures in the inter-nesting habitat resulting in
shorter intervals (Sato et al. 1998, Hays et al. 2002,
Fossette et al. 2012). As such, exposure of females to
warmer sea surface temperatures across a nesting
season may reduce the overall length of time re-
quired to lay the full complement of clutches (Hays et
al. 2002). Our data demonstrate considerable varia-
tion in inter-nesting space use, both among and
within females. This variation could be related to
spatio-temporal variation of sea surface temperature
and behavioural thermoregulation, with inter-nest-
ing flatbacks seeking higher ambient water tempera-
tures to maintain a higher body temperature, as has
been demonstrated in other marine turtle species
(Schofield et al. 2009, Fossette et al. 2012).

Other authors have demonstrated that one behav-
ioural strategy employed by inter-nesting marine tur-
tles to optimise energy reserves, is to rest and remain
inactive on the seabed (Hays et al. 2000, Fossette et
al. 2012). In particular it is suggested that, when rest-
ing, turtles (1) use deeper and slower moving water
in order to remain on the seabed for longer periods,
thus minimising the energy cost of commuting to the
surface (Hays et al. 2000, Houghton et al. 2002,
Minamikawa et al. 2000) and (2) alter their dive
behaviour to utilise a specific bathymetric depth that
maximises the oxygen store, while still attaining
near-neutral buoyancy on the seabed (Hays et al.
2000). It is therefore possible that the inter-nesting
patterns we found are related to bathymetry and
could reflect a search by the females for areas of suit-
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able depth or hydrodynamic conditions in which effi-
cient resting can take place. Our data highlight an
important research gap that could be addressed by
combining inter-nesting habitat boundaries and
travel paths overlaid with bathymetry and sea sur-
face temperature.

The long circuitous movement patterns required to
locate a suitable inter-nesting area may place pres-
sure on turtles' limited energy budget (Houghton et
al. 2002). It is possible that the individual turtles that
demonstrated longer than average movement pat-
terns in this study were searching for inter-nesting
habitat of suitable hydrodynamic conditions. The
long search times could result if no suitable habitats
are encountered immediately following departure
from the nesting beach. Further investigation of
localised hydrodynamic conditions in relation to spe-
cific movement, orientation and dive patterns, in tan-
dem with development of a habitat suitability model,
is required to either confirm or refute this hypothesis
and elucidate factors affecting inter-nesting habitat
selection. Doing so would make an important contri-
bution to our understanding of turtle reproductive
ecology (Hamann et al. 2010).

The flatback turtle is listed as a threatened species
under Australian legislation, making the species
a 'Matter of National Environmental Significance
(MNES)' under the Environment Protection and Bio-
diversity Conservation (EPBC) Act. Therefore, under-
standing the interactions between major resource
developments, petroleum title areas and the regional
distribution of inter-nesting habitat selected by flat-
back turtles is critical in predicting the cumulative
risk and exposure to anthropogenic disturbance, and
in establishing long-term population viability. Our
results indicate that flatback turtles nesting at Theve-
nard and Barrow Islands use inter-nesting areas that
overlap with title areas released for petroleum-
related activities, and Thevenard turtles were exposed
to 3 planned or operating major resource develop-
ments situated away from their nesting site. Because
the flatback turtle is listed as an MNES, our results
are important for 3 reasons: (1) the presence of flat-
back turtles within a proposed development footprint
will trigger the need for an EIA and ensure the refer-
ral of the project to the Australian Government's
Department of Environment for approval; (2) existing
environmental legislation does not account for poten-
tial cumulative impact (Grech et al. 2013); and (3) the
EIA scoping process for a planned major resource
development may not consider the potential offshore
presence of inter-nesting flatback turtles from rook-
eries situated further away, with our results suggest-

ing turtles from rookeries situated up to 62.1 km
away would need to be considered (based on the
maximum inter-nesting displacement distance re-
corded in this study). In addition, turtles that
remained in the nearshore environment at Barrow
and Cemetery were potentially exposed to industry-
related vessel movements associated with major
resource developments situated near their respective
rookeries, as well as vessel movements linked to the
existing port at Port Hedland. Our findings have
important implications for both the Australian Gov-
ernment and industry when quantifying project-spe-
cific and cumulative risk and when assessing the
conservation management of flatback turtle nesting
and inter-nesting habitat in Western Australia.
Marine Protected Areas (MPAs) are recognised as
a viable and proven conservation measure for spe-
cies protection during biologically sensitive periods,
and in ecologically sensitive areas of their known
geographic and temporal ranges (Roberts 2005, Scott
et al. 2012). Questions remain regarding the relative
effectiveness of MPAs in providing adequate protec-
tion for species that are highly mobile, distributed
across a wide geographic range and exhibit unpre-
dictable movement patterns (Roberts et al. 2003,
Dobbs et al. 2007, Dryden et al. 2008), features that
were demonstrated by flatback turtles within this
study. However, we also found some inter-nesting
features that were consistent across rookeries. In par-
ticular, at all 4 rookeries we identified a nearshore
(<10 km) inter-nesting distribution pattern from some
of the tracked turtles along with their core inter-nest-
ing home range areas. This consistency highlights an
opportunity to implement boundary-specific protec-
tion measures, effectively encompassing a large pro-
portion of the inter-nesting population and/or habitat
(as defined by boundaries of the core home range
areas) and possibly incorporating them into industry-
specific management or operational plans.
Australian Federal and State legislation requires
protection measures designed to manage, mitigate or
remove the predicted species-specific risks of each
project or development. Localised protection meas-
ures are devised based on the findings of EIAs and
implemented through project-specific Environmental
Management Plans. Lack of data regarding offshore
marine turtle abundance and distribution therefore
constrains development of effective management
measures for this species, or the species may be en-
tirely overlooked during the EIA phase. Our data,
which demonstrate that turtles can be exposed to
risks from multiple projects, would suggest that exist-
ing legislation may not consider cumulative risks to
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the same individuals and rookeries across multiple
projects. Variability in inter-nesting distribution out-
lined in this study should therefore be considered
when determining management measures.

Overall, the wide ranging inter-nesting movement
patterns shown in this study highlight a need for the
Australian Government and industry to expand the
scope of EIA, ensuring adequate protection is pro-
vided to inter-nesting flatback turtles that can travel
up to 62.1 km away from their rookery between nest-
ing events. In addition, the similar nearshore inter-
nesting movement pattern recorded by some flatback
turtles at each rookery offers an opportunity to estab-
lish boundaries for small-scale spatial and temporal
protection measures that could provide protection for
a large proportion of the inter-nesting population.
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