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SPECIAL ISSUE ON FISHERIES OCEANOGRAPHY

Early Life History and Fisheries Oceanography
 New Questions in a Changing World

ABSTRACT. In the past 100 years since the birth of fisheries oceanography, research 
on the early life history of fishes, particularly the larval stage, has been extensive, and 
much progress has been made in identifying the mechanisms by which factors such 
as feeding success, predation, or dispersal can influence larval survival. However, in 
recent years, the study of fish early life history has undergone a major and, arguably, 
necessary shift, resulting in a growing body of research aimed at understanding the 
consequences of climate change and other anthropogenically induced stressors. Here, 
we review these efforts, focusing on the ways in which fish early life stages are directly 
and indirectly affected by increasing temperature; increasing CO2 concentrations, and 
ocean acidification; spatial, temporal, and magnitude changes in secondary production 
and spawning; and the synergistic effects of fishing and climate change. We highlight 
how these and other factors affect not only larval survivorship, but also the dispersal 
of planktonic eggs and larvae, and thus the connectivity and replenishment of fish 
subpopulations. While much of this work is in its infancy and many consequences are 
speculative or entirely unknown, new modeling approaches are proving to be insightful 
by predicting how early life stage survival may change in the future and how such 
changes will impact economically and ecologically important fish populations. 

CAPTION. Larval stage of selected 
fish (from left to right): armored 
searobin, largetooth flounder, byth-
itid brotula, and little tunny. Photos 
by Cedric Guigand
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aberrant drift hypothesis (1914, 1926), a 
groundbreaking theory that highlighted 
the importance of variability in the trans-
port and dispersal of eggs and larvae by 
ocean currents in shaping recruitment 
patterns. Thus, Hjort touched upon two 
of the three major challenges faced by fish 
larvae in the plankton: finding food and 
reaching suitable juvenile habitat. Real 
progress in understanding the third crit-
ical hurdle—avoiding predators—did not 
come for another 75 years (Bailey and 
Houde, 1989). 

With Hjort laying the foundation for 
early life history research in the twentieth 
century, the race to solve the “recruitment 
problem” picked up considerable steam 
in the last quarter of the century (Houde, 
2008), especially after David Cushing 
extended Hjort’s critical period hypoth-
esis to the entire larval period with his 
match-mismatch hypothesis (Cushing, 
1974, 1990). This hypothesis emphasized 
the degree to which fish larvae and their 
planktonic prey overlap temporally (as 
determined by the timing of productivity 
blooms and fish spawning) as a key factor 
in determining larval survival and recruit-
ment. The match-mismatch hypothe-
sis has had a remarkable impact on the 
direction of larval fish research, and it 
laid the cornerstones for modern fisheries 
oceanography. A wave of early life history 
research led to the development of sev-
eral other hypotheses on the mechanisms 

governing early life survival (Houde, 
2008; Hare, 2014), yielded important dis-
coveries in fish biology (e.g., daily incre-
ments in fish otoliths, or “ear stones”), 
drove advances in technology and 
techniques (e.g.,  coupled biological- 
physical models), and underpinned 
large-scale interdisciplinary programs 
(e.g.,  California Cooperative Oceanic 
Fisheries Investigations [CalCOFI], 
Fisheries Oceanography Coordinated 
Investigations [FOCI], Global Ocean 
Ecosystem Dynamics [GLOBEC]) that 
all contributed greatly to our ability to ask 
and answer interesting questions about 
survivorship in the early life stages of 
fishes. Some of the most important find-
ings have elucidated the ways in which 
larval growth rates interact with overall 
mortality rates (growth- mortality hypoth-
esis), largely due to reduced susceptibil-
ity to predation for a larva growing more 
quickly through its vulnerable planktonic 
period (Cushing, 1975; Houde, 1987, 
1997; Anderson, 1988). 

Building upon thorough reviews of the 
history and hypotheses of early life his-
tory and fisheries oceanography (Houde, 
2008; Peck et  al., 2012; Hare, 2014), we 
focus here on a pressing contemporary 
question in early life history research: the 
implications of global change and other 
anthropogenic impacts on fish early life 
survival. As in Hjort’s time, planktonic 
fish larvae today still have to find food, 

BACKGROUND
Understanding the early life stages of 
fishes, and the processes influencing their 
survival, is at the heart of fisheries ocean-
ography, along with the field’s historical 
roots. In the early twentieth century, the 
founding father of fisheries oceanogra-
phy, Johan Hjort of Norway, led interna-
tional efforts to understand why import-
ant fish stocks yield such remarkably 
large variations in catch. While most 
researchers were focused on the move-
ment of adults in and out of fishing 
grounds as a cause of recruitment fluc-
tuations (Sinclair, 1997), Norway’s enor-
mous 1904 year class of herring inspired 
Hjort to think instead about the recruit-
ment process—that is, the survival of 
the early life stages. This year, we cel-
ebrate the centennial of the publica-
tion of Hjort’s (1914) seminal work enti-
tled “Fluctuations in the great fisheries 
of northern Europe, viewed in the light 
of biological research” (see Browman, 
2014). This is where Hjort first laid out 
his most enduring contribution to the 
field of fisheries oceanography, the criti-
cal period hypothesis, which posited that 
recruitment levels could be greatly influ-
enced by the degree to which sufficient 
types and abundances of planktonic prey 
were available to millimeter-scale fish lar-
vae as they first transitioned to exogenous 
feeding. In addition to the critical period 
hypothesis, Hjort also put forth his 
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avoid predation, and end up in suit-
able juvenile habitat, yet a whole new 
suite of issues has emerged (Figure  1), 
and we must now consider how anthro-
pogenically induced stressors affect nat-
ural processes. Specifically, how will 
climate-driven warming and ocean acid-
ification directly and indirectly affect the 
life histories of planktonic larvae in their 
journey from spawning sites to juvenile 
nursery areas? How will ocean produc-
tivity change in magnitude as well as in 
time and space, and how will dynamics 
of productivity, zooplankton composi-
tion and abundance, and spawning out-
put (in light of fishing pressure) influence 
early life survival and recruitment? How 
will ocean currents be impacted by cli-
mate change to affect larval transport and 

population connectivity? Perhaps most 
importantly, how will all of these ongoing 
and impending global changes interact to 
affect the early life stages of fishes? Our 
goal here is to review some of the prog-
ress made in addressing these important 
questions, and to call attention to critical 
knowledge gaps yet to be filled. 

TEMPERATURE EFFECTS
The increase in ocean temperatures 
throughout the next century will have 
major implications for the structure and 
functioning of marine ecosystems. With 
average sea surface temperatures poten-
tially rising 3°C or more by the year 2100 
(Collins et al., 2013), effects on fish early 
life stages inhabiting those surface waters 
could be profound. Rates and magnitudes 

of change will likely vary regionally; tem-
peratures near the equator, for example, 
should increase more rapidly than those 
at higher latitudes (Collins et  al., 2013; 
Kirtman et  al., 2013). Tropical larvae 
therefore may be subject to more dramatic 
temperature shifts, and they may also be 
particularly sensitive to increases, given 
that they are adapted to relatively narrow 
and stable thermal regimes (Tewksbury 
et  al., 2008). Polar populations, too, are 
generally stenothermal, and they might 
be similarly sensitive to warming. Because 
mid-latitude fish populations are already 
subject to a wider range of tempera-
tures, partly due to interdecadal fluctu-
ations in circulation and surface heating 
in those regions (Wang et al., 2010), they 
could be more tolerant of temperature 

variation than their tropi-
cal and polar counterparts. 
Nevertheless, fish early life 
stages across latitudes will 
be affected by changing 
temperatures, whether by 
acute or chronic (i.e., sub-
lethal) mechanisms. 

In both embryos (fer-
tilized eggs and yolk-sac 
larvae) and exogenously 
feeding larvae, lethal tem-
peratures exist at which 
survival is simply not pos-
sible. Surprisingly, pro-
tocols used to determine 
the critical limits that 
define the thermal niches 
of juvenile and adult fishes 
(Pörtner and Peck, 2010) 
have not been applied to 
embryos or larvae. Thus, 
it is difficult to compare 
whether eggs and larvae 
of a given species have 
narrower or wider ther-
mal windows than later 
life stages (Rijnsdorp et al., 
2009). However, across all 
life stages, tropical spe-
cies exist near their ther-
mal optima (Rummer 
et  al., 2014) and upper 

FIGURE 1. Schematic of the potential effects of climate-related and other anthropogenically induced changes on 
fish early life history. The complexity and potential for interactions of effects are evident from the many arrows 
from the potential stressors (dotted boxes) that are shared by each influential ecosystem component (i.e., pred-
ators and prey of early life stages denoted in dashed boxes) and early life stage process (five solid boxes). Dark 
red lines are direct effects on early life stages, while orange lines indicate effects on predators and prey of early 
stages that can, in turn, impact early life survival. Patterns of larval dispersal and population connectivity can vary 
with variability in all five early life stage processes depicted here, and thus be impacted by all anthropogenic 
stressors. It is worth noting that this diagram is not exhaustive in the number of potential effects or stressors, and 
that the stressors are broad (e.g., “habitat degradation” could range from chemical pollution to sound pollution, 
pelagic environments to benthic) and are not mutually exclusive (e.g., temperature changes are likely to cause 
changes in the physics of the ocean, and temperature can be the ultimate or proximate cause of habitat degrada-
tion). Further, to reduce complexity, interactions among early life stage process boxes (e.g., egg quality and larval 
growth and survival) are not included.
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thermal limits, while temperate species 
tend to have the widest thermal windows 
(e.g., from 3° to 19°C in Atlantic herring). 

Although some species may tolerate a 
range of temperatures, thermal variability 
has important effects on growth and sur-
vivorship of marine fish early life stages 
(Houde, 1989; Pepin, 1991). Because 
fish eggs and larvae are poikilothermic 
(cold-blooded), these effects are largely 
a function of the kinetics of cellular- 
level processes, but the directionality of 
change—whether key rates increase or 
decrease—can depend on each organism’s 
particular thermal niche (Hutchinson, 
1957). Both the hatch rate of embryos and 
the rate of embryo development (fueled 
by yolk utilization) increase with increas-
ing temperature (Pepin, 1991; Peck et al., 
2012). Cold-temperate species such as 
winter flounder take 30 days to hatch at 
2°C but hatch after about one week at 
12°C. By comparison, tropical species can 
hatch in less than one day at temperatures 
>25°C. The time it takes for newly hatched 
larvae to exhaust their endogenous yolk 
reserves ranges from about 400 hours to 
just 40 hours in species spawning at mean 
water temperatures of 5°C and 32°C, 
respectively (Peck et al., 2012), and within 
species, optimal temperatures exist where 
yolk utilization efficiency is highest, lead-
ing to larger sizes of larvae at hatch and/or 
at the time of yolk exhaustion.

After exogenous feeding has begun, 
temperature markedly affects all aspects of 
growth physiology and regulates the bal-
ance between energy gained from feeding 
and lost via metabolism. Metabolic rates 
of marine fish larvae have been measured 
since the 1960s, and the effect of tem-
perature on oxygen consumption rate has 
been reported for several species. Q10 val-
ues (proportional increases in rates with 
a concomitant 10°C increase in tempera-
ture) typically range from ca.1.7 to 2.5, so 
at higher temperatures, substantially more 
food is required to fuel a given amount of 
growth (Houde, 1989). Theoretically, and 
given sufficient prey availability, rapid 
growth has the potential to improve lar-
val fish survivorship. Faster growing 

larvae can more quickly outgrow gape 
(mouth-width)-limited predators, and 
tend to exhibit shorter pelagic larval dura-
tions (O’Connor et al., 2007), resulting in 
reduced exposure to the high risk of mor-
tality during this particularly vulnerable 
life phase (Cushing, 1975; Houde, 1987; 
Anderson, 1988; Leggett and Deblois, 
1994). Still, as temperature increases 
become more pronounced, any survival 
advantage conferred by faster growth at 
higher temperatures could be offset by a 
likely increase in instantaneous mortality 
rates. With increased prey consumption 
and activity (swimming) at higher tem-
peratures come more frequent encounters 
with predators (Pepin, 1991). Changes in 
water viscosity with increasing tempera-
tures could also undermine larval survival 
because of the relative Reynolds num-
bers of the larvae and their prey. Larval 
fish prey (e.g., copepod nauplii) are much 
smaller than the fish larvae themselves 
(often by an order of magnitude or more), 
and operate at much lower Reynolds 
numbers (meaning they experience much 
more viscous drag). As temperatures 
increase and viscosity is reduced, asso-
ciated improvement in swimming per-
formance or maneuverability should be 
proportionally greater for tiny prey than 
for larger fish larvae (Fuiman, 1986; 
von Herbing, 2002; Gemmell et al., 2013), 
so warmer temperatures could allow prey 
to be more adept at evading larval fish 
predators, thereby compromising lar-
val fish feeding. Finally, if prey levels are 

limited for any reason—a very real possi-
bility given the temporal and spatial shifts 
in prey availability likely to occur in the 
warmer ocean of the future (see phenol-
ogy and productivity section)—mortality 
could stem from starvation due to ther-
mally driven increases in metabolic costs 
in excess of available fuel (Pepin, 1991; 
Munday et al., 2009c).

Importantly, most studies investigat-
ing metabolic rates of larvae have exam-
ined “standard” or “routine” rates of res-
piration (RS and RR), while very few have 
examined the highest, active rates (RA) 
(Peck et al., 2012). Gaining a mechanistic, 
cause-and-effect understanding of how 
temperature influences growth poten-
tial in marine fish larvae (e.g.,  thermal 
reaction norms for growth) will require 
advances in methods that allow the full 
metabolic scope (RA-RS) to be estimated 
at different temperatures. For now, larvi-
culture of commercially important spe-
cies provides the best source of observa-
tions of temperatures optimal for growth 
because field growth data stemming 
from techniques such as otolith micro-
structure analysis are confounded by a 
lack of information on prey fields sur-
rounding individuals.

OCEAN ACIDIFICATION 
AND HIGH CO2

Rising CO2 levels and ocean acidification 
present another threat to early life stages 
of marine fishes. The ocean absorbs 
approximately 30% of the carbon dioxide 
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emitted from human activities such as 
fossil fuel burning, cement production, 
and land clearing (Sabine et  al., 2004). 
The uptake of additional CO2 leads to 
chemical changes that lower seawater 
pH and reduce the availability of carbon-
ate ions (Doney et al., 2009; Feely et al., 
2009). Average ocean pH is estimated 
to have declined by 0.1 units in the past 
250  years due to the uptake of anthro-
pogenic CO2 and is projected to decline 
by a further 0.3 units by the end of this 
century if the current trajectory of CO2 
emissions is maintained (Feely et  al., 
2009; Collins et al., 2013). Furthermore, 
the atmosphere and the ocean surface are 
in approximate gas equilibrium; there-
fore, as CO2 levels rise in the atmosphere, 
the pCO2 of the ocean also increases 
(Doney et al., 2009). 

Because marine fishes do not have 
extensive calcium carbonate skeletons, 
the rise in ocean pCO2 is a greater con-
cern than the decline in seawater pH and 
changes in the saturation state of car-
bonate ions. Higher ambient CO2 lev-
els (hypercapnia) can cause acidosis of 
the blood and tissues in fishes and other 
water-breathing organisms (Brauner and 
Baker, 2009; Heuer and Grosell, 2014). 
Juvenile and adult fishes generally have 
well-developed mechanisms for acid-base 
regulation and can cope with pCO2 levels 
much higher than those projected due to 
climate change (Brauner and Baker, 2009; 
Esbaugh et al., 2012; Heuer and Grosell, 
2014). However, in their early life stages, 
fishes are developing their physiological 
regulatory processes and at the same time 
undergoing rapid morphological change. 

In general, eggs and embryos of marine 
fishes appear to be relatively tolerant to 
CO2 levels within the range projected 
for the near future. Embryonic dura-
tion and hatching success are unaffected 
at high CO2 in the majority of experi-
ments conducted to date (e.g.,  Munday 
et  al., 2009b; Franke and Clemmesen, 
2011; Hurst et  al., 2013). For larval 
fishes, however, there appears to be con-
siderable variation in sensitivity to ele-
vated CO2, with some studies reporting 

significant negative effects while others 
do not. For example, growth and survival 
declined at high CO2 in larvae of two spe-
cies, inland silverside (Baumann et  al., 
2012) and summer flounder (Chambers 
et al., 2014), but not in orange clownfish 
(Munday et  al., 2009b), walleye pollock 
(Hurst et al., 2013), cobia (Bignami et al., 
2013b), or European seabass (Pope et al., 
2014). In fact, larval growth (size-at-age) 
increased in clownfish and seabass, and 
mortality also declined in seabass, when 
reared at elevated CO2. Increases in mor-
phological deformities and tissue dam-
age have been observed in Atlantic cod 
(Frommel et al., 2012) and summer floun-
der (Chambers et  al., 2014), but not in 
Baltic cod (Frommel et al., 2013) or other 
species. While much more research is 
needed, clearly there is high variability in 
the effects from and sensitivity of growth 
and mortality to high CO2 among spe-
cies, and thus the potential for significant 
differences in survival and recruitment.

One consistent effect observed in 
larval fishes reared at elevated CO2 is 
increased otolith size (Checkley et  al., 
2009; Munday et  al., 2011; Hurst et  al., 
2012; Bignami et al., 2013a; Maneja et al., 
2013). While the implications of large 
otoliths are unknown, they could poten-
tially include changes to hearing sensitiv-
ity or orientation (Bignami et al., 2013a), 
which could, in turn, affect navigation 
and the ability to reach juvenile habitat.

Unexpected effects of high CO2 on lar-
val and juvenile fishes are dramatic loss of 
sensory performance and altered behav-
ior. Experiments over the past few years 
show that exposure of larval and juve-
nile fishes to elevated CO2 affects olfac-
tory (Munday et al., 2009a, 2014; Dixson 
et  al., 2010) and auditory preferences 
(Simpson et  al., 2011), visual reactiv-
ity (Chung et al., 2014), behavioral later-
alization (Domenici et  al., 2012), activ-
ity levels (Munday et  al., 2010, 2013, 
2014; Pimentel et al., 2014), and learning 
(Ferrari et  al., 2012). The reason for this 
diverse suite of sensory and behavioral 
impairments appears to be interference of 
high CO2 with the function of GABA-A 

neurotransmitters (Nilsson et  al., 2012; 
Chivers et al., 2014; Hamilton et al., 2014). 
These remarkable sensory and behavioral 
changes affect habitat selection and the 
timing of settlement to coral reef habi-
tats (Devine et  al., 2012), predator- prey 
interactions (Ferrari et  al., 2011; Allan 
et  al., 2013), and competitive abilities 
(McCormick et  al., 2013). A major con-
cern is that reduced responses to rele-
vant sensory cues, altered activity levels, 
and impaired decision making could have 
serious implications for larval survival 
and recruitment to benthic juvenile popu-
lations (Munday et al., 2009a, 2010).

While some laboratory experiments 
have detected negative effects on lar-
val growth and survival, conclusions 
about the impacts on fisheries must be 
made with caution. New studies show 
that transgenerational exposure to ele-
vated CO2 may help moderate impacts of 
acidification. In the first study of its kind, 
Miller et  al. (2012) showed the negative 
effects of elevated CO2 on the growth and 
survival of juvenile anemonefish were 
completely absent when their parents 
also experienced high CO2. Similarly, in 
an elegant new field study, Murray et al. 
(2014) showed the effects of high CO2 
on survival of Atlantic silverside dimin-
ished when parents had also experienced 
higher CO2 levels. While some behavioral 
effects of high CO2 may also be partly 
restored by transgenerational exposure 
(Allan et al., 2014), other behavioral traits 
do not improve after long-term (Munday 
et  al., 2014) or transgenerational expo-
sure to high CO2 (Welch et  al., 2014). 
In this case, adaptation of sensory sys-
tems and behavioral responses through 
genetic selection would be required to 
overcome the negative effects of high 
CO2. We have yet to determine whether 
such adaptation can occur fast enough 
to match the rapid pace of acidification 
and rising CO2 levels, and future inves-
tigations into the effects of acidification 
on larvae will also have to consider the 
potential trade-offs and constraints of 
simultaneously adapting to ocean warm-
ing (Sunday et al., 2014).
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Box 1. Larval Fish, Climate Change, and Habitat Models

As ocean temperatures have warmed in recent 
decades, a growing body of evidence has 
shown poleward shifts in the distributions of 
many fish species (Perry et al., 2005; Nye et al., 
2009; Last et al., 2011). The result is often a shift 
in spawning grounds and in the times, locations, 
and environments in which fish eggs and lar-
vae occur (Hsieh et al., 2009; Shoji et al., 2011). 
There is great interest in developing an ability to 
predict such shifts, both to validate past trends 
and to predict future climate change impacts. A 
group of techniques known as habitat models 
can help to achieve predictive ability.

Habitat models use environmental predic-
tors to forecast the occurrence, abundance, or 
behavior of a species or community of interest 
(Guisan and Zimmermann, 2000). Model struc-
tures can range from simple thermal envelopes 
or niches through to highly complex models 
that consider energy budgets across different 
life stages, food web interactions, and more. If 
habitat models can successfully define environ-
mental constraints on species habitats using 
present-day data, those relationships can then 
be extrapolated into the future.

To date, most efforts using habitat model-
ing to predict climate change impacts on fish 
or fisheries have focused on adult life stages 
(Fogarty et  al., 2008; Cheung et  al., 2009; 
Astthorsson et  al., 2012; Hare et  al., 2012). 

Application of larval or spawning habitat mod-
els to climate change research questions is less 
common, often due to a lack of species-level 
observations from egg and larval surveys. 
(Such observations are necessary in order to 
calibrate and/or validate models.) Additionally, 
environmental tolerances of adult and early 
life stages within species may be markedly dif-
ferent (Engelhard and Heino, 2006; Rijnsdorp 
et al., 2009; Lehodey et al., 2010; Muhling et al., 
2011). As a result, models of climate impacts on 
adult fishes are unlikely to translate to larvae. 
To effectively model the consequences of cli-
mate change on early life history stages, two 
important questions must therefore be consid-
ered: how will climate change impact when and 
where fish reproduce, and how will it impact 
what larvae experience as they attempt to feed, 
grow, and survive?

The first question is generally more straight-
forward to address using habitat models. Where 
temperature limits on spawning and larval dis-
tribution are well described, and the under-
lying physiological and behavioral processes 
understood, relatively simple models can be 
used to predict changes in spawning behav-
ior. For example, Muhling et al. (2011) used sev-
eral decades of larval surveys and commercial 
fisheries catch data to define lower thermal lim-
its of spawning initiation in Atlantic bluefin tuna 

and upper limits of adult thermal tolerance. 
Habitat modeling results predicted a reduction 
in spring spawning habitat in the Gulf of Mexico 
throughout the remainder of the twenty-first 
century (Figure B1). 

The second question is much more complex 
and has not been widely addressed. Potential 
changes in spawning activity have been esti-
mated as part of broader models consider-
ing food web effects and adult distributions 
(e.g., Lehodey et  al., 2010). Results from this 
research showed a general increase in pre-
dicted suitable spawning areas for bigeye 
tuna in the subtropical Pacific and some loss 
of spawning habitat in the tropics. However, to 
accurately predict the potential effects of cli-
mate change on larval survival and eventual 
recruitment, our understanding of how these 
processes operate under present conditions 
needs significant improvement. Temperature 
affects a multitude of physiological processes, 
yet drawing of robust connections between 
temperature and recruitment is generally rare 
(Myers, 1998; Sponaugle et al., 2006). In addi-
tion, recruitment is often determined at differ-
ent points in early life stages of different spe-
cies (Sissenwine, 1984; Leggett and Deblois, 
1994). As a result, while the temporal and spa-
tial extent of spawning can frequently be well 
predicted using simple temperature relation-
ships, recruitment usually cannot. 

It is important to note that an effective model 
of climate change impacts on larvae also needs 
to consider the dominant processes of greatest 
significance to the particular species of interest. 
The relative importance of an adequate food 
supply, sufficiently low predation pressure, and 
retention in a suitable environment will be dis-
tinct between an oceanic tuna, a coral reef fish, 
and a temperate gadoid or clupeiod species. 
The definition of “suitable” for each of these 
groups will also be completely different. While 
habitat models are an emerging tool for pre-
dicting climate change impacts on populations, 
they will only be as good as their input data. 
The more field and physiological data that are 
incorporated into model building, and the stron-
ger the evidence for mechanistic links between 
species and their environments, the more con-
fidence can be placed in model results. The 
implication is that, although habitat modeling 
techniques continue to move forward, the lack 
of basic ecological and physiological data may 
be a limiting factor in many situations. This lim-
itation is especially true for the early life history 
stages of fishes, where these processes are 
poorly understood (Peck and Hufnagl, 2012; 
Peck et al., 2013).

FIGURE B1. Predicted future change to spawning and lar-
val habitat suitability for Atlantic bluefin tuna in the Gulf of 
Mexico based on outputs from predictive habitat models. 
Results are for the general months of spawning and larval 
presence (columns) in the twentieth century, mid-twenty-
first century, and late twenty-first century (rows). Modified 
from Muhling et al. (2011)
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CHANGES IN THE TEMPORAL 
AND SPATIAL DISTRIBUTIONS 
OF PRODUCTIVITY AND EARLY 
LIFE STAGES
Timing of life history processes is crit-
ical for many organisms to survive and 
grow. Marine fish, like many other organ-
isms, have evolved to align the timing of 
their seasonal life cycle events (phenol-
ogy) with environmental seasonality and 
other organisms’ phenology in order to 
maximize survival. For many fish spe-
cies, such relationships are particularly 
important during the vulnerable larval 
stage; this is, of course, fundamental to 
both Hjort’s (1914, 1926) critical period 
hypothesis and Cushing’s (1974, 1990) 
match- mismatch hypothesis. The tempo-
ral overlap of larvae with their preferred 
zooplankton prey is dependent upon 
the timing of both spawning and sea-
sonal (e.g.,  spring) zooplankton blooms. 
Dynamics in the plankton are difficult to 
document, but even a small timing mis-
match could theoretically have signifi-
cant implications for recruitment vari-
ability due to the enormous numbers of 
fish larvae and the fact that slight changes 
in the proportion of larval survival can 
have major effects on recruitment to later 
stages (Houde, 1987). 

In the context of climate change, 
phenology-related impacts are of criti-
cal importance because changes to either 
spawning or productivity blooms will 
yield an effect. Climate change will likely 
lead to mean directional shifts in the tim-
ing of spawning, as well as increased vari-
ability in the conditions (e.g.,  tempera-
ture) that influence phenology, potentially 
resulting in increasing frequency of mis-
matches. Although both fish larvae and 
their prey can and will exhibit shifts in 
phenology with changing conditions, 
synchrony of these shifts among tro-
phic levels is unlikely (Hays et al., 2005). 
As yet, direct phenological effects of cli-
mate change on larval fish feeding suc-
cess and later-stage recruitment have 
not been well documented. However, the 
likelihood for such effects is strongly sup-
ported by empirical evidence of changes 

in the timing of plankton blooms as well 
as of fish spawning.

Usually, a mismatch occurs due to 
low covariability of biotic responses 
to changes in environmental cycles 
(e.g., light, temperature, and ocean strat-
ification; Ji et al., 2010). For example, the 
spawning times of many fish popula-
tions in temperate and high latitudes are 
largely modulated by water temperature 
or photoperiod (Hutchings and Myers, 
1994; Carscadden et al., 1997; Sims et al., 
2004), and, though the data are limited, 
there is some evidence for climate change 
(temperature) effects on the temporal 
occurrence of fish larvae (Genner et  al., 
2010a; Asch, 2013). The timing of phyto-
plankton blooms, by contrast, is usually 
related to the degree of water column 
stratification, which can be affected by a 
variety of processes, including heat flux, 
wind stress, and freshwater input. In the 
seasonally ice-covered polar regions, the 
timing of ice advance and retreat could 
also play a critical role in controlling 
the timing of primary production pro-
cesses (e.g.,  Kahru et  al., 2011; Ji et  al., 
2013), which can further affect higher 
trophic levels, including zooplankton 
(Søreide et al., 2010) and fish populations 
(e.g., Hunt and Stabeno, 2002; Wassmann 
et  al., 2011). Climate change has caused 
significant phenological shifts in many 
aquatic ecosystems (Sparks and Menzel, 
2002; Durant et  al., 2007; Poloczanska 
et al., 2013), and these shifts are likely to 
continue in the future, but the full impli-
cation of phenological mismatches for 
marine fish larvae and their prey under 
future climate scenarios requires fur-
ther examination.

One difficulty is that the timing of a 
match or mismatch is not a simple mat-
ter. It has been suggested that abundance 
of either the consumer (Cushing, 1990) 
or its prey (Durant et  al., 2005, 2007) 
can affect the degree of timing overlap, 
and high prey abundance could compen-
sate for a small mismatch in the location 
or timing of the peaks. Therefore, sim-
ply using peak timing as the phenologi-
cal index is probably not sufficient when 

examining the match-mismatch between 
larval fish and their plankton prey. It is 
more important to know when and how 
long prey concentrations provide opti-
mal feeding conditions. Thus, a com-
prehensive set of timing indices, such 
as start, peak, end, and duration of sea-
sonal events is needed to systematically 
assess the phenology of target organisms  
(Ji et al., 2010). 

Spatial variability of phenological pat-
terns is another important consideration 
for larval fish survival. The optimal con-
dition is a match between larvae and prey 
in both time and space (Figure 2A), while 
a mismatch in either (Figure  2B,C) or 
both (Figure  2D) is likely to negatively 
affect recruitment success. Cushing et al. 
(1990) discussed the spatial issue in an 
attempt to reconcile match-mismatch 
with the member/vagrant hypothesis 
proposed by Iles and Sinclair (1982). He 
pointed out that, within a larval retention 
area, a mismatch between the timing of 
spawning and prey production could be 
detrimental to fish larvae, and that lar-
vae drifting away from the retention area 
would be subject to a spatial mismatch 
whether a temporal match is achieved or 
not. Thus, the degree of overlap between 
predator and prey is multifaceted. 

It is not a trivial task to fully capture 
spatially explicit phenology patterns of 
plankton and larval fishes. Long-term 
plankton data sets with high temporal res-
olution are rare (Ji et al., 2010). Remote-
sensing data can provide high-resolution 
estimates of phytoplankton, but they are 
limited to the surface layer of less turbid 
offshore waters and are only available for 
recent decades. Nevertheless, there are 
some successful examples of synthesiz-
ing remotely sensed ocean color data to 
explain the variability of larval fish sur-
vival (e.g.,  Platt and Csar Fuentes-Yaco, 
2003), and the number of examples using 
this method is expected to increase as the 
time series become longer. Compared 
with phytoplankton, even fewer data are 
available for quantifying zooplankton 
phenology. A recent review by Mackas 
et al. (2012) compiled most of the available 
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time series, showing large (one to three 
months) inter annual variability in the 
seasonal timing of some zooplankton 
taxa. Such variability is often correlated 
with anomalies of one (usually tempera-
ture) or more environmental variables. 
Data from long-term, large-scale sur-
veys such as those using the Continuous 
Plankton Recorder (CPR) are extremely 
valuable because they allow detection of 
phenological shifts for both phytoplank-
ton and zooplankton at the basin scale 
(Edwards and Richardson, 2004), and 
they also reveal clear cases where plank-
ton community shifts are correlated with 
recruitment (e.g., Beaugrand et al., 2003).

A recent study (Siddon et  al., 2013) 
assessed the consequence of spatial mis-
matches for walleye pollock and their zoo-
plankton prey in the Bering Sea ecosys-
tem, showing that warming has induced 
the separation of areas with high abun-
dance of juvenile pollock and high zoo-
plankton, and thus leading to low recruit-
ment success. For fish larvae, which are 
far less mobile than juveniles, such a spa-
tial mismatch, as determined by the dis-
tribution of spawning adults, would likely 
have greater effects. Climate-associated 
changes in the distribution of adults have 
been documented for a large number 
of fish species (Perry et  al., 2005; Dulvy 
et al., 2008; Nye et al., 2009; Pinsky et al., 
2013). For example, on the northeast con-
tinental shelf of the United States, 15 of 
30 teleost species were found to have 
shifted north over a 40-year period (Nye 
et al., 2009). For some species, these spa-
tial shifts will translate into a change in 
spawning distribution (and, thus, larval 
distribution), which has been evident in 
a number of species, including yellowtail 
flounder (Figure 3). However, other spe-
cies tend to migrate to a fixed spawning 
location or region regardless of the pre-
vailing conditions. Either scenario could 
result in a spatial mismatch between lar-
vae and their preferred zooplankton prey, 
depending on the extent to which prey 
are also shifting. To date, analyses of spa-
tial changes in both larval fish and their 
prey are rare, as are analyses across life 

stages within a species. Yet, clearly, add-
ing spatial dimensions to the phenolog-
ical match-mismatch concept will be 
essential to a better understanding of cli-
mate impacts on larval fish dynamics. 

CHANGES IN OVERALL 
PRODUCTIVITY
In addition to expected changes in 
the timing and location of productiv-
ity peaks, the absolute levels of primary 
and secondary production will also be 
affected by global change (Bopp et  al., 
2001; Behrenfeld et  al., 2006). The spe-
cific nature of such effects will likely 
depend on latitudinal region as well as 
ecosystem type (Doney, 2006; Boyce 

et  al., 2010; McQuatters-Gollop et  al., 
2011), though universal agreement on 
current and future patterns is still lacking. 
In temperate and subpolar latitudes, evi-
dence suggests primary production will 
increase due to increased stratification 
(from warming and freshening) that will 
keep phytoplankton in the well-lit surface 
waters (Bopp et  al., 2001; Doney, 2006). 
In upwelling ecosystems, winds favoring 
upwelling should increase (Bakun, 1990; 
Bakun et  al., 2010; García-Reyes and 
Largier, 2010), but whether the greater 
intensity of upwelling will overcome the 
effects of increased water column strati-
fication and result in greater productiv-
ity is somewhat uncertain (Auad et  al., 

FIGURE 2. Conceptual diagram of matches and mismatches of fish larvae and their zooplankton 
prey in both time and space. Such spatial and temporal distributions are driven by the time and loca-
tion of fish spawning, and the time and location of seasonal secondary productivity blooms. The 
abundance of both larvae and prey is higher at the center of the contours.



Oceanography |  Vol.27, No.434

2006; King et al., 2011). In polar regions, 
increased temperatures are already reduc-
ing sea ice (and associated ice algae), not 
only resulting in major impacts on ben-
thic ecosystems (Doney et al., 2012) but 
also leading to much greater phytoplank-
ton production due to increased light 
availability (Arrigo et  al., 2008). Even 
with these potential increases in produc-
tion, the major disruptions to polar eco-
systems from sea ice impacts could offset 
any benefits to fish populations conferred 
by greater zooplankton prey availability 
during the planktonic larval stage. 

In lower latitudes, where the water col-
umn is already stratified, stratification is 
predicted to intensify, thereby reducing 
the degree of mixing of deep, nutrient- 
rich waters with sunlit surface waters 
and leading to a drop in net primary pro-
duction (Behrenfeld et  al., 2006). This 
could reduce zooplankton abundances 
and, thus, prey availability for the early 
life stages of fishes (Figure  2E). Less 
prey would add to the challenge already 
imposed by the temperature-induced 
increase in metabolic demands described 
above (McLeod et al., 2013). Interestingly, 
within the phytoplankton community, 
the proportional contribution and overall 
abundance of picophytoplankton is pro-
jected to increase with increasing tem-
peratures (Morán et  al., 2010), so that 
less-efficient transfer of nutrients up the 
food chain would result in food webs 
of low nutritional quality (Richardson, 
2008). Such a shift could substantially 
alter the species composition of the 

zooplankton community because some 
zooplankton taxa (e.g.,  pteropods and 
gelatinous organisms such as appendic-
ularians) consume picophytoplankton 
quite well, while others (e.g.,  calanoid 
copepods) do not. 

As zooplankton community composi-
tion changes, the effect on planktonic fish 
larvae will depend on each species’ diet 
breadth and prey preferences. Mounting 
evidence suggests there is a broad spec-
trum in the degree of prey selectivity 
among larval fish taxa (Figure  4), with 
several taxa exhibiting highly selec-
tive feeding on particular prey types—
including some larval fish taxa nearly 
exclusively consuming appendiculari-
ans or calanoid copepods (Llopiz and 
Cowen, 2009; Llopiz et  al., 2010). Thus, 
shifts in zooplankton community and 
changes in abundance of preferred prey 
types (Figure 2F) mean that some larval 
fish taxa could be “winners,” while oth-
ers could be “losers” if they are unable 
to adapt to new prey regimes by chang-
ing what appear to be intrinsic, “hard-
wired” preferences for particular prey 
types (Llopiz et al., 2010). 

SYNERGISTIC EFFECTS OF 
FISHING AND CLIMATE CHANGE
Fishing impacts on early life history stages 
of marine fish operate through spawning 
adults. The number of offspring produced 
and the quality of those offspring can be 
severely impacted by both the quantity of 
mature adults removed from the popu-
lation and the selective removal of some 

components of the adult population. 
Removal of the largest, oldest fish in the 
population is an inherent consequence 
of fishing. Additionally, fishing pres-
sure is typically applied unevenly across 
the spatial distribution of a population, 
again resulting in selective removal of 
discrete components of mature adults. 
Historically, management objectives have 
focused on the total biomass of mature 
females as the metric for the health of the 
population, with the characteristics of the 
females present in that spawning stock 
assumed to be inconsequential. However, 
severe declines in numerous species that 
were harvested at presumably sustainable 
levels have led many researchers to ques-
tion the assumption that the composition 
of the spawning stock does not matter 
(Berkeley et al., 2004; Hsieh et al., 2006; 
Francis et  al., 2007). If, as is typically 
assumed, year class strength is deter-
mined by the survival of early life stages, 
then the failure of the spawners to sustain 
the population presumably lies with the 
offspring they produce. 

A growing body of literature is doc-
umenting the importance of maternal 
effects on multiple traits of early life stages 
of marine fishes (reviewed in Hixon 
et al., 2014). Among a diverse taxonomic 
range of species, older or larger females 
can have a substantial, disproportion-
ate effect on the likelihood of larval sur-
vival, thereby engendering concern over 
the age/size truncation common to fish-
eries exploitation. Larger/older females 
can increase their reproductive success 

FIGURE 3. Changes in the spa-
tial distribution of spawning 
yellowtail flounder from the 
early 1980s to the early 2000s 
(warmer colors represent higher 
densities). Such distributional 
shifts of spawning output lead 
to shifts in the distribution of lar-
vae, which will likely influence 
the physical and prey environ-
ments experienced by the lar-
vae, thereby affecting larval sur-
vival and recruitment.
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relative to smaller/younger females via 
three primary mechanisms: (1) higher 
fecundity both on absolute (total eggs 
per batch, number of batches per sea-
son) and relative (eggs g–1 female body 
weight) scales; (2) higher offspring qual-
ity (e.g., egg size, lipid content, larval per-
formance); and (3) different spawning 
phenology (greater spread of reproduc-
tion across the season for batch spawners 
or different timing of spawning for total 
spawners; Figure  2E). The importance 
of such factors to population dynamics 
is a function of life history, with slow- 
growing, long-lived species thought to be 
more likely to rely on such reproductive 
strategies and more severely impacted 
by fishing-induced age or size truncation 
than fast-growing, short-lived species.

Habitat quality of the pelagic envi-
ronment in which early life stages of 
most economically important marine 
fish species reside is highly variable in 
both space and time. Consequently, lar-
val survival is thought to be dependent 

on a diversity of reproductive traits, con-
stituting a bet hedging or portfolio strat-
egy that increases the probability that at 
least some larvae are successful in each 
year. Diversity in spawning location 
and spawning timing may act to stabi-
lize environmentally induced fluctua-
tions in recruitment (Hixon et al., 2014). 
Indeed, a reduction in the age diversity 
of spawning adults has been associated 
with increased recruitment variability in 
a number of species (Marteinsdottir and 
Thorarinsson, 1998; Secor, 2000; Wieland 
et al., 2000; Hsieh et al., 2006).

The synergistic impacts of warm-
ing temperatures with intensive fish-
ery exploitation will likely be a function 
of the diversity of reproductive behav-
ior exhibited. When a population is sub-
jected to substantial age truncation, the 
result is often younger, smaller fish that 
spawn later in the season (Hixon et  al., 
2014). This shift in spawning time could 
lead to more extreme mismatches of lar-
val occurrence and prey availability, 

especially if ocean warming results in 
earlier peaks of primary production (as 
discussed above). Additionally, popula-
tions with high spatial variability in fish-
ery concentration may lose the benefi-
cial buffering effect of multiple spawning 
locations if warming temperatures impact 
the spawning activity of some regions 
more than others. Species that shift their 
distribution range in response to chang-
ing temperatures may retain their spawn-
ing phenology but will encounter a new 
spatial pattern of exploitation as fisher-
ies adjust to their movement. In extreme 
cases, warmer temperatures may inhibit 
spawning altogether (Pankhurst and 
Munday, 2011), with clear losses to the 
spatial diversity of adults contributing to 
an annual cohort. 

The interaction between exploita-
tion patterns and physical changes in 
the ocean (e.g.,  increased stratification, 
altered currents, stronger upwelling) will 
again relate to the loss of age diversity by 
the disproportionate removal of older fish 

FIGURE 4. A food web for the tropical/subtropical oceanic waters in the Straits of Florida of 28 co-occurring larval fish families (which comprised 90% of 
all collected larvae; 4,704 larvae inspected) and their zooplankton prey. Links between fish families (upper rows) and prey (lower row) are present when 
a prey type contributed > 1% to the diet for the particular family. Larval fish families and prey are arranged left to right in decreasing order of the number 
of links. Families fall along a generalist-to-specialist gradient (evidenced by the number of links per family), indicating the potential for species- specific 
responses and sensitivities of fish larvae to any changes in zooplankton composition.
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and spatial variability in fishery mortal-
ity rates. For example, many fish species 
in the California Current have long life 
spans, enabling them to persist through 
extended periods of poor environmen-
tal conditions (Longhurst, 2002). If cli-
mate change results in greater duration 
of oceanographic regimes unfavorable for 
larval survival, then the age truncation 
induced by fisheries will potentially exac-
erbate population declines by diminish-
ing the bet hedging afforded by longevity. 
Likewise, spatial variation in the impacts 
of climate change on physical features, as 
noted by King et  al. (2011) for a north-
to-south gradient within the California 
Current, will interact with spatial varia-
tion in fishing pressure to affect the repro-
ductive success of subpopulations con-
tributing to a stock (Hsieh et al., 2008).

In general, we propose that intense fish-
eries exploitation will reduce the diversity 
of reproductive contributions for marine 
fishes encountering modified larval habi-
tats as oceanographic factors respond to 
a changing climate. The significance of 
this interaction will likely vary markedly 
depending on life history strategy. Short-
lived, rapidly growing, early maturing 
species may be more directly respon-
sive to environmental shifts in their hab-
itats, whereas long-lived, slow-growing, 
late-maturing species are more likely to 
exhibit the synergistic effects suggested 
here, as has been observed in long-term 
data sets of fish communities in the 
English Channel (Genner et al., 2010b). 

LARVAL DISPERSAL AND 
POPULATION CONNECTIVITY 
IN A CHANGING OCEAN
Many of the changes outlined above, 
together with their direct and indirect 
effects on early life stages, will come 
together to impact the dispersal of eggs 
and larvae from spawning locations 
to settlement habitat (Munday et  al., 
2009c; Gerber et  al., 2014). Most near-
shore fishes disperse as pelagic larvae for 
a period of time prior to their metamor-
phosis into benthic habitat-associated 
juveniles and adults. The degree to which 

the dispersal phase ecologically links 
geographically separated local popula-
tions (population connectivity) is often 
temporally and spatially variable, depen-
dent on prevailing ocean currents as well 
as the biology and behavior of the lar-
vae and adults (reviewed in Cowen and 
Sponaugle, 2009). Reproductive connec-
tivity requires that successfully dispersing 
larvae then survive to successfully repro-
duce (Pineda et al., 2007). Successful lar-
val dispersal under future projected cli-
mate change scenarios will depend on 
multiple variables, all of which are sub-
stantially influenced by changing ocean 
conditions (Figure 1). 

In addition to the effects on produc-
tivity, increased vertical stratification of 
the water column will likely reduce the 
movement of organisms between lay-
ers and potentially change the direc-
tion and strength of horizontal currents. 
Large-scale ocean circulation such as the 
Atlantic meridional overturning circula-
tion, driven by sinking of dense water at 
the poles, is expected to gradually slow 
over the next century (Bindoff et al., 2007; 
Meehl et al., 2007), with regional conse-
quences (Liu et al., 2012). However, this 
and many other large-scale currents are 
also heavily influenced by environmental 
phenomena cycling on shorter time scales, 
such as the North Atlantic Oscillation, 
the Pacific Decadal Oscillation, and 
El Niño–Southern Oscillation (Bindoff 
et al., 2007). Interactions between climate 
change and the frequency and intensity 
of these decadal oscillations are as yet 
unknown. The strength of climatologi-
cal effects on local circulation is expected 
to vary among locations. Changing water 
temperature, chemistry, and movement, 
in concert, will affect numerous processes 
associated with larval dispersal.

Potential reduction in suitable 
high-quality adult fish habitat due to 
ocean acidification, increased hypoxia, 
sea level rise, and other anthropogenic 
stressors such as pollution, coastal devel-
opment, and overfishing, may lead to 
lower population abundances, affecting 
the cumulative number and location of 

gametes spawned. For some species, tem-
perature increases and subsequent geo-
graphical and temporal shifts in distri-
bution ranges may result in higher adult 
population abundances and increased 
numbers of gametes (Hare et  al., 2010), 
but for others the results may be nega-
tive (Donelson et al., 2010). Regardless of 
changes in population sizes, such shifts in 
the location and timing of the start of lar-
val dispersal will interact with ocean cir-
culation changes to result in new or mod-
ified dispersal pathways from adult to 
juvenile settlement habitats. 

Once in the water column, larvae will 
be affected by changing current speeds 
and directions as well as the reduction 
in vertical shear in surface waters result-
ing from increased stratification. As a 
consequence, larval ontogenetic vertical 
migration may not have the same effect 
on transport trajectories as such behav-
ior has today (Paris and Cowen, 2004; 
Huebert et  al., 2011), potentially alter-
ing the extent of local retention vs. long- 
distance transport. Similarly, in regions 
where upwelling is enhanced, offshore 
transport of surface oriented larvae may 
be greater, thereby requiring more exten-
sive coastal return mechanisms for late-
stage larvae. 

Superimposed on transport processes 
are factors that control the survival of lar-
vae, many of which are outlined above. 
Where larvae manage to encounter 
patches of prey to sustain higher growth 
rates due to increased temperatures, their 
pelagic larval duration (PLD) is projected 
to be substantially lower due to the wide-
spread linear relationship between growth 
rate and PLD (O’Connor et  al., 2007). 
Theoretically, a shorter PLD may counter 
increased mortality rates with increasing 
temperature, but a shorter PLD simulta-
neously requires that larvae find suitable 
settlement habitat more rapidly. Another 
hurdle is that settlement habitats that 
benthic marine fishes seek at the end of 
their larval phases are increasingly frag-
mented due to a range of anthropogenic 
effects, and when compounded with 
compromised larval navigation ability in 
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high CO2 waters (Munday et al., 2009a), 
as well as increased susceptibility to pre-
dation (Dixson et al., 2010; Munday et al., 
2010; Ferrari et  al., 2011), there is clear 
potential for major impacts on fish pop-
ulation sizes and compositions.

Recent efforts to estimate the effects 
of historical climate variability or proj-
ect the effects of climate change on lar-
val fish dispersal have focused on mod-
eling the influence of temperature on 
PLD (O’Connor et al., 2007; Heath et al., 
2008; Munday et al., 2009c; Huret et al., 
2010). For some systems, effects of ocean 
acidification on larval growth, devel-
opment, and navigation have also been 
included (Kendall et  al., 2013), as well 
as temperature- related mortality rates 
or food availability (Tracey et  al., 2012; 
Peck et al., 2013; Kristiansen et al., 2014). 
Changes in the vertical structure of the 
water column have been modeled in 
some studies to predict outcomes for lar-
val survival and transport. For example, 
future recruitment to some small pelagic 
fisheries will be a function of the con-
trasting effects of predicted higher lar-
val retention in stratified waters, a shoal-
ing oxycline, and reduced nursery areas 
(Brochier et al., 2013). Due to the uncer-
tainty in predicting ocean circulation 
changes, especially at local and even 
regional scales, few studies have incor-
porated changes in the speed or direction 
of currents (but see Vikebø et  al., 2007; 
Munday et al., 2009c; Hidalgo et al., 2012). 
Hidalgo et al. (2012) show that changes in 
spawner distributions of cod and ocean 
circulation are the most important vari-
ables shaping future larval distributions, 
while temperature differences may influ-
ence distributions through changes in the 
spatial overlap of predators and prey.

By far the most precise models are 
those constructed from existing coupled 
individual-based and biophysical mod-
els that are parameterized with exten-
sive empirical data (Miller, 2007; Werner 
et  al., 2007). The most detailed exam-
ples of these have been developed for 
important fishery species such as cod 
(Vikebø et al., 2007; Hidalgo et al., 2012; 

Kristiansen et al., 2014) and small pelagic 
fish (Peck et al., 2013), and physiological- 
based foraging and growth models 
have been applied to examine match- 
mismatch dynamics between larvae and 
their potential prey in a variety of other 
species (reviewed by Peck and Hufnagl, 
2012). In some cases, highly useful mod-
els have been constructed for a diversity 
of marine species (Treml et  al., 2012) or 
a generic marine species (Ayata et  al., 
2010; Lett et al., 2010; Huebert and Peck, 
2014). Additional conceptual models lay 
a framework for interdisciplinary model 
development (King et  al., 2011; Gerber 
et  al., 2014). Aside from some of these 
modeling studies, documented or pre-
dicted changes in phytoplankton and zoo-
plankton abundance and composition 
have rarely been factored into such mod-
els due to the lack of empirical data quan-
tifying the role of these prey in larval fish 
diets. Yet, clearly, larval food availability 
underlies the degree to which thermally 
induced high larval metabolic rates can 
be translated into high larval growth and 
survival. Consequently, there is a need to 
collect additional empirical data on tro-
phic interactions during the larval phase 
of many marine fishes (Llopiz, 2013). 
Larval feeding behavior (prey detection, 
swimming speeds) may also be affected 
by ocean acidification, and such experi-
mental results should be included in mod-
els. In short, larval dispersal and popula-
tion connectivity are likely to be quite 
reduced in the future ocean, but accurate 
prediction of these changes requires thor-
ough parameterization of models with 
empirical data.

CONCLUSIONS AND 
FUTURE DIRECTIONS
It is a dynamic time to be conduct-
ing research on the early life stages of 
marine fishes. The tools at our fingertips 
have remarkable potential and, in recent 
decades, the nature of oceanographic 
research has become increasingly inter-
disciplinary. This bodes well for fully inte-
grative studies of the variety of ways in 
which the early life stages of fishes interact 

with and are affected by their environ-
ments. Although there is still much work 
to be done to improve our understanding 
of how early life processes relate to inter-
annual and interdecadal recruitment vari-
ability, we are now charged with an addi-
tional task: elucidating how gradual, 
long-term changes to marine ecosystems 
will impact recruitment. 

Many of the conclusions drawn here 
regarding anthropogenic impacts are nec-
essarily speculative—there is relatively 
little concrete information about how 
the many direct, and especially indirect, 
mechanisms discussed will ultimately 
influence population replenishment. 
Future work should seek to strengthen 
our grasp on the impacts of individ-
ual stressors, but perhaps more impor-
tantly, it should pay special attention to 
the interacting effects of multiple stress-
ors. Additionally, while documenting 
climate- related impacts on fish early life 
history is crucial, ultimately, we need to 
strive for developing a predictive capac-
ity for understanding how future change 
will influence early life survival. This will 
enable effective and adaptive manage-
ment strategies for fisheries and marine 
ecosystems as a whole. To this end, the 
value of long-term time series in examin-
ing global change impacts on marine eco-
systems cannot be overstated. Continued 
and expanded funding for these efforts, 
as well as the establishment of new time 
series, will be necessary for observing 
and mitigating future impacts of global 
change on all life stages of ecologically 
and economically important fish species.

As noted by Houde (2008), we have 
long since emerged from Johan Hjort’s 
shadow, and have expanded our inves-
tigations well beyond the first-feeding 
period of fish larvae and the role of star-
vation in recruitment variability. It is pos-
sible that, due to the interests and foci 
of major funding sources, as well as the 
“sexiness” of high-impact climate change 
findings, we may very well be under the 
new shadow of global-change-related 
early life history research—possibly at the 
expense of furthering our understanding 
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of fishery recruitment variability (Rice 
and Browman, 2014). In all likelihood, 
a balance of climate-related research 
on early life survival and more typical 
“recruitment fisheries oceanography” will 
be the most productive. Given the ubiq-
uitous effects of global change on virtu-
ally all aspects of ecosystem function, the 
line between these two research trajecto-
ries will inevitably become blurred as we 
move further into the Anthropocene. 
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