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Maternal care, either of a female’s own biological offspring or fostered young, alters the 

behavioural, endocrine and brain functions of rodents. We asked whether female African striped 

mouse Rhabdomys pumilio alloparents (i.e. those assisting in raising their younger siblings) are 

similarly influenced. We tested if alloparental care enhances factors of ecological importance by 

assessing the emotional response, social competitive ability, and spatial learning and memory of 

age-matched, sexually mature females assigned to one of five treatments based on their housing 

arrangement: housed with their mothers (Alloparents), housed with their mothers, but did not 

raise a litter (Resident), separated from their mothers and younger siblings with a barrier 

(Barrier), housed alone (Alone), and primiparous breeders (Breeder). Ten females per treatment 

were subjected to a range of behavioural tests from 125 to 145 days of age. Breeders and 

Alloparents were indistinguishable in displaying greater disinhibition of novelty in open field 

tests, improved competitive ability during social interactions and improved spatial memory in the 

Barnes maze. Females that did not encounter pups (Resident, Barrier, Alone) did not show such 

enhanced abilities. These tests indicate that females that raise their own biological pups or help 

others to raise young benefit through better foraging skills and lowered anxiety in novel 

situations. Ultimately, alloparents derive direct benefits by improving their parental and foraging 

skills, in addition to indirect inclusive fitness benefits of caring for their young siblings. 
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For primiparous rodent mothers, parturition leads to dramatic shifts in behavioural priorities 

(Lambert & Kinsley, 2012). They must provide care, including suckling, retrieving, grooming 

and huddling pups, essential for the development and survival of their offspring (Ziegler, 

Washabaugh & Snowdon, 2004; Love et al., 2005). Moreover, mothers improve ancillary 

behaviours peri-partum that contribute to offspring ontogeny and maternal reproductive success. 

Notably, lactating female rats enhance their foraging efficiency through better spatial memory 

and navigational abilities (Kinsley et al., 1999), and demonstrate better exploratory and 

competitive behaviours (Wartella et al., 2003).  

These behavioural changes are accompanied by neurobiological modifications that are 

maintained throughout the female’s lifetime (Kinsley et al., 2008). In particular, the maternal 

hippocampus is sensitive to numerous hormones secreted during pregnancy (Love et al., 2005). 

Oestrogen, for example, stimulates increased CA1 dendritic spine density (Woolley & McEwen, 

1993) and synapses (Woolley, 1998), and increases CA1 synaptic proteins (Choi et al., 2003). 

Oestrogen-mediated neurological changes in the hippocampus of female Sprague-Dawley rats 

enhance their learning and spatial memory ability in a radial-arm maze (Kinsley et al., 1999). 

Furthermore, these neurological changes also decrease anxiety and increase exploration in an 

elevated plus maze (Neumann, 2001). The adaptive value of such neurological changes in the 

hippocampus is hypothesised to include improved navigation skills and concomitant resource-

acquisition and homing behaviours (Kinsley et al., 1999; Lambert & Kinsley, 2012), as well as 

defending unweaned young against infanticidal conspecifics (Lambert & Kinsley, 2012). 

Changes in behavioural priorities and neurobiological modifications are not confined to 

mothers, however. Exposure to young can also lead to changes in non-parents caring for non-

related offspring (e.g. Kinsley et al., 1999; Lambert et al., 2005; Ruscio et al, 2008; Furuta & 



  

Bridges, 2009), For example, Ruscio et al. (2008) reported that exposure to pups stimulates care 

behaviour (including retrieval, grooming and huddling) in non-parental prairie voles Microtus 

ochrogaster. Changes in other ancillary behaviours, such as enhanced spatial navigation in a dry-

land maze, have been reported in rats (Lambert et al., 2005). Neurobiologically, exposure to pups 

results in non-parents displaying site-specific changes in cell proliferation in the dentate gyrus of 

the hippocampus, an area important in learning and memory of spatial information (Kesner, 

2007) and lower anxiety in an open field test (Lieberwirth, Liu, Jia & Wang, 2012).  

Although there is some evidence that exposure to pups alters brain regions and incidental 

behaviour in non-parent rodents, the findings are equivocal. For example, Furuta & Bridges 

(2009) found no alterations in the hippocampus in rats. In addition, methodological 

inconsistencies mask a universal response. For example, females were exposed to strange pups in 

isolation from a group (Lambert et al., 2005), or had no prior experience with offspring and were 

not given the opportunity to develop care over an extended period (e.g. females were exposed to 

different offspring every day and only sometimes demonstrated care; Ruscio et al., 2008). In 

addition, the non-parents tested often represented species not known to display care for 

conspecific offspring under natural conditions, apart from possibly raising their offspring in a 

communal nest (Gilchrist, 2007).  

Species with helpers at nest (i.e. alloparents) are more appropriate for studying how non-

parents are influenced by caring for offspring. Alloparents are kin or non-kin individuals that 

naturally provide care for the younger offspring of either their biological parents (i.e. their 

younger siblings) or other members of the social group for extended periods (Clutton-Brock, 

2002), often starting soon after weaning. Alloparental care includes all parental care type 

behaviours, such as feeding, offspring defence and nest maintenance, which directly or indirectly 



  

benefit offspring that are not immediate descendents of the alloparent (Crespi & Yanega, 1994) 

and that only occur in the presence of these offspring (Woodroffe & Vincent, 1994). The focus 

of alloparental care in behavioural research has mostly been on the adaptive value for alloparents 

and recipients of their care-giving (e.g. development of parental care skills; Salo & French, 

1989) and less attention has been paid to the ontogeny of alloparental behaviour (e.g. interactions 

with siblings has long-term effects on individual responsiveness to young; Saltzman et al., 2009). 

While it is predictable that alloparents, as for non-parents (described earlier), might also show 

changes in some ancillary behaviours consequent to providing care, evidence is sparse and 

generally limited to spatial cognition (Lambert et al., 2005), as far as we are aware.  

Using our small mammal model, the African striped mouse Rhabdomys pumilio, we tested 

whether female alloparents show behavioural, cognitive and emotional changes when raising 

their younger siblings. The striped mouse is a small (40-80g) diurnal murid rodent with a 

widespread, although discontinuous, distribution across southern Africa (Skinner & Chimimba, 

2005). In the arid Succulent Karoo of South Africa, it forms social groups when population 

density is high, comprising an adult breeding male, 3-4 breeding females and their adult 

offspring (Schradin & Pillay, 2004). These offspring do not reproduce in the year of their birth, 

but instead overwinter in the social group and help raise their younger siblings, displaying 

various types of alloparental behaviour, including territory defense and nest building (Schradin 

& Pillay, 2004), huddling (Schradin, Schubert & Pillay, 2006) and grooming of unweaned 

offspring (Rymer & Pillay, 2014). Alloparents also alleviate the maternal workload, providing 

indirect benefits to breeding females (Rymer & Pillay, 2014). 

We tested whether alloparental care enhances factors of ecological importance by assessing 

the emotional response (challenge of open space), social competitive ability (competing with 



  

conspecifics for resources) and spatial learning and memory (locating food in the environment) 

of female alloparental striped mice. We also investigated whether direct exposure to young is 

required to elicit these changes or whether these can be acquired vicariously by being housed 

with, or in close proximity to, a mother raising offspring on her own. We hypothesized that 

alloparents would show behavioural and cognitive enhancements similar to parents. We made 

four predictions. 1) Female alloparents and breeding females would be less anxious in a novel 

open field environment than females without parental care experience (housed alone, housed 

with non-breeding mothers, housed in close proximity to breeding females but without physical 

access to pups). 2) Female alloparents would have a similar level of competitive ability to 

maternally experienced females, and both would have a greater competitive ability compared to 

females without parental care experience. 3) Female alloparents and breeding females would 

perform better in cognitive tasks than females without parental care experience. 4) Females 

require direct alloparenting experience (i.e. physical tactile contact) for behavioural and 

cognitive changes to occur. 

 

METHODS 

Subjects used in this study were the F4-5 descendants of wild-caught parents from the Succulent 

Karoo (Northern Cape Province, South Africa; S 29 41.56, E 18 1.60). They were housed in the 

Milner Park Animal Unit at the University of the Witwatersrand under partially controlled 

environmental conditions (14 L:10 D cycle, lights on at 0500 hours; 20–24 ºC; 30–60% relative 

humidity). We established 30 parentally experienced breeding pairs housed in metal tanks (46 x 

30 x 32 cm) with a clear PVC front and mesh lids. Tanks were furnished with a plastic nest box 



  

(13 x 9 x 10 cm), woodshavings and hay for bedding, and an assortment of enrichment devices 

(e.g. cardboard/plastic tubes, twigs, tissue paper). Each mouse was provided with approximately 

5 g millet or sunflower seeds and Epol™ mouse cubes (Epol, Pretoria West, South Africa) and 

approximately 5 g fresh fruit/vegetables daily. Seed was sprinkled throughout the cage to 

stimulate foraging behaviour. Water was available ad libitum. 

At mid-pregnancy (11-13 days, Brooks, 1982), the male was removed and housed in a 

separate room. Offspring were weaned at 21 days of age and one female offspring per litter was 

randomly selected and randomly assigned (using a random number generator) to one of three 

treatments (n=10 per treatment): (i) Alloparent – the daughter remained with her mother and, at 

approximately 95 days of age, helped raise her mother’s second litter, as confirmed from 

behavioural observations of mother and female alloparents (Rymer & Pillay, 2014); (ii) Resident 

– the daughter remained with her mother but neither raised a litter; and (iii) Barrier – the 

daughter was housed in an adjacent tank to the breeding tank housing her mother and younger 

siblings. The tanks were connected with a PVC pipe with a wire mesh barrier that facilitated 

olfactory, visual and auditory contact between striped mice in the two tanks, but prevented 

physical contact. The litter was born when the daughter was approximately 95 days of age. For 

the Alloparent and Barrier treatments, the mother was mated with her original partner when 

daughters were 70 days of age to age-match these females with Breeders (see below). Daughters 

were removed from their mothers for to prevent Alloparent females mating with the father and 

males being distracted by Barrier females. The males were removed following mating (about 3 

days later) and the daughters re-introduced to their respective tanks. We established two 

additional treatments (n=10 per treatment) using a random selection of females: (iv) Alone – the 

daughter was removed from the mother at weaning and housed in isolation in a metal tank until 



  

used in experiments; and (v) Breeder – the daughter was paired with an unrelated male from the 

colony at sexual maturity (± 70 days of age) and raised her first litter (primiparous) without her 

mate. 

Starting at 125 days of age (one week after Breeders weaned their young), females from the 

five treatments were subjected to three experiments (below). To account for the effects of the 

oestrous cycle on behaviour, the oestrous stage of females was confirmed by vaginal smears 

taken approximately one hour before some experiments, using the pipette lavage method 

(Schradin & Pillay, 2014):  oestrous stage was characterised into oestrus, di-oestrus, met-oestrus 

and pro-oestrus, based on cell composition of the smears (Byers, Wiles, Dunn & Taft, 2012). All 

experiments took place between 08h00 and 12h00, the peak activity period of striped mice 

(Rymer & Pillay, 2011). All behaviours were scored from video recordings and the observer 

(NP) was blind to all treatments. 

 

Experiment 1. Emotional response in a novel environment 

The emotional response of females at 125 days of age was investigated in a novel open field 

arena following the methods of Reeb-Sutherland & Tang (2011). In an unfamiliar environment, 

rodents often freeze (remain immobile) initially (Crawley, 2008; Post et al., 2011), then become 

disinhibited, increasing locomotion and exploration of the environment (Gershenfeld et al., 1997) 

and finally show habituation and decreased activity (Bolivar, Caldarone, Reilly & Flaherty, 

2000). We investigated the response to novelty by exposing test females to 6 x 1 minute 

successive trials in an arena (46 x 30 x 35cm) equipped with a transparent, perforated lid. Nine 

10 x 15 cm squares were marked on the base of the arena. This testing procedure permitted a 



  

better assessment of immediate response to a novel environment compared with a single trial of 

greater duration, in which the response to novelty dissipates after habituation (Reeb-Sutherland 

& Tang, 2011). All tanks were washed with warm soapy water and alcohol and allowed to air 

dry before a new female was tested. Vaginal smears were taken from females before tests to 

ascertain oestrous state. 

Test subjects were placed in an enclosed box in the middle of the arena for two minutes. The 

box was then lifted and the mouse was allowed to explore the arena for one minute. The mouse 

was returned to the enclosed box for two minutes and the procedure repeated five more times. To 

minimize interference, the tester remained in the same position in the room during trials. The 

behaviour of test subjects was video recorded using a camera mounted above the arena. From the 

recordings, the number of grid squares crossed was recorded. We modified the methods of Reeb-

Sutherland & Tang (2011) by generating a disinhibition score, defined as the difference in the 

number of open field squares crossed between trial 3 and 1 (t3-t1) and 6 and 4 (t6-t4). 

 

Experiment 2. Social competition test 

At 132 days of age, females were tested in a social competition test. Contests test whether 

asymmetries between individuals determine the likelihood of one individual winning a fight (i.e. 

winners have greater resource holding potential, RHP; Parker, 1974). During contests, 

interacting individuals make tactical decisions based on both their own relative fighting abilities, 

usually predicted by body size differences and the value of resources being contested (Parker, 

1974), although fatigue may also be a predictor of fighting ability (Arnott & Elwood, 2009). 

To investigate social competition, dyads of test females and unfamiliar stimulus females 

from our breeding colony were established daily for three days. Since test females were afforded 



  

the opportunity to explore a novel environment in Experiment 1, prior to their use in the dyads, 

stimulus females were also placed in an arena for 10 minutes five days before being used in 

dyads. As body size is a positive predictor of winning contests in striped mice (Schradin, 2004), 

we age- and weight-matched test and stimulus females. 

Dyadic encounters were staged in metal tanks (46.5 x 31 x 35 cm) with transparent, 

perforated lids and transparent fronts to facilitate video recording of behaviour. Tanks were lined 

with a 1 cm deep layer of woodshavings. Each tank was divided into three equal sized (15.5 x 31 

x 35 cm) compartments along the longitudinal axis using opaque barriers slotted into the inside 

of the tank through 1 cm channels. This design gave both participants an opportunity to interact 

for the first time in a neutral space and to minimise forced territorial aggression, which is 

characterised by resident-intruder protocols (Reeb-Sutherland & Tang, 2011). The test and 

stimulus females were randomly placed in one of the outer compartments. The females were 

allowed to acclimate to the tank for two minutes before the barriers were removed and the 

behaviour of the dyad video recorded for 11 minutes. The first minute of recording was 

discarded because of the disturbance of removing the barriers. A dyad was used sequentially in 

three tests (one per day). Vaginal smears were taken from both females in each dyad before tests 

on Day 1 to ascertain oestrous state. Smears were not made on Days 2 and 3 to reduce stress of 

handling test subjects. 

On Day 1, the behaviour of the treatment female was scored using focal sampling. We 

scored the duration of exploratory behaviour (travelling around the tank) and the frequency of 

avoidance (moving away from the stimulus female), amicable behaviours (allogrooming, 

huddling), and aggressive encounters (biting, chasing, boxing); no damaging fights were 

recorded. On Day 2, 10 sunflower seeds (a favoured food source of striped mice, pers. obs.) were 



  

scattered in the middle compartment before the females were allowed access. We scored only the 

number of seeds consumed and the exploratory behaviour of the focal female because other 

behaviours were rare or did not occur. On Day 3, 10 sunflower seeds were again added to the 

middle compartment but after the focal female had consumed one sunflower seed (range 20 – 60 

s), the dyad was startled by loud clapping above the arena for 3 s by an observer. We then 

recorded the latency to resume seed consumption by focal females following the interruption. 

Elwood et al. (1998) provide a compelling argument that assessment of RHP and resource value 

should measure the change in motivation by providing a novel stimulus independent of the 

contest conditions. Several other studies showed that the duration and/or severity of the startle 

are negatively related to the motivation of the animal to continue its previous activity (Culshaw 

& Broom, 1980; Moorehouse, Fosbrooke & Ludlow, 1987; Jackson & Elwood, 1990). 

Therefore, clapping would have provided a measure of the motivational state of animals at the 

start of the contest, a method to investigate whether the RHP and resource value are assessed by 

the dyad and how the information influences motivational state at a particular point in the 

contest. 

 

Experiment 3. Spatial cognition test 

When females were 145 days old, their spatial learning and memory ability was assessed in 

a spatial maze for eight consecutive days, followed five days later by a probe trial (after Love et 

al., 2005). We used a 5-hole Barnes maze (1.2 m in diameter and 50 cm high) constructed of 

galvanised steel. The floor of the maze was covered with a 1 cm thin layer of woodshavings and 

a transparent carrier could be placed in the middle of the maze. The five holes were equidistant 

apart and 2 cm from the bottom of the base along the walls of the maze. Each hole contained a 



  

short (3 cm) closed plastic tube placed on the outside of the maze. Sunflower seeds were used as 

a reward and placed in one of the tubes during experiments. Five different landmarks (e.g. rock 

and plastic plants of about 10 cm height) were placed on the surface of the maze in fixed 

positions to serve as visual spatial cues. There were no extra-maze cues in the room apart from a 

single camera lens mounted directly above the maze and a seated observer who varied her 

position randomly outside the maze for each female tested. Soiled bedding and faeces were 

removed and the woodshavings were tossed and raked between trials to redistribute the odour 

from earlier test subjects. 

Females were tested individually. None received sunflower seeds for 10 days prior to tests in 

their home cages (i.e. since the end of Experiment 2) and in their home cages for the duration of 

Experiment 3. Females underwent training for five days (Days 1-5) in the maze, followed by 

three days of testing (Days 6-8). On Days 1 and 2, females were placed individually in the carrier 

in the middle of the maze facing north. They were released and given 5 min to explore and 

habituate to the maze. During this time, all holes were blocked with clear Perspex placed on the 

outside between the maze and the tubes. On Day 3, all holes were accessible and all tubes baited 

with two sunflower seeds. On Day 4, three randomly-selected holes were baited with two 

sunflower seeds and on Day 5 only one of the previously baited holes had seed. This hole 

became the permanently baited hole for a particular female for the test phase (below). On each 

training day, trials were terminated when the test females located the seeds in less than 5 min. If 

a female failed to find the reward after 5 min, she was gently prodded toward the baited well. 

During the training phase, the sunflower seeds were placed in the front lip of the tube to 

encourage learning, whereas sunflower seeds were placed at the back of the tube during the test 

phase (below). 



  

On Days 6 to 8 (test phase), females were tested by changing the maze configuration daily in 

the following sequence: i) the maze contained landmarks for navigation as on Day 5 

(landmarks); ii) the landmarks were removed (no landmarks); and iii) the maze rotated by 100° 

so that the baited hole was moved but in same position relative to the landmarks (rotated). Each 

female was given three 3 min trials with 3 min inter-trial intervals and its latency to locate the 

baited hole was recorded. On Day 13, a single 3 min probe test was conducted to assess the 

memory of the previously baited hole in the same position as the test on Day 6 and including the 

landmarks. No bait was used during the probe test, so females had no potential olfactory 

perception of the seeds. We measured the latency to locate the previously baited hole, the time 

spent in close proximity (within 3 cm) of the previously baited hole and the number of other 

holes visited (errors) during the probe test. We ascertained the oestrous stage of females on the 

day of the probe test only to reduce handling stress.  

 

Statistical analyses 

All analyses were performed using Statistica 7.1 (Statsoft Inc, www.statsoft.com). Data for all 

three experiments met the assumptions of homogeneity of variances (Levene’s test) and 

normality (Shapiro–Wilks test). The model-level significance was determined at α = 0.05 and all 

tests were two-tailed. We used Fisher’s HSD post hoc tests or orthogonal polynomial 

decomposition for linear and quadratic components to assess significant differences between 

categorical predictors or their interactions respectively (see Rymer & Pillay, 2011). 

To assess whether the random factor, litter identity (i.e. to account for genetic relatedness 

between breeding/non-breeding females), had an effect on measurements taken in the three 

experiments, we first analysed the data with variance components analysis using the Expected 



  

Mean Squares method. Litter identity was not a significant predictor in any of the experiments (P 

> 0.05). 

 

Experiment 1. Emotional response in a novel environment 

We used a general linear model (GLM) with repeated measures multivariate design to analyse 

whether the disinhibition scores were influenced by treatment or trial. Treatment was the 

categorical predictor, trial was the repeated measures variable, disinhibition score was the 

dependent factor and oestrous stage was the covariate.  

 

Experiment 2. Social competition test 

Levels of aggressive and amicable behaviour were negligible, occurring in only 3% of total 

interactions and were therefore not considered further in the analyses. Because the behaviour of 

females in a dyad may be mutually dependent (i.e. females influence each other’s behaviour), we 

first assessed the independence of the behaviour of a pair with a variance components analysis 

using Expected Mean Squares to establish whether pair identity (random variable) and treatment 

(fixed variable) influenced behaviour. Behaviour of females was not influenced by pair identity 

(p < 0.05) and therefore the behaviour of females was considered to be independent.  

For Day 1 of dyads, we used a GLM with multivariate design to analyse whether 

exploratory and avoidance behaviours were influenced by treatment and trial; oestrous stage of 

focal and stimulus females were covariates. We used a GLM to compare exploratory behaviour 

and number of seeds consumed (Day 2) and latency to resume seed consumption (Day 3) by 

females of the five treatments.  

 



  

Experiment 3. Spatial cognition test 

For the test phase, we used a GLM with multivariate design to analyse whether the three maze 

configurations (landmarks, no landmarks, rotated) differed among the treatments. For the probe 

trial, separate GLM analyses were conducted to compare treatment differences for the latency to 

locate the previously baited hole, the duration of time spent within 3 cm of the previously baited 

hole and the number of errors made by females. Oestrous stage was the covariate. 

 

Ethical Note 

The research adhered to the ASAB/ABS Guidelines for the Use of Animals in Research. 

Animals were provided with environmental enrichment, and the welfare of the animals was 

monitored by daily behavioural observations and weekly weighings. The experimental 

procedures did not have any obvious negative effects on the welfare of the striped mice. Dyads 

were carefully monitored to prevent any fights; apart from chasing no physical aggression 

occurred. Singly kept females represented the solitary tactic observed in free-living striped mice 

(Schradin & Pillay, 2014) or had olfactory, visual and auditory contact with conspecifics. At the 

end of the study, all experimental animals were kept as part of the breeding stock of the colony. 

Ethical clearance was provided by the University of the Witwatersrand (AESC 2010/55/2A, 

2013/18/2A). 

 

RESULTS 

Experiment 1. Emotional response in a novel environment 

 



  

Disinhibition scores were influenced by the interaction between treatment and trial (F4, 43 = 4.72, 

P = 0.003). Post hoc analyses showed that, in Period 1 (t3-t1), the Alloparent and Breeder 

treatments had the highest disinhibition scores and the Alone treatment had the lowest score (Fig. 

1). The other treatments/trials occupied an intermediate position (Fig. 1). Interestingly, the 

disinhibition score of the Alone treatment in Period 2 (t6-t4) increased to similar levels of the 

Alloparent and Breeder treatments in Period 1, indicating an extinction of the anxiety response in 

this group (Fig. 1). All other treatments/trials grouped together (Fig. 1). None of the other factors 

predicted disinhibition scores: treatment (F4, 43 = 1.20, P = 0.324), trial (F1, 43 = 1.27, P = 0.266) 

and oestrous stage (F1, 43 = 0.68, P = 0.414). 

Treatment (F4, 43 = 10.78, P < 0.001) and treatment x trial (F12, 129 = 2.55, P = 0.005) were 

significant predictors of total number of squares crossed in trials 1, 3, 4 and 6 (Table 1). A linear-

quadratic polynomial decomposition (t = 3.80, P < 0.001) indicated low values for all treatments 

on trial 1, with the Alone treatment being the lowest (Table 1). This was followed by an increase 

in squares crossed gradually for the Barrier, Resident and Alone treatments initially and peaking 

on trial 6 (Table 1). In contrast, the Alloparent and Breeder treatments maintained a high number 

of squares crossed from trial 3 to 6, being highest in the Alloparent treatment. Trial (F3, 43 = 0.84, 

P = 0.474) and oestrous state (F1, 43 = 1.19, P = 0.281) did not affect the number of squares 

crossed. 

 

Experiment 2. Social competition test 

On Day 1 of dyads, treatment was a significant predictor of exploratory behaviour (F4, 42 = 9.95, 

P < 0.001) but not of avoidance (F4, 42 = 0.44, P = 0.782). Exploratory behaviour was greatest in 



  

the Alloparent and Breeder treatments and lowest in the Alone treatment; the Barrier and 

Resident treatments occupied an intermediate position (Fig. 2). Oestrous stage of the focal 

female and the stimulus female did not predict exploratory (F1, 42 = 0.03, P = 0.853; F1, 42 = 0.17, 

P = 0.686, respectively) or avoidance (F1, 42 = 0.19, P = 0.664; F1, 42 = 0.51, P = 0.479) 

behaviours respectively.  

On Day 2 of dyads when sunflower seeds were added, the exploratory behaviour of focal 

females was significantly influenced by treatment (F4, 45 = 5.45, P = 0.001). The Breeder 

treatment showed the greatest duration of exploration, followed by the Alloparent and Barrier 

treatments, with the Resident and Alone females showing the lowest duration of exploration 

(Fig. 3). The number of seeds consumed did not differ between treatments (F4, 45 = 1.17, P = 

0.339; Fig. 3). 

On Day 3 of dyads, the latency to resume feeding following a disturbance (loud clapping) 

was influenced by treatment (F4, 45 = 5.81, P < 0.001). The Alone treatment took the longest time 

to resume feeding on sunflower seeds following the disturbance and the Breeder treatment were 

the quickest to respond (Fig. 4). All other treatments showed an intermediate response (Fig. 4). 

 

Experiment 3. Spatial cognition test 

At the end of the training phase, all females, barring one from the Alone treatment, located the 

maze within 5 minutes (98% accuracy), indicating that animals had successfully learnt the task 

during the training phase. During the test phase, treatment (F4, 90 = 12.09, P < 0.001), maze 

configuration (F2, 90 = 59.94, P < 0.001) and treatment x maze configuration (F8, 90 = 8.60, P < 

0.001) were significant predictors of the latency to locate the baited hole. Post hoc tests revealed 



  

that Breeder and Alloparent treatments found the hole the fastest and latency was longest in the 

no landmark trials. A significant linear polynomial decomposition (t = -5.71, P < 0.001) revealed 

a decrease in the latency of the Alloparent and Breeder treatments in the landmark and rotated 

mazes to all other treatments and maze configurations (Fig. 5). The quadratic polynomial 

decomposition was not significant (t = 0.12, P = 0.906). 

For the probe test, treatment influenced time spent in close proximity to the previously 

baited hole (duration; F4, 44 = 9.54, P < 0.001) and the number of incorrect holes visited (errors; 

F4, 44 = 7.26, P < 0.001). Post hoc tests showed that duration was greatest in the Breeder and 

Alloparent treatments compared to the other treatments, whereas errors made were lowest in the 

Alloparent and Breeder treatments, intermediate in the Barrier treatment and highest in the Alone 

and Resident treatments (Fig. 6). Latency to locate the previously baited hole was not influenced 

by treatment (F4, 44 = 2.20, P = 0.084): Alone = 92.8±5.66 s; Breeder = 69.0±10.64 s; Barrier = 

93.2±6.88 s; Resident = 100.2±9.79 s; Alone = 82.2±5.66 s. Oestrous stage did not predict 

latency (F1, 44 = 1.22, P = 0.275), duration (F1, 44 = 0.76, P = 0.387) and errors made (F1, 44 = 0.76, 

P = 0.388). 

 

DISCUSSION 

 

We investigated whether alloparental care enhances the emotional response, social competitive 

ability and spatial learning and memory of female striped mice, and whether direct exposure to 

young is required to elicit these modifications. In agreement with our first prediction, Alloparent 

females were less anxious, showing high disinhibition scores (up to 4 times higher than Barrier, 

Resident AND Alone females) between days 1 and 3 in novel open field environments 



  

(Experiment 1). Alloparents were similar to Breeders, indicating that experience of raising pups 

improves the rate of habituation in a novel environment, a finding consistent with those of other 

rodent studies in rats (Lambert et al., 2005) and voles (Kesner, 2007; Ruscio et al, 2008). That 

females without maternal care experience (Barrier, Resident and Alone) increased their 

disinhibition scores later between days 4 to 6 in the open field tests suggests firstly that these 

females required longer periods to habituate to the novel arena (Bolivar, Caldarone, Reilly & 

Flaherty, 2000), and secondly that the plasticity in the anxiety response to novelty is sensitive to 

previous alloparental/maternal care, as seen in female rats (Wartella et al., 2003). 

For our second prediction, we expected that experience with pups would influence the 

competitive ability of female striped mice. In dyadic encounters, greater exploration is a measure 

of dominance (Cranford & Derting, 1983; Kinahan & Pillay, 2008), as well as a measure of 

reduced anxiety (Carola, D’Olimpio, Brunamonti, Mangia & Renzi, 2002; Prior, Schwegler, 

Marashi & Sachser 2004). We also established the RHP of contestants by startling the dyad and 

measuring how the change in motivation affected the resumption of feeding on the highly 

nutritious sunflower seeds, which was a particularly important measurement because of the 

absence of overt aggression that could have been used to measure competitive ability. In dyadic 

encounters (Experiment 2), Alloparents were not as competitive as Breeders, but were more 

competitive than Resident and Alone females. Therefore, our data indicate that the provision of 

maternal and alloparental care potentially enhances RHP. 

While some studies report high levels of aggression motivated by access to limiting food 

(Blanchard, Wall & Blanchard, 2003; Demas, Polacek, Durazzo & Jasnow, 2004; Karl et al., 

2004), our treatments showed very little overt aggression and did not differ in the numbers of 

sunflower seeds consumed. These results most likely reflect the optimal conditions of captivity 



  

(i.e. sufficient food) which do not pose an energetic challenge for striped mice and reduce 

competition for a high quality resource. In contrast, free-living striped mice compete 

aggressively for limiting food in the harsh arid Succulent Karoo (Schradin, 2004), suggesting 

that Breeders and Alloparents might have a competitive advantage for exploiting transient high 

protein food resources, which directly affects female fitness (Schradin & Pillay, 2006). This is 

reflected in the decreased latency to resume exploring and feeding by Alloparents and Breeders, 

following a disturbance.  

In the Barnes maze (Experiment 3), Alloparent and Breeder females located a food reward 

faster when landmarks were available, spent more time in the vicinity of a previously baited 

hole, and made fewer errors during the probe trial compared to females with no experience with 

pups. Therefore, in support of our third prediction, experience with pups improves both short 

(working) and longer-term memory in striped mice. Similar improved memory has been 

observed in rat and mice mothers, with reports of either long-term (Lambert et al., 2005; 

Tomizawa et al., 2003) or both short and long-term (Gatewood et al., 2005) effects. Interestingly, 

treatments did not differ in their performance in the no landmark maze, indicating that striped 

mice become disorientated in the Barnes maze without visual cues (landmarks), as reported for 

rats tested in an appetitive radial arm maze (Dudchenko, Goodridge, Seiterle & Taube, 1997) and 

a plus maze (Martin, Harley, Smith, Hoyles & Hynes, 1997). However, Alloparents and Breeders 

retained a memory of the baited hole five days after tests in the probe tests. 

The Barnes maze experiment is an appetitive task, requiring females to locate prized 

sunflower seeds. The enhanced cognition of Alloparents and Breeders suggests that they might 

be able to acquire resources faster and more efficiently. Although striped mice in the Succulent 

Karoo live in groups and have communal nests, they forage alone, possibly to reduce predation 



  

risk (Schradin & Pillay, 2004). Females that experience raising pups, whether Breeders or 

Alloparents, will have a distinct advantage over females without experience, because they are 

more likely to remember the location of food patches and quickly exploit high quality food, 

thereby enhancing their fitness. Furthermore, improved foraging efficiency could reduce the time 

spent away from the litter and reduce energetic expenditure during the high energy phase of 

lactation (Love et al., 2005).  

In support of our fourth prediction, exposure to visual, olfactory and auditory cues of pups 

was not sufficient to improve cognition and behaviour in Barrier females, indicating the 

importance of physical contact on behavioural and cognitive changes, as occurred in Alloparent 

females. While other studies have demonstrated that parenting enhances cognition and resource-

acquisition skills (e.g. Kinsley et al., 1999; Lambert et al., 2005; Ruscio et al, 2008; Lieberwirth 

et al., 2012), none explicitly tested the significance of tactile contact. Rodents rely largely on 

vibrissae-based tactile discrimination when exploring novel environments, food and their 

offspring. Stimulation of the whiskers elicits neuronal firing in the entorhinal cortex, which 

further elicits localised responses in the dentate gyrus of the hippocampus (Bellistri, Aguilar, 

Brotons-Mas, Foffani & Menendez de la Prida, 2013). While Ruscio et al. (2008) reported that 

exposure to unrelated pups can stimulate site-specific changes in cell proliferation in the 

hippocampal dentate gyrus, our results suggest that physical contact is explicitly effecting these 

changes, because Barrier females did not show the enhancements of Alloparents and instead 

resembled both Alone and Resident females that had no exposure to pups.  

The close association (i.e. tactile contact) between alloparents and their pregnant mothers, 

which was absent in other treatments, might be another explanation for the increased parental 

responsiveness, as reported in male mice Mus musculus cohabiting with a pregnant female 



  

(Elwood, 1985). In our study, Barrier treatment females often showed an intermediate response 

between the Alloparent and Breeder females and the Alone and Barrier females, suggesting that 

a close association with a pregnant mother, but absence of physical contact, provides some 

cognitive benefits, but not to the extent of alloparental females. 

Our study is not the first to show that nulliparous females show enhanced cognition (e.g. 

Kinsley et al., 1999; Lambert et al., 2005). However, we do demonstrate that Alloparents benefit 

both behaviourally and cognitively from providing care to the same extent as Breeders, which 

has not been documented previously. We offer four mutually non-exclusive hypotheses for the 

mechanisms underlying these behavioural and cognitive changes, which should be viewed as 

opportunities for future studies.  

1) Oxytocin, a neuropeptide hormone produced in the hypothalamus predominantly (Gimpl 

& Fahrenholz, 2001) and also the ventral subiculum of the hippocampus (Barberis & Tribollet, 

1996), is released from the posterior pituitary upon stimulation of tactile receptors, particularly 

during parturition, lactation and suckling (Gimpl & Fahrenholz, 2001). This stimulation 

generates sensory impulses that are transmitted to the spinal cord and then to the secretory 

hypothalamic oxytocinergic neurons, which release oxytocin into the blood stream, from where it 

acts on the mammary glands, stimulating milk ejection (Gimpl & Fahrenholz, 2001). Tomizawa 

et al. (2003) reported that oxytocin has long lasting effects on spatial memory in C57BL6 mice, 

through activation of the MAP kinase cascade and CREB phosphorylation. Oxytocin may be 

involved in the formation of spatial memory in Breeders resulting from parturition, lactation and 

suckling. Although Alloparents did not experience parturition and suckling, their social 

attachment to their mothers and siblings (Rymer & Pillay, 2014) could also elevate oxytocin 

levels (Coria-Avila et al., 2014), thereby influencing spatial memory. Moreover, high oxytocin 



  

receptor density in the nucleus accumbens is also correlated with high alloparental care 

behaviour (e.g. licking and grooming pups and huddling) in prairie voles (Ross & Young, 2006), 

suggesting a reinforcing relationship between social attachment-oxytocin secretion-alloparent 

care.  

2) Oestrogen induces permanent and irreversible organizational and/or activational effects 

on the central nervous system (Arnold & Breedlove, 1985). The hippocampus is particularly 

sensitive to high oestrogen levels, especially oestradiol (Segal & Murphy, 2001; Pawluski & 

Galea, 2007). Oestradiol increases hippocampal dendritic spine density, often occurring rapidly 

in association with the oestrous cycle (Woolley & McEwen, 1992). These dendritic spines are 

important areas for the enhancement of synaptic networks that are involved in learning (Leuner 

& Shors, 2004). Short-term fluctuations in oestradiol are sufficient to increase dendritic spine 

density in nulliparous female rats (Kinsley et al., 2006) and hippocampal plasticity is known to 

regulate learning and spatial memory ability (Kinsley et al., 1999). Oestrogen improves spatial 

learning and memory (Daniel, Fader, Spencer & Dohanich, 1997; Luine, Richards, Wu & Beck, 

1998; Frick, Fernandez & Bulinski, 2002) through enhancement of the function of cholinergic 

neurons in the hippocampus (Rissanen, Puoliväli, van Groen & Riekkinen, 1999) and changes in 

activity of cortical and basal forebrain monoaminergic and amino acid transmitters (Luine et al., 

1998). In addition, oestrogen increases hippocampal synaptophysin (a calcium-binding 

glycoprotein found in neurotransmitter-containing presynaptic vesicles; Wiedenmann & Franke, 

1985) expression (Pozzo-Miller, Inoue & Murphy, 1999), which is associated with improved 

spatial reference memory (Frick, Fernandez & Bulinski, 2002). Oxytocin receptor binding in the 

medial preoptic area of the hypothalamus is also oestrogen dependent (Champagne, Diorio, 

Sharma & Meaney, 2001), synergistically enhancing spatial memory, and mediating reference 



  

memory (Pawluski, Walker & Galea, 2006). While the link between oestrogen and oxytocin 

could explain enhanced spatial cognition in Breeders AND Alloparents, oestrus stage was not a 

predictor of the behavioural responses in experiments. However, oestrogen-mediated 

organisational changes in the brains of Alloparent and Breeder females is likely to have occurred 

earlier during pup rearing, since they would have displayed several oestrus cycles (Pillay 

unpublished).  

3) The hormones associated with pregnancy and lactation appear to mitigate the effects of 

stress (Lambert et al., 2005) through down-regulation of the hypothalamic-pituitary-

adrenocortical (HPA) axis (Taylor et al., 2000). For example, lactating rats were less 

behaviourally responsive to an auditory stress, and also showed no significant activation of the 

HPA axis (Windle et al., 1997), and Lambert et al. (2005) proposed that enhanced behavioural 

performance of rats in spatial cognitive tasks could be a result of modification of HPA axis 

activation. Lactating rats increase exploration in the elevated plus maze (Neumann, 2001), and 

both pregnant and maternally-experienced females (i.e. females that previously raised a litter) 

increase rates of exploration in an open field (Wartella et al., 2003). Elevated levels of 

corticosterone in response to stress results in atrophied dendrites of hippocampal CA3 pyramidal 

neurons (Watanabe, Gould & McEwen, 1992; Lambert et al., 1998) and inhibits the hippocampal 

dentate gyrus (Pawluski & Galea, 2007). Since chronic stress (and hence increased 

corticosterone) is known to impair spatial working memory (Luine, Villegas, Martinez & 

McEwen, 1994), down-regulation of the HPA axis could provide a cognitive benefit for animals 

displaying parental care, which could explain why Breeder and Alloparental females had 

enhanced behavioural performance and demonstrated fewer errors. Furthermore, oxytocin is 

released following a stress response (Neumann, Torner & Wigger, 2000; Carter, 1998), further 



  

attenuating the HPA axis responsiveness (Lambert et al., 2005), which could explain the 

responses of the Breeders and possibly Alloparents.  

4) Care-giving behaviour is complex and polygenic (Agrawal, Brodie & Brown, 2001), and 

there are indications that the expression of both maternal care and alloparental care might be 

governed by the same underlying genetic mechanisms (Linksvayer & Wade, 2005). For example, 

in the eusocial wasp Polistes metricus, gene expression, particularly insulin-related genes 

regulating female provisioning (alloparental care) and those displaying maternal are similar 

(Toth et al., 2007), suggesting that similar mechanistic pathways regulate alloparental and 

maternal care. 

Our study is the first to show that contact with pups enhances cognitive and behavioural 

performance of nulliparous alloparent females. Tactile cues, possibly in combination with 

oestrogen spikes during the oestrous cycle and the influence of oxytocin, mediate these 

enhancements. The focus of many alloparental care studies in behavioural research has been on 

the adaptive value for alloparents and recipients of their care-giving, with little or no attention 

being paid to the cognitive enhancements and resource acquisition skills that alloparents might 

accrue. Such benefits might improve their ability to navigate, compete with conspecifics and 

locate resources, enhancing their fitness and that of any non-biological young they raise. 

Moreover, these benefits accrued by alloparents that become breeders later might lead to better 

provisioning of their own offspring (Lambert et al., 2005) and possibly epigenetic enhancement 

of learning, memory and resource acquisition in their offspring (Tang, Akers, Reeb, Romeo & 

McEwen, 2006).  
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Table 1. Mean (± SE) squares crossed in four trials by female striped mice Rhabdomys pumilio 

in five treatments in the open field.  

Treatment Trial 1 Trial 3 Trial 4 Trial 6 

Alloparent 2.9 (0.43) 24.1 (4.12) 22.3 (3.55) 31.2 (3.27) 

Breeder 2.8 (0.51) 23.0 (3.81) 16.7 (2.34) 27.4 (4.98) 

Barrier 1.4 (0.27) 6.4 (1.16) 8.5 (0.86) 21.9 (2.73) 

Resident 2.5 (0.42) 6.8 (0.80) 9.2 (0.83) 22.5 (3.04) 

Alone 0.9 (0.28) 6.6 (0.30) 9.8 (1.26) 21.3 (5.44) 

 

  



  

List of figures 

Fig. 1. Mean + SE disinhibition scores in two periods (trial 3-trial 1 and trial 6-trial 4) by striped 

mice Rhabdomys pumilio females in five treatments. Bars with the same letters are not 

significantly different (Fisher’s HSD post hoc tests; P < 0.05). 

Fig. 2. Mean ± SE number of seeds eaten (top panel) and duration (s) of exploratory behaviour 

(bottom panel) displayed by female striped mice Rhabdomys pumilio in five treatments on Day 1 

of dyadic encounters. Bars with the same letters are not significantly different. Treatment did not 

predict the number of seeds consumed so no letters are provided. 

Fig. 3. Mean ± SE number of sunflower seeds consumed (top panel) and duration (s) of 

exploratory behaviour (bottom panel) displayed by female striped mice Rhabdomys pumilio in 

five treatments on Day 2 of dyadic encounters. Bars with the same letter are not significantly 

different. Treatment did not predict the number of seeds consumed so no letters are provided. 

Fig. 4. Mean ± SE latency (s) to resume feeding of sunflower seeds following a disturbance to 

female striped mice Rhabdomys pumilio in five treatments on Day 3 of dyadic encounters. Bars 

with the same letters are not significantly different. 

Fig. 5. Mean ± SE latency (s) to locate the baited hole in three maze configurations by female 

striped mice Rhabdomys pumilio in five treatments.  

Fig. 6. Mean ± SE time (s) spent in close proximity to the previously baited holes (duration; top 

panel) and the number of incorrect holes visited (errors; bottom panel) by female striped mice 

Rhabdomys pumilio in five treatments during a probe trial. Bars with the same letters are not 

significantly different. 
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