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The snail Bithynia siamensis goniomphalos acts as the first intermediate host for the human
liver fluke Opisthorchis viverrini, the major cause of cholangiocarcinoma (CCA) in Northeast
Thailand. The undisputed link between CCA and O. viverrini infection has precipitated
efforts to understand the molecular basis of host–parasite interactions with a view to
ultimately developing new control strategies to combat this carcinogenic infection. To date
most effort has focused on the interactions between the parasite and its human host, and
little is known about the molecular relationships between the liver fluke and its snail
intermediate host. In the present study we analyse the protein expression changes in
different tissues of B. siamensis goniomphalos induced by infection with larval O. viverrini
using iTRAQ labelling technology. We show that O. viverrini infection downregulates the
expression of oxidoreductases and catalytic enzymes, while stress-related and motor
proteins are upregulated. The present work could serve as a basis for future studies
on the proteins implicated in the susceptibility/resistance of B. siamensis goniomphalos to
O. viverrini, as well as studies on other pulmonate snail intermediate hosts of various
parasitic flukes that infect humans.

Biological significance
Despite the importance and high prevalence of opisthorchiasis in some regions of
Southeast Asia and the direct relationship between infection by Opisthorchis viverrini and
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the incidence of cholangiocarcinoma, little is known of the modifications induced by this
parasite in its snail intermediate hosts. This time-course study provides the first in-depth
quantitative proteomic analysis of experimentally infected Bithynia siamensis goniomphalos.
We show how motor and stress-related proteins are upregulated in infected snails, while
O. viverrini infection downregulates the expression of oxidoreductases and catalytic
enzymes. This work serves as a basis for the development of new strategies, focused on
the invertebrate intermediate hosts, to control parasite transmission.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The liver fluke, Opisthorchis viverrini, represents a major public
health problem in the Greater Mekong sub-region (Thailand, Lao
PDR, Cambodia and Southern Vietnam), with >10 million people
estimated to be infected with this parasite. In addition to a
spectrum of clinical signs associated with the infection, which
include cholangitis, obstructive jaundice, hepatomegaly,
periductal fibrosis, cholecystitis and cholelithiasis [1,2],
opisthorchiasis by O. viverrini is unequivocally associated with
the development of cholangiocarcinoma (CCA) in infected
individuals [3–5]. Incidence rates of CCA range from 93.8 to 317.6
per 100,000 people/year in some districts of Northeast Thailand
alone and prognosis is poor [3,6]. O. viverrini is characterized by a
complex life cycle, involving developmental phases in the
definitive human host as well as intermediate prosobranch
snail and cyprinid fish hosts. Piscivorous mammals, including
dogs, cats and humans, serve as definitive hosts and become
infected by eating raw or fermented fish harbouring the
metacercariae of the parasite [7]. Metacercariae then excyst in
the duodenumandmigrate as juvenile flukes to the intra-hepatic
biliary tree, where they develop to adult hermaphrodite flukes
within ~4 weeks; mature flukes shed embryonated eggs into
water through the faeces. Eggs are ingestedbyprosobranchsnails
of the genus Bithynia andhatch in the snail's digestive tractwhere
the motile embryos (miracidia) develop into sporocysts. The
sporocysts undergo asexual reproduction through the stages of
rediae and cercariae, the latter ofwhich exit the snail 6 to 8 weeks
later and infect a cyprinid fish. In the fish host the parasite
encysts in the muscle to form metacercariae, the stage that is
infective to humans upon ingestion of raw or undercooked fish.

Despite the high prevalence of O. viverrini infection in
humans and fish in endemic areas (i.e. up to 90% and 97%,
respectively), prevalence in the snail intermediate host is
surprisingly low (<1%) [8–12], and this observation has led to
speculation that parasite infections may cause the activation
of snail immune pathways aimed at eliminating and/or
limiting the infection itself [13]. Indeed, both cellular and
humoral factors have been reported to play important roles
in ‘defending’ snails against trematode infections [14,15];
fibrinogen-related proteins (FREPs) expressed by Biomphalaria
glabrata, the intermediate snail host of Schistosoma mansoni,
have been shown to precipitate parasite antigens, possibly
playing a role in protective responses against parasite
infections [16–19], and snail lectins and opsonins have also
been shown to impact on trematode infections [20–23].

The biological interactions between trematodes and their
intermediate hosts are crucial events that determine the
success of a parasite's infective process; the study of such
interactions is currently attracting significant attention,
particularly in relation to the development of strategies
aimed at interrupting parasite transmission [24–26]. Recently,
we used RNA-Seq of cDNA libraries to characterize the
entire transcriptome of Bithynia siamensis goniomphalos [25],
and investigated gene expression changes associated with
O. viverrini infection [13]. Despite these advances, information
on the proteome of B. siamensis goniomphalos, and consequent-
ly protein expression changes induced by fluke infection, is
scarce. Since proteins represent the primary interface of
molecular interactions between snails and trematode para-
sites, this information is crucial to assist future investigations
of snail-focused approaches to parasite control. Herein we
characterized the changes in protein expression of B. siamensis
goniomphalos upon experimental infection with O. viverrini
using a combination of quantitative and qualitative proteomic
approaches. Knowledge of the molecular basis of immune
processes that are regulated in B. siamensis goniomphalos after
parasite infection could be of importance for the design of
new control strategies against liver fluke infection and CCA.
2. Materials and methods

2.1. Ethics statement

The protocols used for animal experimentation were ap-
proved by the Animal Ethics Committee of Khon Kaen
University, based on the ethics of animal experimentation of
the National Research Council of Thailand (Ethics clearance
number AEKKU11/2555). All the snails and hamsters used in
this study were maintained at the animal facilities at the
Faculty of Medicine, Khon Kaen University, Thailand.

2.2. Snail preparation

Adult B. siamensis goniomphalos snails were collected from
public freshwater ponds located in the Muang district, Khon
Kaen Province, Thailand, kept in laboratory ceramic aquaria
containing de-chlorinated tap water and fed synthetic snail
food [27]. Trematode-naïve snails, as confirmed by cercarial
shedding once a week for 8 weeks, were used for experimen-
tal infections.

2.3. O. viverrini egg preparation

Syrian golden hamsters (Mesocricetus auratus) were experi-
mentally infected with metacercariae of O. viverrini (50
metacercariae/animal) obtained from naturally infected
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cyprinid fish. After 4 months the infected animals were
euthanized with ether and adult worms were recovered
from the hamsters' livers and washed in 0.85% sodium
chloride solution. The worms were subsequently dissected
under a stereomicroscope to isolate eggs from the distal
sections of the uteri as described previously [28]. Prior to
experimental infection, the eggs were washed several times
with distilled water and kept at room temperature for
2 weeks to undergo full maturation [29].

2.4. Experimental infection

Fully matured uterine-eggs of O. viverrini were fed to 40 (20
males and 20 females) B. siamensis goniomphalos maintained in
the laboratory as previously described [29]. Briefly, snails were
placed individually in transparent plastic containers with
6 ml of de-chlorinated tap water and exposed to 50 embryo-
nated O. viverrini eggs for 24 h. After washing, the snails were
placed in a new plastic container and kept at room temper-
ature (RT) under dark and light in natural conditions and
fed on synthetic snail food [27]. The plastic containers were
checked daily and dead snails were removed. Each snail was
subsequently examined for trematode infection by testing
cercarial shedding and examination of hatched eggs in the
snail faeces twice within a week as described previously [9,30].

Four individuals (2 male and 2 female snails) were collected
at 1, 7, 14, 28 and 56 days post-infection (p.i.), and uninfected
snails were used as controls. From all the collected snails, soft
bodies were removed from their shells, separated into headfoot
and body, snap frozen in liquidnitrogen and kept at −80 °Cuntil
use.

2.5. Sample preparation and protein extraction

Two biological replicates from each studied timepoint with two
headfoot and body samples from two male and two female
snails were pooled and placed in a 2 ml microcentrifuge tube
with 600 μl of lysis buffer containing 5 M urea, 2 M thiourea,
0.1%SDS, 1%TritonX-100 and 40 mMTris (pH 7.4). Each sample
was ground with a TissueLyser II (QIAGEN) using a 5 mm
stainless bead at 4 °C for 10 min followed by incubation on ice
for 30 min, and centrifugation at 12,000 g, at 4 °C for 20 min.
The pellet was discarded and protein supernatant was subse-
quently precipitated with 10 volumes of cold methanol at −
20 °C overnight, centrifuged at 8,000 g for 10 min at 4 °C, and
air-dried for 5–10 min. Dried protein pellet was re-dissolved in
buffer solution containing 0.5 M triethylammonium bicarbon-
ate (TEAB) and 0.05% SDS, centrifuged at 12,000 g for 10 min at
4 °C and protein content was determined by Bradford assay
using BSA as a standard. One hundred (100) μg of protein was
dried under vacuumbefore trypsin digestion. Protein extraction
from the body portion was performed similarly. Headfoot and
body samples from uninfected snails were used as controls and
compared with experimentally infected tissues.

2.6. Protein digestion and iTRAQ labelling

Dried protein samples were re-suspended in 20 μl of dissolu-
tion buffer (0.5 TEAB) prior to reduction, alkylation, digestion
and iTRAQ labelling according to the manufacturer's protocol
(AB Sciex). Briefly, each protein sample was denatured with
2% SDS, reduced with 50 mM Tris-(2-carboxyethyl)-phosphine
(TCEP) at 60 °C for 1 h, and cysteine residues were alkylated
with 10 mM methyl methanethiosulfate (MMTS) solution at
RT for 10 min followed by tryptic digestion using 2 μg of
trypsin (Sigma-Aldrich) at 37 °C for 16 h. Digested peptide
solutions were individually labeled with one vial of iTRAQ
reagent at RT for 2 h. Each sample was labeled with different
iTRAQ reagents having distinct isotopic compositions and all
samples were subsequently combined into one tube for
OFFGEL fractionation and LC-MS/MS analysis.

2.7. Peptide OFFGEL fractionation

A 3100 OFFGEL Fractionator (Agilent Technologies) with a 24well
setup was used for peptide separation based on pI. Prior to
electrofocusing, desalting of samples was performed using a
HiTrapSPHP column (GEHealthcare) andaSep-PakC18 cartridge
(Waters) was used to remove excess of iTRAQ labelling according
to the manufacturer's instructions. A total of 3.6 ml of OFFGEL
peptide sample solution was used to dissolve the samples. The
24 cm long, 3–10 linear pH range IPG gel strips (GE Healthcare)
were rehydrated with IPG Strip Rehydration Solution for 15 min,
and 150 μl of dissolved sample was loaded in each well. The
samples were focused with a maximum current of 50 μA until
50 kVh was reached. Every peptide fraction was harvested and
each well rinsed with 150 μl of a solution of water/methanol/
formic acid (49%/50%/1%). After 15 min, rinsing solutions were
pooledwith their correspondingpeptide fraction andall fractions
were evaporated using a vacuum concentrator. Prior to LC-MS/
MS analysis, peptide fractions were desalted using ZipTip
(Millipore) according to the manufacturer's protocol followed by
centrifugation under vacuum.

2.8. Reverse-phase (RP) LC-MS/MS analysis

Each dried fraction was reconstituted in 12 μl of 5% formic
acid and 3 μl of the resulting suspension was injected into a
trap column (LC Packings, PepMap C18 pre-column; 5 mm
300 m i.d.; LC Packings) using an Ultimate 3000 HPLC (Dionex
Corporation, Sunnyvalle, CA) via an isocratic flow of 0.1%
formic acid in water at a rate of 20 μl/min for 3 min. Peptides
were then eluted onto the PepMap C18 analytical column
(15 cm 75 μm i.d.; LC Packings) at a flow rate of 300 nl/min and
separated using a linear gradient of 4–80% solvent B over
120 min. Themobile phase consisted of solvent A (0.1% formic
acid (aqueous)) and solvent B (0.1% formic acid (aqueous) in
90% acetonitrile). The column eluates were subsequently
ionized using the NanoSpray II of a QSTAR Elite instrument
(Applied Biosystems) operated in information-dependent
acquisition mode, in which a 1-s TOF MS scan from 300 to
2000 m/z was performed, followed by 2-s product ion scans
from 100 to 2000 m/z on the three most intense doubly or
triply charged ions. Analyst 2.0 software was used for data
acquisition and analysis.

2.9. Database searching and bioinformatics analysis

A predicted protein database containing transcriptome data
for B. siamensis goniomphalos described previously [25] was
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used for amino acid sequence comparison. The database
search was performed using Protein Pilot v4.0.8085 (Applied
Biosystems) using the default parameters. Only proteins with
a ProteinPilot unused scored above 1.3, which is equivalent to
a protein confidence threshold greater than 95%, and for
which there was at least one unique peptide match with a
confidence >95% were selected. Under these conditions the
calculated false discovery rate (FDR) using a reverse decoy
database was <1%. The iQuantitator software was used to
analyse the differentially expressed proteins in all replicates
[31]. This software infers sample-dependent changes in
protein expression using Markov Chain Monte Carlo and
Bayesian statistical methods. Using iQuantitator, median
and 95% confidence intervals were generated for each
component peptide and integrating data across replicates.
As described previously [31–33], for proteins whose iTRAQ
ratios were downregulated in infected snails, the extent of
downregulation was considered further if the null value of 1
was above the upper limit of credible interval. Conversely, for
proteins whose iTRAQ ratios were upregulated in infected
snails, the extent of upregulation was considered further if
the lower limit of the credible interval had a value >1. The
width of these credible intervals depends on the data
available for a given protein. Since the number of peptides
observed and the number of spectra used to quantify the
change in expression for a given protein are taken into
consideration, it is possible to detect small but significant
changes in up- or downregulation when many peptides are
available. For each protein and each peptide associated with a
given protein, the mean, median, and 95% credible intervals
were computed for each of the protein and peptide level
treatment effects [32,33]. In addition, only proteins with a fold
change of at least 1.5 (log2 = 0.6) were considered for further
analysis [34].

Proteins were classified according to GO categories using the
program Blast2Go [35] and pie charts were generated using the
second level of the GO hierarchy. Heatmaps representing the
differentially expressed proteins in the headfoot and body of
infected snails were generated in R using ggplot2 [36] and
clustering was performed using Euclidean distances. Protein
levelswere compared in theheatmaps to geneexpression levels
obtained in previous studies [13]. The time points where
proteins or genes presented no significant regulation are
coloured in grey.
Table 1 – Summary results from iQuantitator analysis. The num
with the number of unique proteins and peptides in all time poi
is inferred from a Markov Chain Monte Carlo and a Bayesian st

Day 1 Day 7

Body Head Body Head

Supplied spectra 30,545 36,179 30,545 36,179
Identified spectra 16,359 21,673 16,359 21,673
Unidentified spectra 14,186 14,506 14,186 14,506
Disallowed modifications 247 542 237 546
Unique proteins 814 655 800 657
Unique peptides 2859 2359 2737 2364
Model R2 0.807 0.939 0.787 0.939
3. Results

Samples from the body and headfoot of infected and uninfected
Bithynia snails were labeled with iTRAQ and subjected to LC-MS/
MSanalysis. Twodifferent biological replicates fromeachsample
were analysed and a total of 30,545 and 36,179 MS/MS spectra
were acquired in body and headfoot samples, respectively, over
all iTRAQ runs. From these, 16,359 and 21,673 spectra were used
to assign unique peptides and unique proteins in body and
headfoot samples, respectively. An analysis of the differential
expression of the identified proteins in both replicates was
performed using iQuantitator, which uses two different statisti-
cal methods to infer sample-dependent changes in protein
expression. The total number of assigned unique peptides
and their corresponding unique proteins together with the
disallowed modifications and the R2 value of iQuantitator
statistical model are reported in Table 1.

A total number of 945 and 746 different proteins from body
and headfoot samples respectively were identified over all time
points studied (confidence threshold>95%); of these, 452proteins
were common to both samples (Fig. 1A). Of all the proteins
identified, only those whose credible interval (from iQuantitator
analysis) was above or below 1 and whose log2 fold-change was
>0.6 or <−0.6 (for upregulated and downregulated proteins
respectively), were considered for further investigation. A total
of 108 significantly differentially expressed proteins were found
in the body samples, whereas only 43 proteinswere differentially
expressed in the headfoot of the infected snails (Fig. 1B). A
comprehensive report was also generated with the iQuantitator
software (Supplementary Files 1–4 in [37]).

A GO-enrichment analysis of significantly differentially
expressed proteins from the body and the headfoot of infected
snailswas performedusing Blast2GO [35]. The analysis revealed
significant enrichment of the GO terms “binding” (13.2% and
14.4% in body and headfoot, respectively), “catalytic activity”
(11.4% and 12.3%) and “protein binding” (8.3% and 9.8%) within
“molecular function” (Fig. 2A) and “single-organism cellular
process” (9.3% and 8%), “regulation of biological process” (8.7%
and 8%), “primary metabolic process” (8.1% and 9.3%) and
“organic substance metabolic process” (8.1% and 9.3%) within
“biological process” (Fig. 2B). No significant differences were
observed between enriched GO terms from the body and
headfoot of infected snails.
ber of supplied, identified and unidentified spectra, together
nts from each sample is provided in this table. Themodel R2

atistical method.

Day 14 Day 28 Day 56

Body Head Body Head Body Head

30,545 36,179 30,545 36,179 30,545 36,179
16,359 21,673 16,359 21,673 16,359 21,673
14,186 14,506 14,186 14,506 14,186 14,506
251 549 237 547 256 545
820 656 809 657 824 653
2898 2366 2813 2370 2954 2351
0.764 0.938 0.67 0.943 0.924 0.935



Fig. 1 –Venn diagram of all the identified (A) and significantly
differentially expressed (B) proteins in the body and headfoot
of Bithynia siamensis goniomphalos following infection with
Opisthorchis viverrini.

Fig. 2 – Enriched Gene Ontology (GO) terms assigned to significan
and the headfoot (open bars) of Opisthorchis viverrini-infected Bit
categories “molecular function” (A) and “biological process” (B).
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Significantly differentially expressed proteins from the
headfoot of infected snails were grouped into 8 GO annotation
categories and plotted in a clusteredheatmap (Fig. 3). Clustering
was performed using Euclidean distances and dendrograms
were reordered based on mean values. Proteins assigned to
peptidase activity, and oxidoreductases (with the exception of
15-hydroxyprostaglandin dehydrogenase) together with pro-
teins with a catalytic domain were significantly downregulated
after infection withO. viverrini. Conversely, proteins involved in
motor activity and structural proteins were upregulated in the
headfoot of infected snails among the experiment (Fig. 3).

Significantly dysregulated proteins from the bodies of
infected snails were grouped into 10 GO annotation categories
and plotted in a clustered heatmap (Fig. 4). Clustering was also
performed using Euclidean distances and dendrograms were
reordered based on mean values. The majority of differential-
ly expressed proteins were identified at 28–56 dpi, and similar
numbers of up- and downregulated proteins were detected.
Proteins with kinase, motor and transporter activities were
mostly upregulated (especially at 56 dpi) in the bodies of
infected snails, whereas proteins with peptidase hydrolase
and oxidoreductase activities were significantly downregulat-
ed in the bodies of infected snails (Fig. 4).
4. Discussion

Despite the public health impact of infections with the
carcinogenic liver fluke in Southeast Asia, and the significant
advances in knowledge of the molecular and pathobiology of
tly differentially expressed proteins in the body (closed bars)
hynia siamensis goniomphalos snails, according to the

image of Fig.�2


Fig. 3 – Clustered heatmap of the significantly regulated proteins and genes in the headfoot of Opisthorchis viverrini-infected
Bithynia siamensis goniomphalos snails. Proteins were grouped into 8 different categories based on GO annotation and
clustering was performed using Euclidean distances. The time points where proteins and genes presented no significant
regulation are coloured in grey.
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this infection in mammalian hosts [2,4,7,38–40], little is known
of the molecular interactions in the Bithynia–Opisthorchis sys-
tem. We recently reported on the transcriptomic changes
induced in snails following O. viverrini infection using next-
generation RNA sequencing [13,25]. In the present study we
have monitored, for the first time, the effect that O. viverrini
infection has on expression of proteins in the body and the
headfoot of B. siamensis goniomphalos, throughout the period in
which the parasite is developing within its snail intermediate
host. Because of the difficulty in breeding snails in the
laboratory, wild snails were collected from the field and
checked for parasitic infections. Uninfected snailswere infected
with O. viverrini eggs and the infection was monitored by
cercarial emission and examination of hatched eggs in the snail
faeces twice each week over an 8 week period as described
previously [9,30].

image of Fig.�3


Fig. 4 – Clustered heatmap of the significantly regulated proteins and genes in the body of Opisthorchis viverrini-infected
Bithynia siamensis goniomphalos snails. Proteins were grouped into 10 different categories based on GO annotation and
clustering was performed using Euclidean distances. The time points where proteins and genes presented no significant
regulation are coloured in grey.
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Despite the similar number of proteins identified in the
body and headfoot of B. siamensis goniomphalos (945 and 746
proteins respectively), the number of significantly differen-
tially expressed proteins following infection by O. viverriniwas
significantly higher in the body than in the headfoot (108 and
43 proteins respectively). This difference could be associated
with the developmental biology of O. viverrini in its interme-
diate host; indeed, unlike other trematodes such as S. mansoni

image of Fig.�4
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whose eggs hatch in the water and miracidia actively
penetrate the snail, O. viverrini eggs are eaten by B. siamensis
goniomphalos and hatch in the snail's digestive system which
is located within the gastropod body [41]; thus, it is likely that
changes in protein expression in the body may be directly
associated with parasite hatching and asexual reproduction,
and localized to the immediate vicinity of the parasite [42].
Interestingly, the majority of differential (body) protein
expression was observed at 28 dpi and particularly at 56 dpi,
whereas no significant pattern of up- or downregulation was
observed in the headfoot samples at the same time points.
Given that the cercariae exit the snail within 6–8 weeks
post-infection [41], this observation could be linked to the
parasite migration through the digestive glands within the
body of the snail.

AGOanalysis of differentially expressed proteins in thebody
and headfoot of B. siamensis goniomphalos following O. viverrini
infection displayed an enrichment of proteins involved
in “binding” and “catalytic” activities, which is consistent
with previous transcriptomic studies [13]. For instance, heat
shock proteins (HSPs) and histones, commonly linked to
“stress-related responses”, were significantly differentially
expressed in infected snails. In particular, expression levels of
two different HSPs (HSP-70 andHSP) detected in the headfoot of
infected snails were downregulated throughout the experi-
ment. In previous studies, these stress-related proteins
were upregulated following parasite infection and hypothe-
sized to have an immunomodulatory role [43,44]. Furthermore,
increased levels of HSP-70 expression were observed in
schistosome-susceptible Biomphalaria following experimental
infection with S. mansoni [45]. Conversely, other studies have
shown that HSPs are downregulated in hemocytes from
susceptible and resistant snails infected with S. mansoni [46].
Despite the contradiction surrounding the role and differential
expression of HSPs in the literature, our proteomic results
from the body of the snail are in accordance with previous
transcriptomic studies performed in naturally infected Bithynia,
where mRNAs encoding HSPs were among the most highly
upregulated in infected Bithynia [13]. Other proteins related to
oxidative stress, like histones, were also upregulated in the
body of infected Bithynia, supporting our earlier findings of other
isoforms of histones at the RNA level [13] and those of others
with S. mansoni infected B. glabrata [47,48]. Despite the unclear
role of histones in the response against parasitic infections, it
has been speculated that an increase in transcription could
trigger chromatin modifications in susceptible snails, contrib-
uting to the success of the infection [47].

Proteins functionally linked to motor activities were
upregulated in both body and headfoot of infected Bithynia.
Myosins were consistently upregulated throughout the study,
with the exception of two myosin light chains in the body of
infected Bithynia. These light chains are not usually consid-
ered “myosins” but regulatory components of the macromo-
lecular complexes, and could not be related to motor
activity [49,50]. Consistent with these findings is the upregu-
lation of actin, tropomyosin and paramyosin observed in the
body of infected snails [13]. We recently hypothesized that
actin-related gene expression in fluke-infected Bythinia is
associated with the migration of circulating hemocytes
and promoting phagocytosis and cell trafficking, which could
assist in the defence of the snail against pathogens [13].
Moreover, a putative role for tropomyosin in host-parasite
molecular mimicry has been suggested based on the unusu-
ally high degree of sequence similarity between S. mansoni
and B. glabrata tropomyosins [51–53].

Oxidoreductases were also differentially expressed in the
body and the headfoot of infected snails. This group of
proteins includes all enzymes that catalyse the transfer of
electrons from one molecule to another, thus playing a major
role in aerobic and anaerobic metabolism. Peroxiredoxins are
a family of enzymes playing protective roles against oxidative
stress through the neutralization of reactive oxygen and
nitrogen species that can damage cellular function. It
has been shown previously that the expression levels of a
peroxiredoxin from S. mansoni-resistant B. glabrata are in-
creased following infection with S. mansoni; in contrast,
expression levels of this enzyme were decreased in suscepti-
ble snails [54]. We detected significant downregulation of
different Bithynia peroxiredoxins at 56 dpi, which may be
related to a defence mechanism from the cercariae transiting
through the body tissues to leave the snail. In this sense, the
excretory/secretory (ES) products from the parasite could
downregulate the expression levels of peroxiredoxins as a
self-defence mechanism.

Only a few proteins playing putative roles in immuno-
modulation were identified as significantly differentially
expressed in our experiment. Among these proteins, galectins
were downregulated in the body of infected Bithynia. Galectins
and C-type lectins are a family of glycan-binding proteins that
are usually upregulated in infected snails [48,55]. The B. glabrata
galectin BgGal binds to hemocytes and the tegument of
S. mansoni suggesting its role in parasite recognition [56]. Other
immunomodulatory proteins include the hemocyanins, which
rely on copper for the transport of oxygen throughout the body
of gastropods and have been shown to be involved in defence
mechanisms in invertebrates [48,57,58]. It has been hypothe-
sized that the presence of hemocyanin in iron-containing
haemoglobin of gastropods such as B. glabrata could be more
related to defence mechanisms than to respiratory function
[48]. The lack of key immunomodulatory proteins identified in
this study could be related to the limited sensitivity of mass
spectrometry instruments; however, many of the proteins of
unknown function identified could also be playing an immu-
nomodulatory role. In our previous transcriptomic study,
there was a notable paucity of differentially expressed genes
encoding immunomodulatory proteins in infected Bithynia [13].
The concordance between proteomic and transcriptomic data
lends further credit to the hypothesis that O. viverrini may
manipulate the snail by suppressing its immune responses,
thus resulting in the inability of the hemocytes to recognize the
parasite and/or the suppression of the snail humoral response
against parasite invasion. In this sense, the model B. glabrata–
Echinostoma spp. with susceptible and resistant snails has been
shown to be a good model to analyse the influence of parasites
on the snail immune response [59–61]. Themanipulation of the
B. glabrata defence responses by Echinostoma paraensei has been
well characterized in previous studies [48,62]. DeGaffe and
Loker [63] showed that susceptibility of B. glabrata to infection
with E. paraensei is correlated with the ability of the ES products
to interfere with the spreading behaviour of host hemocytes.
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Furthermore, the ES products of Echinostoma caproni have been
shown to inhibit phagocytosis and adhesion mechanisms of
susceptible B. glabrata snails [64].

Control and elimination of snail-borne diseases should not
rely solely upon anti-parasite chemotherapy [65,66], and inte-
grated programs should be designed. Recently, a number of
authors highlighted the importance of controlling snail-borne
parasitic diseases by using integrated approaches aimed at
eradicating the parasite from the definitive host (i.e. mass drug
administration) as well as disrupting the life cycle in the
intermediatehost (i.e. use ofmolluscicides andhealth education)
[24–26,67]. The present study establishes a baseline for future
investigations on host–parasite interactions in the Bithynia–
Opisthorchis system aimed at dissecting the molecular mecha-
nisms involved in the transmission of this carcinogenic infection
by snails.
5. Conclusions

Our study compares for the first time the differentially expressed
proteins in the body and the headfoot of the snail B. siamensis
goniomphalos after infection with the liver fluke O. viverrini. In
general, more proteins were differentially expressed after infec-
tion in the body of the snail, which could be related to the biology
of the infection. Most notably, expression of oxidoreductases and
catalytic enzymes was downregulated in infected snails, while
motor and stress-related proteins were upregulated. This work
providesnew insights into the studyof host–parasite interactions
and could serve as a basis for the development of new strategies
aimed at controlling parasite transmission.
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