IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection

Nie, Catherine Q., Bernard, Nicholas, Norman, M. Ursula, Amante, Fiona H., Lundie, Rachel J., Crabb, Brendan S., Heath, William R., Engwerda, Christian R., Hickey, Michael J., Schofield, Louis, and Hansen, Diana S. (2009) IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathogens, 5 (4). e1000369. pp. 1-16.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
View at Publisher Website: http://dx.doi.org/10.1371/journal.ppat.1...
 
208


Abstract

Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

Item ID: 35868
Item Type: Article (Research - C1)
ISSN: 1553-7374
Additional Information:

© 2009 Nie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funders: National Health and Medical Research Council (NHMRC), Victorian State Government
Projects and Grants: NHMRC Grant No. 356239, NHMRC Program Grant 215201, NHMRC IRIISS Grant 361646
Date Deposited: 31 Oct 2014 01:24
FoR Codes: 11 MEDICAL AND HEALTH SCIENCES > 1103 Clinical Sciences > 110309 Infectious Diseases @ 50%
11 MEDICAL AND HEALTH SCIENCES > 1107 Immunology > 110799 Immunology not elsewhere classified @ 50%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970111 Expanding Knowledge in the Medical and Health Sciences @ 100%
Downloads: Total: 208
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page