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Abstract. Confidence bands are commonly obtained from linear regression, but they are rarely 

shown for nonlinear functions. In part this is due to mathematical complexity.  A simple, intuitive and easily 
automated alternative is to employ interval arithmetic to approximate the confidence band.  We illustrate the 
method by applying it to a straight line, and then apply it to the rate equation of a Michaelis-Menten enzyme 
and a general polynomial.  In each case the approximation is generally larger (and never smaller) than the 
corresponding standard confidence band, but in at least some instances the upper bound of the discrepancy is 
about 40%. 
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Introduction 
Most experiments yield parameter 

estimates in the form of  <x> ± , where <x> 
is an average and  is the standard deviation, 
standard error or other measure of the error of 
the estimate.  While this makes the precision 
of the estimates clear, the significance of the 
error can be more difficult to assess.  For 
example, a function y = f(x; ai), i = 1, 2, … n, 
might have an error associated with each of 
the n parameters of i, so an estimate of the 
total error of y (y) would be 
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Considering each ai in isolation can be 
misleading, especially for nonlinear functions.  
However, numerical differentiation is ill-
posed in the sense that small variations in ai 
can result in large differences in the computed 
derivative [LU & PEREVERZEV 2006, CHENG et al. 2007] 
which may make the application of (1) 
problematic [BROWN et al. 2012].  An alternative 
simple and intuitively attractive approach to 
the problem would be to estimate (1) using 
interval arithmetic [Moore 1979], which relies on 
simple algebraic analysis, some of which 
might be automated [HICKEY et al. 2001, JAULIN et al. 

2001], and does not requires differentiation.  
Here we show that the error estimate obtained 
using interval arithmetic is only about 40% 
larger than that estimated from (1) for 
sufficiently large x. 

We summarise the basic operations of 
interval arithmetic which we then apply to the 

approximation of the confidence band of a 
straight line, to illustrate the approach used.  
We then extend this approach to the 
rectangular hyperbola used in enzyme kinetics 
[Briggs & Haldane 1925] and in so many other 
contexts and to a general polynomial. 

 
Interval arithmetic 
Assuming that X = <x> ± , then the 

effective lower and upper limits of X are xL = 
<x> –  and xU = <x> + , respectively, and of 
course xL  xU.  This interval can be written as 
X = [xL, xU] and a real number is a degenerate 
interval in which xL = xU.  If A = [aL, aU] and B 
= [bL, bU] are intervals defined in this way, 
then the following basic arithmetic operations 
can be defined [Moore 1979] 

 UULL babaBA  ,  
 LUUL babaBA  ,  
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which reduces to  UULL babaAB ,  if 0 < aL 

< aU and 0 < bL < bU, and 
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if 0  {bL, bU}.   
In addition, we make use of the width 

of the interval A, which is given by 
  LU aaAw   (2) 

and  

2
* UL aa

A


 , (3) 
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which is the midpoint of the interval A. 
 
Theory 
For a straight line y = ax + c for which 

the coefficient estimates are  â = a ± a and ĉ 
= c ± c, then ŷ = y ± y where (1) yields 
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where x is usually taken in relation to the 
midpoint of the range (xmid) 

[Dudewicz & Mishra 1988].  
Interval analysis of the equation, based on the 
same coefficient estimates, implies that A = 
[aL, aU] = [â – a, â + a] and C = [cL, cU] = [ĉ 
– c, ĉ + c], and yields 

 UULL cxacxaCAxY  ,  (5) 
for x > 0, and so the limits are a linear 
function of x and the width (2) and midpoint 
(3) of the interval are 
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respectively.  In this case the error is 
symmetrical about ŷ = Y* since the error 
estimated from interval arithmetic (y) is 

caULy xyyyy   ˆˆ . (8) 

Using (4) and (8) and assuming that x  0 
yields an expression for the error estimated 
from interval arithmetic (y) in terms of the 
total error (y)  

2
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From (9) it is clear that (i) 222 2 yyy    for x 

 0 and (ii) 22
yy    when x = 0 or x → ∞.  

Equation (9) can be used to estimate the 
discrepancy between y and y 

y
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which has a maximum at (c/a, 1).  Equation 
(10) provides an upper bound on the relative 
difference between y and y   yyy   , 

since  

    222
yyyyyyyy   . 

Combining these bounds yields  
  01  yyy   (11) 

which can be improved using the empirical 
approximation  

    12yyy   (12) 

(Figure 1) which facilitates estimation of y 
from y. 

The rate of a reaction catalysed by a 
Michaelis-Menten enzyme depends on the 
concentration of substrate (S) 
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where VmV max is the maximum rate and 

KmmK   is a measure of the affinity of the 
enzyme for the substrate.  Using (1), the 
confidence band of (13) is 
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[Brown et al 2012].  Interval analysis yields   
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which means that the bounds are not 
symmetrical because 
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are not equal.  If Km << Km + S and Vmax ± Vm 
 Vmax then 

 
Figure 1. Confidence band estimates for a 

straight line (a = 1, a = 0.4, c = 0.3,  c = 0.1).  
The grey region represents the confidence 
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band estimated from (4) and the dashed 
curves represents that estimated using (8). The 
dotted curves are given by (10) and (12) and 
the lowest curve is calculated from (4) and 

(8).  

 
Figure 2.  Confidence band estimates for the 

rate of reaction of a Michaelis-Menten 
enzyme (13) assuming Vmax = 1, Vm = 0.01, 
Km = 0.25 and  Km = 0.05.  The grey region 

represents the confidence band estimated from 
(14) and the dashed curves represents that 

estimated using (15).   The dotted curves are 
given by (10) and (12) and the lowest curve is 

calculated from (14) and (16). 
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and v > v since S   0.  While (17) is of a 
form similar to (9), there are no values of S ≥ 
0 for which v = v.  However,  has a 
maximum at (KmVmax/Vm – Km, 1) and, for 
sufficiently large S, (11) also applies in this 
case (Figure 2).  So, as for the straight line, 
(10) provides an upper bound on the relative 
difference between y and y   yyy    

and this can be improved using (12) for 
sufficiently large S (Figure 2) which 
facilitates estimation of y from y. 

For a general polynomial in x ≥ 0 
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each of the coefficients (ai) of which has an 
error estimate (i), the total error of f(x) 
estimated from (1) is 
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and the interval expression for the polynomial  
is 
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Using (18), (19) can be written in the same 
form as (9) and (17) 
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from which it is clear that 22
yy    when x = 0 

or x → ∞. 
 
Discussion 
We have outlined a simple, intuitive 

and easily automated means of estimating the 
confidence band of nonlinear functions.  
While ξy > εy in each of the three examples 
considered here, as is apparent from (9), (17) 
and (20), the discrepancy () is not constant.  
However, for a straight line or the Michaelis-
Menten equation  is no more than 1 and 
provides an approximation of the relative 
difference between ξy and εy when scaled 
appropriately (12) as is apparent from Figures 
1 and 2. We have not defined an apparent 
upper bound in the case of a general 
polynomial, but we conjecture that  is of a 
similar magnitude (11).   

In those cases where several 
coefficients or parameters are estimated, it can 
be misleading to consider one of them while 
neglecting the others [BROWN ET AL 2012].  The 
approach outlined here provides an estimate 
of the confidence band using only simple 
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algebra.  Obviously, where the statistical 
significance of a difference in small it is 
important to carry out the full analysis, but in 
many cases the slight over-estimate of the 
confidence band given by interval arithmetic 
may be sufficient. 
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