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Abstract 

 

Reproduction in many organisms can be disrupted by changes to the physical environment, 

such as those predicted to occur during climate change. Marine organisms face the dual 

climate change threats of increasing temperature and ocean acidification, yet no studies have 

examined the potential interactive effects of these stressors on reproduction in marine fishes. 

We used a long-term experiment to test the interactive effects of increased temperature and 

CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus.  Adult 

breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C 

(+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control 

(417μatm) and moderate (644μatm) and high (1134μatm) treatments consistent with the 

range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch 

produced during the breeding season, the number of eggs laid per clutch, average egg size, 
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fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body 

condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol 

concentrations were measured at the end of the breeding season to determine the effect of 

prolonged exposure to increased temperature and elevated CO2 on adults, and to examine 

potential physiological mechanisms for changes in reproduction. Temperature had by far the 

stronger influence on reproduction, with clear declines in reproduction occurring in the 

+1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a 

minimal effect on the majority of reproductive traits measured, but caused a decline in 

offspring quality in combination with elevated temperature. We detected no significant effect 

of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature 

had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that 

declines in reproduction with increasing temperature were due to the thermal sensitivity of 

reproductive hormones rather than a reduction in energy available for reproduction. Our 

results show that elevated temperature exerts a stronger influence than high CO2 on 

reproduction in A. melanopus. Understanding how these two environmental variables interact 

to affect the reproductive performance of marine organisms will be important for predicting 

the future impacts of climate change.  

 

Keywords: Reproduction, ocean acidification, carbon dioxide, ocean warming, Amphiprion 

melanopus, climate change 
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Introduction 1 
Reproduction is critical to individual fitness and the persistence of populations. Reproduction 2 
in most organisms is also sensitive to changes in the physical environment. For example, the 3 
timing of reproduction can be influenced by variation in temperature (Kjesbu, 1994; Visser et 4 
al., 2009), photoperiod (Duston & Bromage, 1986; Dawson et al., 2001), rainfall (Donnelly 5 
& Guyer, 1994; Hau et al., 2004) and flow regimes (Schlosser, 1982; Bunn & Arthington, 6 
2002). Similarly, reproductive output is affected by temperature (King et al., 2003; Saino et 7 
al., 2004) and food availability (Brown & Shine, 2007; Donelson et al., 2010). Consequently, 8 
anthropogenic climate change is predicted to affect reproductive success of many species 9 
(Parmesan, 2006; Poloczanska et al., 2013) and could be the primary driver of population 10 
declines due to climate change (Van Der Kraak & Pankhurst, 1997; Zeh et al., 2012).  11 
 12 
For marine organisms, increasing temperature and ocean acidification are the most serious 13 
climate change threats (Hoegh-Guldberg et al., 2007; Doney et al., 2009) and they are 14 
predicted to be additive or synergistic in their effect on performance, potentially leading to 15 
greater effects in combination than in isolation (Pörtner & Farrel, 2008). Many studies have 16 
examined the effects of one or other of these two stressors on reproduction in marine 17 
organisms (including Miller et al., 2013; Donelson et al., 2010), but few have examined the 18 
potential interactive effects on reproduction. While an increasing number of studies are 19 
testing the interacting effects of ocean warming and ocean acidification on invertebrates 20 
(Byrne et al., 2009, 2010; Parker et al., 2009; Albright & Mason 2013, Cohen-Rengifo et al., 21 
2013) relatively few studies have tested these two stressors in combination for fish (but see 22 
Munday et al., 2009a; Nowicki et al., 2012; Grans et al., 2014) and none have tested the 23 
interacting effects on reproduction in fishes. In fishes, increased temperature has been shown 24 
to negatively affect reproduction in many species (see reviews, Pankhurst & Porter, 2003; 25 
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Pankhurst & King, 2010). In contrast, ocean acidification, while predicted to have negative 26 
impacts (Pörtner & Farrel, 2008; Ishimatsu et al., 2008) has been found to have little impact, 27 
or even positive effects, on reproduction in multiple species of fish (Frommel et al., 2010; 28 
Sundin et al., 2012, Miller et al., 2013; Fosgren et al., 2013). Yet, whether elevated 29 
temperature and ocean acidification will interact to affect reproduction in fishes is not known.  30 
  31 
For many species of fish, temperature is one of the main cues for reproduction, signaling the 32 
beginning and the end of the breeding season (Van Der Kraak & Pankhurst, 1997; Pankhurst 33 
& Munday, 2011). For spring-summer spawner’s, the increase in water temperatures 34 
following the winter minimum, elicits physiological changes, production of sex steroids, 35 
maturation of gonads, and spawning (Kjesbu, 1994; Pankhurst et al., 1996). Nevertheless, 36 
reproduction only occurs within a narrow range of temperatures that the population normally 37 
experiences (Van der Kraak & Pankhurst, 1997). If temperatures exceed this thermal 38 
window, reproduction can quickly decline and may cease altogether (Donelson et al., 2010; 39 
Dorts et al., 2011). Tropical fishes may be especially sensitive to changes in temperature, as 40 
they inhabit a more thermally stable environment than higher latitude species (Tewksbury et 41 
al., 2008; Rummer et al., 2014). This means that even a relatively small increase in average 42 
temperature, such as predicted by climate change, could have serious effects on reproductive 43 
performance in tropical species (Donelson et al., 2010; Zeh et al., 2012).  44 
 45 
Reproduction may decline at elevated temperatures as a result of energetic constraints or 46 
through the effects of temperature on hormonal pathways. As temperatures increase past the 47 
thermal optimum, individuals need to expend more energy maintaining cellular function 48 
(Pörtner & Farrell, 2008). Organisms have a finite amount of energy available and as more of 49 
the energy is used for homeostasis less is available for other activities, such as reproduction 50 



 5

(Somero, 2002; Sokolova et al., 2012). Under energy constraints, adults could opt to produce 51 
the same number of offspring as under normal conditions, but at a cost to offspring 52 
provisioning. Alternatively, individuals may produce fewer offspring that have adequate 53 
levels of provisioning in an attempt to ensure offspring survival (Stearns, 1992). 54 
 55 
Reproduction may also decline with increasing temperature due to the thermal sensitivity of 56 
reproductive hormones. Reproduction in fish is tightly controlled through the interplay of 57 
multiple hormones and steroids created by the hypothalamus, the pituitary and the gonads 58 
(Hypothalamic-Pituitary-Gonadal axis (HPG axis)) (Yaron & Levavi-Sivan, 2011). Elevated 59 
temperatures have the ability to inhibit the HPG axis at multiple sites, through changes in 60 
hormone synthesis, action and structures (Pankhurst & Munday, 2011). The inhibitory effects 61 
of temperature can occur through changes in protein and hormone structures, resulting in a 62 
reduced uptake or insolubility of the hormones. These changes can then lead to the hormones 63 
failing to reach the correct receptor, or passing straight through the kidneys and being 64 
excreted, thereby impairing the particular reproductive process (Van Der Kraak & Pankhurst, 65 
1997; Pankhurst & Munday, 2011). Ultimately, wherever the disruption to the hormonal 66 
cascade occurs, elevated temperatures result in declines in reproductive activity, egg size and 67 
offspring survival. 68 
 69 
In addition to increasing temperatures, marine fishes will have to cope with increasing partial 70 
pressure of carbon dioxide (pCO2) in the ocean. Increasing pCO2 has been documented to 71 
negatively impact reproduction in a number of invertebrates (see Ross et al., 2011). Fishes, 72 
however, have well-developed mechanisms for acid-base regulation and are able to maintain 73 
their internal pH against an elevated CO2 gradient, through active transport of ions across the 74 
gills and in their blood and tissues (Brauner & Baker, 2009; Esbaugh et al., 2012). This 75 
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process is not cost free and it has been predicted that the increase in energy required to 76 
maintain acid-base balance should result in a decline in energy available for reproduction and 77 
other activities (Pörtner et al., 2004; Ishimatsu et al., 2008). However, only one study (Inaba 78 
et al., 2003) has documented a negative impact of increasing pCO2 on a reproductive trait, 79 
with sperm motility being reduced in some flatfishes, but not in a range of other species. 80 
Other studies have reported little to no effects of increased CO2 on reproduction. For 81 
example, Frommel et al. (2010) found no effect on sperm motility in Baltic cod (Gadhus 82 
morhua), Sundin et al. (2012) found no difference in reproductive propensity in pipefish 83 
(Syngnathus typhle) and Fosgren et al. (2013) found no differences in clutch size but did see 84 
a significant decline in egg survival with increasing CO2 in a temperate goby (Gobiusculus 85 
flavescens). Interestingly, several studies have documented increases in reproduction or 86 
reproductive related traits in response to elevated CO2 (Miller et al., 2013; Schade et al., 87 
2014) Furthermore, Preus-Olsen et al. (2014) documented increased levels of sex steroid 88 
hormones in Atlantic cod at high CO2 which is consistent with greater rates of reproduction 89 
in the other studies. Neither Miller et al. (2013) or Schade et al. (2014) found negative 90 
consequences of the increased reproductive activity in high CO2 on the condition of the 91 
adults or the resulting offspring. Instead these studies show transgenerational acclimation of 92 
the offspring to elevated CO2 due to parental exposure to high CO2 (Miller et al., 2012: 93 
Schade et al., 2014).  94 
 95 
Increases in temperature and pCO2 will not occur in isolation from each other, and for that 96 
reason, it is important to understand how they may interact to affect reproduction. As these 97 
two variables have been documented to have contrasting effects on reproduction in fish, it is 98 
especially important to understand how they might interact to affect this critical process. The 99 
aim of this study was to document the effect of elevated CO2 and increased temperature on 100 
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reproductive activity, offspring quality, and any effect on adult condition (physical and 101 
reproductive) in a tropical reef fish. Adult pairs of Amphiprion melanopus were kept in 102 
current-day control CO2 or elevated CO2 treatments (moderate and high). CO2 treatments 103 
were fully cross-factored with 3 temperature treatments, current-day summer average water 104 
temperature, 28.5°C (+0.0°C), or two elevated temperatures, 30.0°C (+1.5°C) and 31.5°C 105 
(+3.0°C). Adult pairs were placed in CO2 treatment during winter, slowly brought up to the 106 
required temperature treatments through spring and then allowed to reproduce naturally 107 
during the summer breeding season. Throughout the breeding season we assessed the effect 108 
of elevated temperature and increased CO2 on key reproductive traits related to breeding and 109 
spawning, egg production and survival, and offspring provisioning (Fig. 1). At the end of the 110 
reproductive season we assessed adult physiological (Fulton’s K body condition index, 111 
hepatosomatic index) and reproductive condition (gonadosomatic index, plasma hormone 112 
concentration) (Fig. 1) to determine if difference in reproductive performance were 113 
potentially associated with the energetic cost of reproduction or effects on reproductive 114 
hormones. 17β-estradiol (E2) was chosen as the focal sex steroid due to its well-defined role 115 
in vitellogenesis and oocyte maturation in female fish (Lubzen et al., 2010; Yaron & Levavi-116 
Sivan, 2011). 117 
 118 
Methods 119 
Study species and husbandry 120 
The cinnamon anemonefish, Amphiprion melanopus (Pomacentridae) inhabits coral reefs 121 
throughout the Indo-Pacific region, including the Great Barrier Reef, Australia (Drew et al., 122 
2008). Amphiprion melanopus occur in large social groups containing multiple breeding pairs 123 
that reproduce repeatedly during the summer. Eggs are laid in clutches attached to hard 124 
substratum near their host anemone (Michael, 2008). Embryonic duration is 7-9 days, during 125 
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which time the males tend the eggs. Larvae hatch after dark and are pelagic for 126 
approximately 11 days, at which point they metamorphose and become competent to settle to 127 
reef habitat (Bay et al., 2006). Adults reach a maximum length of 12cm (Lieske & Myers, 128 
1994) and have a reported maximum age of 5 years (Allen, 1975).  129 
 130 
Adult breeding pairs of A. melanopus were collected between June 2009 and June 2011 from 131 
4 reefs in the central Great Barrier Reef: Orpheus Island (18.6183°S, 146.4936°E), Bramble 132 
Reef (18.417°S, 146.700°E), Davies Reef (18.83°S, 147.63°E) and Slasher’s Reef (18.467°S, 133 
147.083°E) and transferred to James Cook University, Townsville. Pairs were housed 134 
individually in 45L aquaria and provided with a half terracotta post as a nest site and shelter. 135 
Aquaria were provided with continuous flow of seawater at 1.5Lmin-1. Pairs were fed 0.1g of 136 
commercial fish feed (INVE NRD 12/24) three times a day, equivalent to 1.21% of the 137 
average body weight (Donelson et al., 2010). 138 
 139 
Experimental design 140 
Between seven and eight adult pairs of A. melanopus were assigned to each of the nine 141 
treatment groups and held individually, i.e. one pair per aquaria. Three CO2 groups were 142 
cross-factored with three temperature groups reflective of pCO2 and temperatures projected 143 
to occur in the ocean by 2100 under RCP6 and RCP8.5 (Collins et al., 2013). The three CO2 144 
levels used were a current-day control (~417μatm), a moderate (~644 μatm) and a high 145 
(~1134 μatm) CO2 treatment. The temperatures were the current-day summer average of the 146 
collection region, 28.5°C (+0.0°C), a moderate 30.0°C (+1.5°C) and a high, 31.5°C (+3.0°C) 147 
temperature treatments (See Table 1 for full experimental parameters). These temperatures 148 
reflect the current summer average water temperature for the Orpheus Island region where 149 
the adults were collected, and the 1.5 to 3.0°C warming predicted to occur in the tropical 150 
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oceans over the coming century due to climate change (Poloczanska et al., 2007; Ganachaud 151 
et al., 2011).  152 
 153 
Three 8000L liter aquarium systems were utilized, each dosed to the desired pCO2. Due to 154 
the scale of the study it was not possible to have separate CO2 and temperature treatments 155 
applied to each aquarium. Pairs were in their respective CO2 treatments by June 2011 at 156 
current day winter water temperatures (22.5°C). Temperatures were subsequently increased 157 
over a two month period to achieve the required temperature separation and then increased by 158 
0.5°C weekly to reach experimental breeding temperatures in the second week of November 159 
2011.  160 
 161 
Data collection of key reproductive traits 162 
Throughout the breeding season, key reproductive traits related to reproductive activity, egg 163 
survival, offspring provisioning and adult physiological and reproductive condition were 164 
collected (Fig. 1). Terracotta pots were checked daily between 0900 and 1100 for the 165 
presence of egg clutches. A digital photograph (Canon G12) was taken of each new clutch. A 166 
sample of 10-20 eggs was then taken from the clutch and preserved in 6% formalin. Daily 167 
photographs of each clutch were taken until the eggs hatched or there were no more eggs due 168 
to mortality. Parents often eat the eggs if development is abnormal or if eggs are diseased. 169 
Clutches were considered successful if any eggs survived to 6 – 8 days post-spawning. 170 
Surviving egg clutches were hatched into 70L aquaria at the same pCO2 and temperature 171 
treatment as their parents. A sample of between 10-20 larvae was taken the morning after 172 
hatching between 0730 and 0830, within 12 hours of hatching. Larvae were euthanized with 173 
an overdose of clove oil before being preserved in 4% phosphate buffered formaldehyde. A 174 
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digital photograph (Canon G12) of each larva was taken on a 5mm grid in a horizontal 175 
position within 3 days of sampling.  176 
  177 
The number of eggs laid in each clutch and the number of eggs remaining at hatching was 178 
counted from the digital image with the aid of ImageJ. The percentage of surviving eggs was 179 
then determined from these two counts. Fertilization success was determined by counting the 180 
number of unfertilized eggs in the initial clutch photograph. Unfertilized eggs were identified 181 
by their white colouration, whereas fertilized eggs had an orange colouration. To determine 182 
egg size the eggs sampled from each clutch were photographed (Canon G12) while placed 183 
horizontally on a 5mm grid so that the longest axis was visible. The image was viewed on a 184 
computer screen and ImageJ was used to trace the outside of 5 eggs from each sample and the 185 
average egg area (mm2) was determined. Reproductive output for each clutch was estimated 186 
by multiplying the total number of eggs by the average egg area for that clutch providing a 187 
relative estimate of investment for each clutch (mm2). Hatchling standard length (SL) was 188 
measured to the nearest 0.1mm from a photograph using ImageJ, by drawing a line from the 189 
tip of the mouth to the beginning of the tail. Yolk area was determined to the nearest 0.1mm2 190 
by tracing the yolk sac in ImageJ from photographs viewed on a computer screen.  191 
 192 
Data collection of adult physiological and reproductive traits 193 
Adults were euthanized at the end of the breeding season to examine the effects of increased 194 
temperature and pCO2 on body condition, liver condition, oocyte production and gonadal 195 
steroidogenesis (17β-estradiol, E2). Each fish was weighed (wet weight W, nearest 0.01g) and 196 
measured (standard length SL, to the nearest 0.01mm). Fulton’s K body condition factor 197 
(body condition) was then calculated using the formula K=100*(W/SL3), where W is wet 198 
weight in grams and SL is standard length in centimeters. To maintain genetic material and 199 
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allow for potential genetic analysis, liver and gonads were dissected and snap frozen in liquid 200 
nitrogen. After freezing they were weighed to the nearest 0.0001g and then fixed in 4% 201 
phosphate buffered formaldehyde for several days before storage in 100% ethanol. 202 
Hepatosomatic index and gonadosomatic index were determined by the formula HSI/GSI= 203 
(liver weight or gonad weight (g)/fish weight (g))*100.  204 
 205 
Plasma 17β-estradiol quantification 206 
Blood samples were taken from females prior to euthanasia to estimate 17β-estradiol (E2) 207 
concentrations. 17β-estradiol was chosen due to its role in vitellogenesis and oocyte 208 
maturation in female fish. Thus, changes in E2 concentration could result in changes yolk 209 
provisioning, egg size, the number of eggs per clutch, the number of clutches, hatchling 210 
survival and hatchling length (Lubzens et al., 2010; Yaron & Levavi-Sivan, 2011). Changes 211 
in E2 concentration can therefore provide a direct endocrine pathway to any changes in 212 
reproductive output. 213 
 214 
Blood samples were taken towards the end of the breeding season to allow for a direct 215 
comparison of plasma hormone concentrations to the reproductive activity of the individual 216 
female. Each fish was caught using a hand-net and a cranial concussion was delivered to 217 
render the fish unconscious. Blood samples were taken immediately via caudal puncture 218 
using pre-heparinized syringes and centrifuged immediately after collection. Plasma was 219 
aspirated from the top of the sample and snap frozen in liquid nitrogen before being stored at 220 
-80°C until steroid measurement.  221 
 222 
To determine the E2 concentration in the plasma samples, a known volume of plasma was 223 
combined with a solvent (containing 1:1 ethyl acetate and N-hexane) in a glass test tube (1:4 224 
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plasma:solvent). The mixture was vortexed twice for 10 seconds, with the layers allowed to 225 
separate between each round. The upper clear liquid was then transferred into a clean glass 226 
test vial, and the extraction steps were repeated three times for each sample. The residual 227 
solvent mix was evaporated by heating to 37°C under a gentle stream of nitrogen. The 228 
extracted samples were then capped and frozen at -20°C until analysis. 229 
 230 
Plasma concentrations of E2 were measured using enzyme immunoassay (EIA) kits obtained 231 
from Cayman Chemicals, Sapphire Bioscience (No 582251), and validated for A. melanopus 232 
(S. Metcalfe, unpublished data). The manufacturers instructions were followed, except that 233 
extracted plasma samples were measured in duplicate. Absorbance at 405nm was measured 234 
on a spectophotomere (Thermo Multiskan Ascent). Average extraction efficiency was 235 
114±5.1% (standard error) (n=4), intra-assay variability was 5.3% (n=7) and 13.7% (n=6), 236 
and inter-assay variability was 9.6% (n=13). 237 
 238 
Liver and gonad samples 239 
Fixed ovaries were embedded in histoparaffin and 5-μm sections were taken at 3 points along 240 
the longest axis. Sections were mounted on a glass slide and stained with Mayer’s alum 241 
haematoxylin and Young’s eosin-erythrosine. To determine the reproductive status of 242 
individuals, a transect was run along each representative section and the type of sex cell 243 
under 100-graticules marked on an eyepiece micrometer was recorded at a 10 times 244 
magnification. Female cells were categorized into: oogonia (Stage 1), perinucleolus (Stage 245 
2), cortical alveolus (Stage 3), early vitellogenic oocytes (Stage 4) and late vitellogenic 246 
oocytes (Stage 5), following Genten et al. (2009). The relative abundance of each cell type in 247 
each section was calculated.   248 
 249 
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Aquarium systems and seawater analysis 250 
The pCO2 in each system was controlled by an AquaMedic AT-controller that dosed a 3000L 251 
sump with CO2 to maintain the pH at the appropriate level for the desired pCO2. The control 252 
temperature (+0.0°C) was maintained by circulating seawater through a SolarWise 253 
heater/chiller on each system. The +0.0°C temperature seawater was either delivered directly 254 
to the aquaria, or was sent through Toyesi inline 2.5kW heaters to raise the temperature 255 
+1.5°C or +3.0°C, prior to delivery to the aquaria. 256 
 257 
pHNBS  (Hach HQ40d) and temperature (Comark C26 thermometer) were recorded daily from 258 
replicate aquariums for each treatment. Total alkalinity was estimated weekly by Gran 259 
Titration (Metrohm 888 Titrando titrator) and validated against certified reference material 260 
(A.G. Dickson Scipss Institute of Oceanography). Salinity (Hach HQ15d) was measured 261 
weekly. The Aqua Medic pH set points were adjusted as needed to maintain the desired pCO2 262 
on each system. 263 
 264 
pCO2 was calculated in CO2SYS (http://cdiac.ornl.gov/oceans/co2rprt.html) using the daily 265 
pHNBS and temperature (°C) readings and the weekly total alkalinity and salinity 266 
measurements. As temperature affects seawater pCO2, CO2 levels were not exactly the same 267 
among temperature treatments within each CO2 treatment group. Nevertheless, CO2 268 
treatments remained well separated and for simplicity, the average CO2 levels are reported 269 
(417μatm, 644μatm and 1134μatm) and are referred to as control, moderate or high CO2 270 
treatments.   271 
 272 
Data analysis 273 
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ANCOVA was used to compare the number of clutches produced per pair in each treatment 274 
group. The number of clutches produced was the dependent variable, CO2 and temperature 275 
treatments were the fixed variables, and female weight the covariate.  276 
 277 
Linear mixed effects models (LME) (Pinheiro & Bates, 2000) were used to analyze the 278 
reproductive characteristics: interclutch interval, average number of eggs laid per clutch, 279 
average fertilization success, average egg area and reproductive output per clutch. As the 280 
experiment aimed to determine the interactive effect of increased temperature and CO2 on 281 
reproduction, only clutches that were produced after experimental temperatures were attained 282 
were included in the analysis. The simplest LME constructed included the reproductive 283 
characteristic of interest as the dependent variable, CO2 and temperature treatments as the 284 
fixed variables, and female weight was included as a random variable because reproductive 285 
traits can be strongly weight-dependent in fishes (Model A). Model B was constructed as 286 
above, but also grouped the data according to the breeding pair. Model C added the step of 287 
allowing for heterogeneity of variance within each pair, as pairs will have naturally 288 
fluctuating reproductive effort. The model that best represented the data set was determined 289 
by comparing the Akaike Information Criterion. Hatchling length and yolk area were also 290 
analyzed using linear mixed effects models. These analyses were constructed in the same 291 
order as described above (Model A, Model B and Model C). For hatchling length and yolk 292 
area, data was grouped according to clutch ID and heterogeneity of variance was allowed to 293 
occur within each clutch, as this was the level of replication.  294 
 295 
The proportion of clutches that survived to hatching, and the proportion of eggs within each 296 
clutch that survived to hatching, were analysed with a penalized quasi-likelihood general 297 
linear mixed model (Splus Mass library). Temperature and CO2 treatment were fixed 298 
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variables, and breeding pair was a random variable in each model. For clutch survival, the 299 
proportion of the number of clutches that survived was weighted against the number of 300 
clutches that were produced by each pair. All mixed effects models were constructed and 301 
compared in Splus.   302 
 303 
Fixed factor ANOVA (Type III) was used to compare Fulton’s K, hepatosomatic index, 304 
gonadosomatic index and plasma E2 concentration of females. The physiological trait was the 305 
dependent variable and CO2 and temperature treatment were the fixed variables. Where a 306 
significant difference was detected a Fisher’s LSD test was used to determine which 307 
treatment groups were significantly different.  308 
 309 
The relationship between plasma E2 concentration and the stage of gonadal development in 310 
individual fish was examined using factor analysis (Manly 1994, Kroon et al., 2003). The 311 
data was transformed using a varimax raw rotation to differentiate the original variables by 312 
extracted factor. Initial analysis identified two factors, and these two factors were used as the 313 
independent variables in a multiple regression analysis, where the plasma concentration of E2 314 
was the dependent variable. 315 
 316 
Results 317 
Reproductive characteristics 318 
Reproduction in all treatment groups began in early October 2011, a month prior to summer 319 
breeding temperatures being achieved. Reproduction continued throughout the breeding 320 
season at +0.0°C for all CO2 treatments (Fig. 2a). In contrast, reproduction in the +3.0°C 321 
treatment groups, irrespective of CO2 level, and in moderate CO2 +1.5°C, effectively ceased 322 
within a month of experimental temperatures being attained (Fig. 2b,c). Reproduction in all 323 
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other groups continued from late September 2011 through to mid April 2012 with no obvious 324 
peaks in reproductive activity (Fig. 2a,b). An unequal number of pairs reproduced in the 325 
treatment groups, with 5 pairs reproducing in the moderate +0.0°C but only 2 reproducing in 326 
the moderate +3.0°C  (Fig 2). The total number of egg clutches produced was greatest at 327 
+0.0°C (N=152) and declined markedly with increasing temperature (N=53 at +1.5°C and 328 
N=8 at +3.0°C) (Fig. 2). At +0.0°C the moderate and high CO2 groups produced more 329 
clutches in total compared to the control CO2 group (n= 55, 58 and 39 respectively), but this 330 
trend was not apparent at higher temperatures. Temperature appeared to have a stronger 331 
effect on the moderate CO2 breeding pairs, as the moderate +1.5°C did not reproduce 332 
successfully once temperatures were attained, whereas, the control and high CO2 at the same 333 
temperature continued to reproduce successfully (Fig. 2b).  334 
 335 
The average number of clutches produced per pair declined with increasing temperature 336 
(Table 2, Fig. 3a). At +3.0°C there was a decline of between 78% to 87% in the average 337 
number of clutches produced per pair in all CO2 treatments compared to the respective 338 
+0.0°C clutches produced per pair (Fig. 3a). In contrast, elevated CO2 had no significant 339 
effect on the number of clutches produced per pair (Table 2, Fig. 3a). There was no effect of 340 
female weight on the average number of clutches produced per pair (Table 2.) 341 
 342 
Unsurprisingly, given the differences in the number of clutches produced among treatments, 343 
both temperature and elevated CO2 significantly increased the interclutch interval (Table 3). 344 
This was most marked in the moderate CO2 group, where interclutch interval increased from 345 
15±0.8 (SE) days at +0.0°C to 96.5±115 (SE) days at +3.0°C. A similar, though less marked 346 
effect, was seen in the control CO2 group where interclutch interval increased from 18±0.8 at 347 
+0.0°C to 35±4 at +3.0°C. In contrast, interclutch interval decreased from 17±2 days at 348 
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+0.0°C to 14±1 days at +1.5°C in the high CO2 group before increasing to 19±6 days at 349 
+3.0°C.  350 
 351 
On average pairs in the control temperature (+0.0°C) produced 1017±26 eggs per clutch (Fig. 352 
3b). There was a trend for the number of eggs produced per clutch to decrease with 353 
increasing temperature (Fig. 3b). The decline was most obvious in the high CO2 group, which 354 
decreased from 872 eggs per clutch at +0.0°C to just 12 eggs in the only clutch that was 355 
produced at 3.0°C. Despite the large decrease in the number of eggs produced, no treatment 356 
groups were significantly different from control +0.0°C (Table 3). Across all treatments, 357 
female weight had a significant positive effect on the number of eggs produced per clutch 358 
(Table 3). 359 
 360 
Fertilization success was generally high, with fertilization being above 95% for 8 out of the 9 361 
treatment groups. Moderate +3.0°C was the only group to exhibit a significant difference 362 
from control +0.0°C (Table 3) with fertilization being 51.42±48%. 363 
 364 
Egg area was affected by a significant interaction between temperature and CO2 (Table 3, 365 
Fig. 3c). At +0.0°C egg area increased with CO2, though not linearly, with moderate +0.0°C 366 
producing the largest eggs overall and high +0.0°C producing an egg area intermediate to the 367 
moderate and control CO2 treatments. Egg area declined with increasing temperature in all 368 
CO2 treatments (Table 3, Fig. 3c). The moderate group exhibited the greatest reduction in egg 369 
area with increasing temperature with egg area of the +1.5°C and +3.0°C groups 83% and 370 
75% of the moderate +0.0°C eggs. The control and high CO2 displayed a similar trend with 371 
egg area of the control +1.5°C and +3.0°C groups being 92 and 74% and high groups being 372 
88% and 72% of their +0.0°C groups respectively (Fig. 3c). Reproductive output showed a 373 
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similar pattern to the number of eggs produced, with temperature having a negative effect on 374 
output, however only the control +3.0°C was different from the control +0.0°C (Table 3, Fig. 375 
3d). There was no effect of CO2 on reproductive output (Table 3). 376 
 377 
More than 85% of the clutches produced in +0.0°C survived to hatching regardless of the 378 
CO2 treatment. However, the number of clutches that survived to hatching markedly declined 379 
with increasing temperature (Table 4, Fig. 3e). No clutches survived to hatching at moderate 380 
or high +3.0°C and only one clutch survived to hatching in control +3.0°C (Fig. 3e). Egg 381 
survival to hatching was quite low, the highest average survival being 47% in the control CO2 382 
+0.0°C. Egg survival decreased with increasing CO2 down to 29% survival in high +0.0°C 383 
(Table 4, Fig. 3f). In addition, temperature increase also decreased egg survival to 7% in the 384 
control and high CO2 +1.5°C and no survival in the moderate CO2 +1.5°C or the +3.0°C 385 
groups (Table 4, Fig. 3f). There was insufficient reproduction in the moderate 1.5°C and the 386 
+3.0°C treatment groups for significant differences to be detected. 387 
 388 
Offspring characteristics 389 
No clutches survived to hatchling in moderate CO2 +1.5°C or the +3.0°C groups, 390 
consequently only the +0.0°C and control and high +1.5°C were analyzed. Both temperature 391 
and CO2 had a significant effect on hatchling length (Table 5, Fig. 4a). Newly hatched larvae 392 
in the high +0.0°C and in the control +1.5°C groups were significantly shorter than the 393 
control +0.0°C (Fig. 4a). Elevated CO2 but not temperature, had a significant negative impact 394 
on yolk area, with both the moderate and high +0.0°C treatment group larvae having smaller 395 
yolk reserves compared to control +0.0°C (Table 5, Fig. 4b). 396 
 397 
Adult body and reproductive condition 398 
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Neither Fulton’s K body condition factor or hepatosomatic index (HSI) were significantly 399 
affected by either temperature or CO2, for reproductive females (Table 6, Fig. 5a,b). Fulton’s 400 
K and HSI levels were generally high and only reduced at the most extreme treatment, high 401 
CO2 +3.0°C. Temperature significantly effected gonadosomatic index (GSI) and there was an 402 
interaction between temperature and CO2 treatment (Table 6). At +0.0°C, moderate CO2 was 403 
significantly different from all other treatment groups (Fig. 5c). GSI was unaffected by 404 
temperature in control CO2. At moderate CO2, GSI was highest at +0.0°C and declined at the 405 
higher temperature. In contrast, GSI was highest at +1.5°C before decreasing at +3.0°C in the 406 
high CO2 treatment (Fig. 5c).    407 
 408 
Plasma E2 concentrations 409 
 Plasma E2 concentrations were significantly negatively affected by increasing temperature 410 
(Table 6). Concentrations in the +3.0°C were significantly lower than the +0.0°C E2 411 
concentrations (Fig. 5d). Factor analysis identified two main trends in the variance of plasma 412 
E2 concentrations and gonadal development. First, that there was a negative relationship 413 
between the presence of stage 2 oocytes and a positive relationship between the presence of 414 
stage 4 and 5 oocytes with plasma E2 concentration (Table 7) accounting for nearly 50% of 415 
the variation. The second factor, accounting for 25% of the variation, was influenced by the 416 
presence of stage 3 oocytes (Table 7). Multiple regression analysis showed significant 417 
relationship between factor 1 and plasma E2 concentration (F2,47=25.63, p<0.0001) which 418 
included a significant relationship to factor 1 (F1,47=7.11, p<0.000001) but not factor 2 419 
(F1,47=-0.88, p=0.38).  420 
 421 
Discussion 422 
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Higher temperatures and elevated CO2 can act additively or synergistically to reduce 423 
individual performance (Pörtner & Farrell, 2008). Previous studies have found that 424 
reproduction declines at elevated temperatures in a range of marine fishes (Donelson et al., 425 
2010; Hilder & Pankhurst 2003; Van Der Kraak & Pankhurst 1997). Similarly, increased CO2 426 
is predicted to increase the energy required for maintaining homeostasis, and therefore reduce 427 
the amount of energy available for reproduction (Ishimatsu et al., 2008, Melzner et al., 2009; 428 
Pörtner, 2012). Despite this prediction, recent studies have found that exposure to increased 429 
CO2 does not, on its own, cause reproduction to decline in fish (Sundin et al., 2012; Frommel 430 
et al., 2010; Miller et al., 2013; Schade et al., 2014). This study is the first to examine the 431 
interaction between temperature and CO2 on reproduction in reef fish for an entire 432 
reproductive season. We found that the interaction between CO2 and temperature was 433 
complex, but that overall, elevated temperature had a much greater effect on reproduction 434 
than did projected future CO2 levels (Table 8). At control temperatures there was an apparent 435 
decline in reproductive output and offspring quality with increasing CO2. At +1.5°C above 436 
current-day temperatures, breeding pairs in the moderate CO2 treatment didn’t produce 437 
successful clutches; however the control and high CO2 pairs at this temperature continued to 438 
reproduce, though at a reduced rate compared to the same CO2 treatments at control 439 
temperatures. By far the most obvious result from this study, was the complete cessation of 440 
reproduction at +3.0°C above current-day summer average temperature, irrespective of CO2 441 
level.  442 
 443 
Reproductive and offspring characteristics: CO2 444 
In a previous experiment, Miller et al. (2013) observed an increase in reproduction at 445 
elevated CO2 levels similar to those used in this experiment. A similar increase in 446 
reproduction has since been documented in the Three-spine stickleback (Schade et al., 2014) 447 
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and elevated CO2 resulted in increased levels of reproductive hormones in Atlantic cod 448 
(Preus-Olsen et al., 2014). Together, these results suggest that stimulation of reproduction by 449 
elevated CO2 could occur in a variety of fish species from a range of families.  450 
 451 
In this study, however, reproduction in the high CO2 group was not significantly increased 452 
compared to the control or moderate groups (at control temperatures matching Miller et al. 453 
2013). In this instance, the control and moderate groups doubled their reproductive activity 454 
compared to Miller et al. (2013), while the high group maintained reproductive levels in 455 
comparison to the previous study. The high CO2 group did produce a similar number of eggs 456 
per clutch, and more clutches over the season, compared to Miller et al. (2013). The reason 457 
for the increase in reproductive performance of the control and moderate CO2 groups 458 
compared to reproductive performance of control and moderate pairs in Miller et al. (2013) is 459 
unclear, but may be related to difference in the time required to acclimate to laboratory 460 
conditions. Breeding of wild-caught fish can improve with time in captivity, which could 461 
explain why the control and moderate group performed better in their second year of 462 
captivity (this study) compared with the earlier study (Miller et al., 2013). Behavioural 463 
studies show that reef fish exposed to CO2 >700µatm tend to be bolder and more active 464 
(reviewed Munday et al., 2012) which may compensate for the stress response to captivity 465 
(Pankhurst & Van Der Kraak, 1997), leading to greater breeding in the first year in this 466 
group. Whatever the mechanism, our results suggest that examining just one reproductive 467 
season may not provide a full picture of the effect of elevated CO2 on reproduction.  468 
 469 
Unlike our previous study (Miller et al., 2013) we also detected significant negative impacts 470 
on reproduction, with clear declines in egg survival and yolk provisioning. A similar decline 471 
in embryonic survival has recently been seen in a temperate goby (Forsgren et al., 2013), but 472 
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was not detected in a closely related species, Amphiprion percula, (Munday et al., 2009b). 473 
The decline detected here equates to the high CO2 +0.0°C group having less than half the 474 
number of surviving eggs per clutch (~250 eggs) compared to the control group (~540 eggs). 475 
A decline in reproductive output of this magnitude, if it occurs in wild populations, could 476 
potentially have a significant effect on population replenishment.  477 
 478 
Further to the decline in embryonic survival, the larvae that were produced under high CO2 479 
were both shorter and had less yolk compared to the control and moderate CO2 larvae. A 480 
reduction in yolk area was also detected in A. percula larvae reared at similar CO2 levels 481 
(Munday et al., 2009b). Yolk reserves provide the energy for growth until the larvae are able 482 
to feed, therefore a reduction in yolk provisioning could lead to reduced somatic growth at 483 
least in the early larval stage. Yolk reserve is also a good indicator for future growth and 484 
performance (Hoey & McCormick, 2004; Grorud-Colvert & Sponaugle, 2006). In addition, 485 
the high CO2 offspring were significantly shorter at hatching compared to control offspring. 486 
Hatchling length is a key fitness-related trait (Miller et al., 1998). Reductions in both yolk 487 
reserve and hatchling length could reduce juvenile performance, potentially increasing 488 
mortality.  489 
 490 
Reproductive characteristics: Temperature and interaction 491 
The most obvious result from our data was the negative impact of increasing temperature on 492 
every reproductive characteristic investigated, except fertilization success, regardless of CO2 493 
level. This was particularly obvious in the decline in number of eggs produced per clutch, 494 
with an increase of +3.0°C reducing the egg output of the control group by 75%. Even more 495 
startling was the decline in the number of eggs that survived to hatching. An increase of 496 
+1.5°C reduced survival to hatching from ~49% to ~7% in the control group. The same 497 



 23

temperature increase resulted in no surviving eggs in the moderate CO2 group, and at +3.0°C 498 
there were no surviving eggs regardless of CO2 treatment. This trend of declining 499 
reproduction with increasing temperature has been shown in a number of tropical and 500 
temperate fishes (Donelson et al., 2010; Lansteiner & Kletzl, 2012; Warren et al., 2012) and 501 
in other ectothermic animals (Snell 1986; Lee et al., 2003). Given this trend, there could be 502 
serious declines in fish populations by 2100, through reduced reproduction, unless there is 503 
sufficient scope for thermal acclimation or adaptation of reproduction over the next few 504 
decades.  505 
 506 
No studies have yet examined the potential for genetic adaptation of reproduction in fishes to 507 
ocean warming. However, one study has tested the potential for acclimation of reproduction 508 
to projected future warming in a reef fish. Donelson et al. (2014) found that reproductive 509 
traits in Acanthochromis polyacanthus were restored to control levels when fish complete 510 
development and are reaed their entire life at +1.5°C, but there was no reproductive 511 
acclimation when fish were reared at +3.0°C for their entire lives. Consequently, there appear 512 
to be constraints on the potential for acclimation, at least for some reef fishes, particularly at 513 
the higher temperatures (+3.0°C) that caused the greatest declines in reproduction in our 514 
study. Whether there is potential for transgenerational acclimation of reproduction is 515 
currently unknown.  516 
 517 
As with elevated CO2, we detected a significant negative effect of increased temperature on 518 
hatchling length in the control CO2 group, and a similar, though non-significant, trend in the 519 
high CO2 group. There may be a minimum size for hatchling length, similar to the minimum 520 
or optimal length required for metamorphosis of juveniles in fish and other species 521 
(Chambers & Leggett, 1987; Altwegg & Reyer, 2007). If so, the effect of elevated CO2 522 
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treatment may have already reduced hatchling length close to the minimum viable length, to a 523 
point that increased temperature did not have a further significant impact. This hypothesis is 524 
supported by the declines in yolk provisioning that occurred in +1.5°C control offspring, not 525 
being present in the +1.5°C high CO2 offspring. A minimum energy requirement may be 526 
needed for embryo’s to survive to hatching. 527 
 528 
Potentially the most surprising result in this study was the cessation of reproduction in the 529 
moderate CO2 +1.5°C group. This was not due a delay in reproduction, as there was 530 
reproduction in this group prior to experimental temperatures being attained. The fact that the 531 
moderate CO2 +0.0°C and the control +1.5°C groups both reproduced suggests that, on their 532 
own, neither stressor is enough to restrict reproduction. However, when the two occur in 533 
combination they cause sufficient stress on the organism, causing reproduction to cease. 534 
Interestingly, despite the clear decline in reproduction in the moderate CO2 +1.5°C, there was 535 
not a significant decline in plasma E2 concentrations in this group. This suggests that changes 536 
in concentrations of this particular sex steroid are not responsible for the decline in 537 
reproduction at moderate CO2 +1.5°C. One possible explanation for the cessation of 538 
reproduction in this group, but not the high CO2 +1.5°C, is that the moderate CO2 level lies 539 
below the threshold at which physiological acclimation occurs. In Miller et al. (2013) we 540 
suggested that the increased reproduction in the high CO2 group could be a hormetic 541 
response. It is possible that at the high CO2 level, a change, caused by the increased CO2 542 
occurs that “switches on” reproduction. This switch could explain why the high CO2, but not 543 
the moderate CO2 group reproduced at +1.5°C. 544 
 545 
There is a CO2 threshold at which the behavioural impacts of elevated CO2 begin to occur, 546 
somewhere between 600 and 700μatm in most reef fishes studied to date (Munday et al., 547 
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2010). It is possible that whatever causes the change in behaviour (hypothesized to be 548 
disrupted neural activity, Nilsson et al., 2012; Hamilton et al., 2014) could also cause the 549 
stimulation of reproduction.  At a more practical level, the cessation of reproduction at 550 
projected mid-century CO2 and temperature levels is quite disturbing. The synergistic effects 551 
of these stressors could result in reproductive failures for tropical fishes within the next 40 552 
years potentially impacting on commercial and non-commercial species alike. While there is 553 
evidence for transgenerational acclimation of life history-traits to ocean acidification (Miller 554 
et al., 2012), and the at least potential for reproductive acclimation to moderate warming 555 
(+1.5°C )(Donelson et al., 2014), as yet, there is no evidence for acclimation to both these 556 
stressors in combination. 557 
 558 
Hormonal and physiological impacts 559 
The results suggest that reproductive, but not physiological condition, of females caused the 560 
changes in reproductive and offspring characteristics. First, elevated temperature resulted ina 561 
decrease in E2 concentrations. Moreover, there was a strong correlation between E2 562 
concentration and the average number of clutches produced per pair. In contrast, there was 563 
little effect of elevated CO2 or temperature on the physiological condition of either 564 
reproductive or non-reproductive females. Both Fulton’s K body condition index and 565 
hepatosomatic index were high for all treatment groups, indicating no decline in body 566 
condition or energy stores. This suggests that the dramatic declines in reproductive 567 
outputobserved at higher temperature were not due to energetic constraints in the females. 568 
Previous studies have shown that under elevated temperatures the enzyme CYP19 aromatase, 569 
which catalyses the irreversible conversion of testosterone into E2 in inhibited (Watts et al., 570 
2004). Inhibition of CYP19 aromatase will result in a decline in E2 synthesis, and a 571 
subsequent reduction in vitellogenesis and oocyte maturation (Piferrer & Blázquez, 2005; 572 
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Yaron & Levavi-Sivan, 2011). Hence the results strongly suggest that a reduction of plasma 573 
E2 concetrations, likely through inhibition of CYP19 aromatase may be the cause for 574 
decrease reproduction at higher temperature in A. melanopus.  575 
 576 
Conclusions 577 
This is the first time that the potential interactive effects of projected future CO2 and 578 
temperature conditions have been tested in regards to fish reproduction. As with similar 579 
studies conducted on invertebrate reproduction (Chua et al., 2013; Byrne et al., 2009), we 580 
found that temperature had a much stronger impact that CO2. Our data, similar to other 581 
studies on tropical fish, showed that there was complete reproductive failure at +3.0°C above 582 
the current-day average temperature. Given that sea surface temperatures within the tropics 583 
are projected to rise up to +3.0°C (Ganachaud et al., 2011) by 2100, there could be 584 
significant consequences for reproduction in tropical fish populations.  Nevertheless, we did 585 
detect interactions between temperature and CO2 at the combined moderate levels. Previous 586 
studies have shown that when temperature has increased +1.5°C that reproduction is reduced, 587 
as we saw in the control CO2 group. Yet when the extra stress of increased CO2 was added, 588 
and without any compensatory mechanisms, there appears to be a major reproductive failure. 589 
Our data suggest that, without reproductive acclimation or adaptation, there could be 590 
reproductive failure for this species as early as the middle of the century. These results 591 
reinforce the importance of examining how multiple stressors will interact, so that accurate 592 
climate change predictions can be made.  593 
 594 
Our results also show that, for this species, there is no direct correlation between 595 
physiological condition and reproductive response and that one will not necessarily predict 596 
the other in future warmer and more acid conditions. Reproduction involves a complex series 597 
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of interactions between environmental conditions and hormonal pathways. Further research 598 
will be required to determine the mechanisms responsible for declining reproduction at 599 
higher temperature, but it will likely involve thermal sensitivity of hormonal pathways. As 600 
yet there is no easy way to predict how reproduction will respond to climate change scenarios 601 
other than to experimentally test the population.   602 
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Table 1: Seawater parameters for adult Amphiprion melanopus held under control, moderate 941 
or high CO2 cross-factored with +0.0°C (28.5°C), +1.5°C (30.0°C) or +3.0°C (31.5°C) water 942 
temperature treatments. Temperature, salinity, total alkalinity and pHNBS were measured in 943 
situ, while pCO2 was calculated using CO2SYS.   944 
Treatment Temp 

(°C) 

 

Salinity 

(ppt) 

Total 

alkalinity 

(μmol kg-1 

SW) 

pHNBS pCO2 

(μatm) 

Control +0.0°C 

Control +1.5°C 

Control +3.0°C 

28.4±0.01 

29.8±0.02 

31.4±0.02  

33.32±0.12 

33.32±0.12 

33.32±0.12 

2058±16 

2064±16 

2077±16 

8.15±0.005 

8.14±0.005 

8.12±0.005 

400±6 

411±6 

441±7 

Moderate +0.0°C 

Moderate +1.5°C 

Moderate +3.0°C 

28.5±0.01 

30.1±0.01 

31.5±0.01 

32.7±0.12 

32.7±0.12 

32.7±0.12 

2152±10 

2117±7 

2130±8 

8.00±0.007 

8.00±0.006 

8.00±0.007 

634±13 

642±12 

658±13 

High +0.0°C 

High +1.5°C 

High +3.0°C 

28.5±0.01 

29.8±0.02 

31.5±0.01 

33.62±0.09 

33.62±0.09 

33.62±0.09 

2168±7 

2167±7 

2169±7 

7.81±0.008 

7.79±0.008 

7.78±0.008 

1087±25 

1126±24 

1191±27 

 945 
  946 
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Table 2. ANCOVA (type III) results for the average number of clutches produced by each 947 
adult pair kept at control, moderate or high CO2 cross-factored with +0.0°C (28.5°C), +1.5°C 948 
(30.0°C) or +3.0°C (31.5°C) water temperature treatments.  949 
Treatment DF Sums of 

Squares 

Mean 

Squares 

F-value p-value 

Weight 1 1.252 1.252 0.095 0.7619 

Temperature 2 207.932 103.9663 7.856 <0.01* 

CO2:Temperature 4 16.702 5.176 0.316 0.8629 

Residuals 18 238.1976 13.233   

 950 
  951 
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Table 3. Linear mixed effects model tables for the reproductive characteristics from adults 952 
kept at control, moderate or high CO2 cross-factored with +0.0°C (28.5°C), +1.5°C (30.0°C) 953 
or +3.0°C (31.5°C) water temperature treatments. Treatment groups that are significantly 954 
different to Control +0.0°C are marked by *. 955 
 956 

Characteristic Variable Value SE DF t-value p-value 

 Interclutch Interval  (Intercept) 17.811 0.745 161 23.921 <0.0001* 

 Control +1.5°C 1.174 1.669 19 0.703 0.4905 

 Control +3.0°C 12.722 0.980 19 12.982 <0.0001* 

 Moderate +0.0°C -3.997 0.897 19 -4.458 <0.001* 

 Moderate +1.5°C 4.678 3.832 19 1.221 0.2371 

 Moderate +3.0°C 69.963 80.941 19 0.864 0.3982 

 High +0.0°C -6.249 0.816 19 -7.662 <0.0001* 

 High +1.5°C -0.319 1.763 19 -0.181 0.8582 

 High +3.0°C -5.784 5.416 19 -1.068 0.2989 

Number of Eggs  (Intercept) 369.260 353.156 157 1.046 0.2974 

 Female Weight 24.495 9.979 17 2.455 <0.05* 

 Control +1.5°C -230.128 196.044 17 -1.174 0.2566 

 Control +3.0°C -486.441 313.976 17 -1.549 0.1397 

 Moderate +0.0°C 74.833 193.248 17 0.387 0.7034 

 Moderate +1.5°C 95.137 388.244 17 0.245 0.8094 

 Moderate +3.0°C -322.907 409.861 17 -0.788 0.4416 

 High +0.0°C -139.385 214.176 17 -0.651 0.5239 

 High +1.5°C 172.361 258.544 17 0.667 0.5139 

 High +3.0°C -209.533 450.492 17 -0.465 0.6477 
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Fertilisation success  (Intercept) 90.160 3.791 157 23.783 <0.0001* 

 Control +1.5°C 9.409 6.405 18 1.469 0.1591 

 Control +3.0°C 7.322 8.223 18 0.890 0.3850 

 Moderate +0.0°C 9.362 6.161 18 1.520 0.1460 

 Moderate +1.5°C -8.931 13.081 18 -0.682 0.5035 

 Moderate +3.0°C -55.415 12.019 18 -4.611 <0.001* 

 High +0.0°C 4.527 3.791 18 1.194 0.2479 

 High +1.5°C -3.439 8.528 18 -0.403 0.6915 

 High +3.0°C -2.009 13.196 18 -0.152 0.8807 

Egg Area  (Intercept) 2.563 0.061 1627 41.684 <0.0001* 

 Female Weight -0.014 0.002 174 -7.943 <0.0001* 

 Control +1.5°C -0.277 0.034 174 -8.194 <0.0001* 

 Control +3.0°C -0.794 0.076 174 -10.428 <0.0001* 

 Moderate +0.0°C -0.095 0.032 174 -3.011 <0.01* 

 Moderate +1.5°C -0.197 0.075 174 -2.621 <0.01* 

 Moderate +3.0°C 0.338 0.117 174 2.897 <0.01* 

 High +0.0°C -0.128 0.036 174 -3.571 <0.001* 

 High +1.5°C 0.018 0.043 174 0.413 0.6804 

 High +3.0°C 0.184 0.157 174 1.252 0.2122 

Reproductive output  (Intercept) 1161.624 741.883 157 1.566 0.1194 

 Female Weight 39.682 20.922 17 1.897 0.0750 

 Control +1.5°C -701.157 413.854 17 -1.694 0.1085 

 Control +3.0°C -1462.128 589.445 17 -2.481 <0.05* 

 Moderate +0.0°C 104.453 411.792 17 0.254 0.8028 

 Moderate +1.5°C 64.732 802.208 17 0.081 0.9366 
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 Moderate +3.0°C -398.727 793.082 17 -0.503 0.6216 

 High +0.0°C -405.597 452.430 17 -0.896 0.3825 

 High +1.5°C 412.802 547.022 17 0.755 0.4608 

 High +3.0°C -49.727 887.772 17 -0.056 0.9560 

 957 
  958 
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Table 4. Quasi-likelihood general linear model results for the average proportion of clutches 959 
that survived to hatching and average proportion of eggs that survived to hatching for adults 960 
kept at control, moderate or high CO2 cross-factored with +0.0°C (28.5°C), +1.5°C (30.0°C) 961 
or +3.0°C (31.5°C) water temperature treatments. Treatment averages that are significantly 962 
different from Control +0.0°C are marked with an asterix (*). 963 
Treatment Value SE DF t-value p value 

Successful clutches (%)      

Control +0.0°C -0.211 0.2 64 -1.125 0.2646 

Control +1.5°C -2.220 0.4 19 -5.217 <0.0001* 

Control +3.0°C -1.706 0.8 19 -2.069 0.0525 

Moderate +0.0°C 0.020 0.3 19 0.079 0.9378 

Moderate +1.5°C -24.661 116809.1 19 0.000 0.9998 

Moderate +3.0°C -24.54947 110522.5 19 0.000 0.9998 

High +0.0°C -0.444 0.3 19 -1.481 0.1549 

High +1.5°C 0.348 0.6 19 0.555 0.585 

High +3.0°C -23.584 54075.0 19 0.000 0.999 

Egg survival      

Control +0.0°C -0.156 0.15 179 -1.050 0.2953 

Control +1.5°C -2.250 0.36 19 -6.230 <0.0001* 

Control +3.0°C -1.762 0.87 19 -2.018 0.0580 

Moderate +0.0°C -0.292 0.2 19 -1.451 0.1630 

Moderate +1.5°C -23.271 65787.90 19 0.000 0.9997 

Moderate +3.0°C -23.237 71691.82 19 0.000 0.9997 

High +0.0°C -0.659 0.23 19 -2.828 <0.05* 

High +1.5°C 0.661 0.49 19 1.258 0.1904 
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High +3.0°C -22.369 35076.46 19 0.000 0.995 

 964 
  965 
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Table 5. Linear mixed effects ANOVA results for physical characteristics (hatchling length 966 
and yolk area) of offspring resulting from adults kept at control, moderate or high CO2 cross-967 
factored with +0.0°C (28.5°C) or +1.5°C (30.0°C) water temperature treatments. No clutches 968 
survived to hatching in the Moderate +1.5°C or +3.0°C treatment groups. Significant effects 969 
(p<0.05) are denoted by *. 970 
 971 

Characteristic Variable Value Standard 

Error 

DF t-value p-value 

Hatchling length  (Intercept) 3.245 0.128 557 25.358 <0.0001* 

 Female Weight -0.000 0.004 64 -0.012 0.9901 

 Control +1.5°C -0.083 0.036 64 -2.322 <0.05* 

 Moderate +0.0°C 0.047 0.057 64 0.820 0.4152 

 High +0.0°C -0.111 0.055 64 -2.004 <0.05* 

Yolk area  (Intercept) 0.486 0.036 557 13.685 <0.0001* 

 Female Weight -0.002 0.001 64 -1.903 0.0615 

 Control +1.5°C -0.006 0.010 64 -0.623 0.5356 

 Moderate +0.0°C -0.032 0.016 64 -2.001 <0.05* 

 High +0.0°C -0.046 0.015 64 -3.078 <0.01* 

 972 
  973 



 50

Table 6. Fixed factor type III ANOVA table for adult physiological parameters. Adults were 974 
kept at Control, Moderate or High CO2 cross-factored with +0.0°C (28.5°C), +1.5°C (30.0°C) 975 
or +3.0°C (31.5°C) water temperatures. Significant effects (p<0.05) are denoted by *. 976 
Characteristic Variable DF MS F-value p-value 

Fulton’s K CO2 2 0.079 1.184 0.313 

 Temperature 2 0.211 3.157 0.051 

 CO2:Temperature 4 0.024 0.356 0.839 

 Residuals 54 0.067   

H.S.I. CO2 2 0.016 0.374 0.689 

 Temperature 2 0.041 0.971 0.385 

 CO2:Temperature 4 0.038 0.887 0.478 

 Residuals 54 0.042   

G.S.I CO2 2 3.365 2.266 0.114 

 Temperature 2 11.655 7.848 <0.01* 

 CO2:Temperature 4 4.157 2.800 <0.05* 

 Residuals 54 1.486   

17β-estradiol CO2 2 1765838 1.044 0.361 

 Temperature 2 10229356 6.050 <0.01* 

 CO2:Temperature 4 1584219 0.937 0.452 

 Residuals 43 1690826   

 977 
  978 
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Table 7. Eigenvector values from factor analysis examining the trends in variance of gonadal 979 
development in relation to plasma 17β-estradiol concentration in female A. melanopus. The 980 
percentage of variation in plasma 17β-estradiol concentration explained by the first two 981 
factors in given. Gamete stages that contributed >70% to the factors are bolded.  982 
 Factor 1 Factor 2 

Gonadal cell stage 48% 25% 

Stage 1 Oogonia -0.691 0.499 

Stage 2 Perinucleolus -0.793 0.170 

Stage 3 Cortical alveolous 0.007 0.975 

Stage 4 Early vitellogenic 0.891 0.011 

Stage 5 Late vitellogenic 0.719 0.204 

 983 
  984 
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Table 8. Summary table of the reproductive and physiological characteristics measured, the 985 
predicted response of the stressors (elevated temperature and CO2) and the observed effect of 986 
the stressors. + symbols represent positive effects of the treatment, - symbol represent a 987 
negative effect of treatment, = symbol represents no difference between treatment and 988 
control.  989 
 Predicted response Observed response 

 Temperature CO2 Temperature CO2 

Physical 

Characteristics 

    

Fulton’s K − − = = 

Hepatosomatic Index −/+ − = = 

Gonadosomatic Index − + − + 

17β-estradiol 

concentration 

− + − + 

Offspring     

Hatchling length − = − − 

Yolk area − = − − 

Reproductive 

characteristics 

    

Clutches produced − + − = 

Interclutch interval + − + − 
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Eggs per clutch − + = = 

Fertilization success − = = = 

Egg area −/+ = − − 

Reproductive output −/+ + − − 

Successful clutches − = = = 

Egg survival − = = = 

 990 
  991 
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Figure 1. The data collected at each stage of reproduction in A. melanopus, (a) reproductive 992 
adults (b) clutches produced, (c) eggs collected form reproductive adults and (d) the resulting 993 
hatchlings. Breeding pairs were kept at control, moderate or high CO2 cross-factored with 994 
either +0.0°C (28.5°C), +1.5°C (30.0°C) or +3.0°C (31.5°C) temperature treatments. 995 
 996 
Figure 2. The total egg clutches produced per month across the breeding season for each CO2 997 
treatment at (a) +0.0°C (28.5°C),  (b) +1.5°C (30.0°C) and (c) +3.0°C (31.5°C). Shown is the 998 
total number of clutches produced in each treatment for that month. The total number of 999 
clutches produced in each temperature by CO2 treatment group and the number of pairs that 1000 
reproduced in each treatment group are shown on the figure.  1001 
 1002 
Figure 3. The reproductive characteristics of breeding pairs kept at control, moderate or high 1003 
CO2 cross factored with either +0.0°C (28.5°C), +1.5°C (30.0°C) or +3.0°C (31.5°C) 1004 
temperature treatments. The reproductive characteristics are: (a) the average number of 1005 
clutches produced per pair for the breeding season, (b) the average number of eggs produced 1006 
per clutch, (c) the average egg area (mm2), (d) the average reproductive output, being the 1007 
average egg area per clutch multiplied by the number of eggs in the clutch to give an estimate 1008 
of energy (mm2), (e) the average survival rate of the clutches produced and (f) the average 1009 
egg survival. * denotes a treatment group that is significantly different from Control CO2 1010 
+0.0°C.  1011 
 1012 
Figure 4. Offspring characteristics from parents kept at control, moderate or high CO2 cross-1013 
factored with either +0.0°C (28.5°C) or +1.5°C (30.0°C). No eggs survived to hatching in the 1014 
moderate +1.5°C or the +3.0°C treatment groups, consequently they are not shown. The 1015 



 55

offspring characteristics were (a) hatchling standard length (mm) and (b) yolk area (mm2). * 1016 
denotes a treatment group that is significantly different from control CO2 +0.0°C. 1017 
 1018 
Figure 5. Adult physiological condition and hormone concentrations at the end of the 1019 
breeding season, (a) Fulton’s K body condition index, (b) hepatosomatic index, (c) 1020 
gonadosomatic index and (d) plasma 17β-E2 concentrations of females. * represent groups 1021 
that are significantly different.  1022 
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