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 15 
1: we report the sensitivity of Batrachochytrium dendrobatidis to 6 antimicrobials. 16 

2: Voriconazole, itraconazole, and terbinafine had potent inhibitory effects. 17 

3: Terbinafine and amphotericin B exposure killed zoospores rapidly. 18 

4: The reported MIC and killing concentrations are useful for design of dosage regimens. 19 

 20 

Abstract 21 

 22 

Chytridiomycosis, a skin disease caused by Batrachochytrium dendrobatidis, has caused 23 

amphibian declines worldwide. Amphibians can be treated by percutaneous application of 24 

antimicrobials, but knowledge of in vitro susceptibility is lacking. Using a modified broth 25 

microdilution method, we describe the in vitro sensitivity of two Australian isolates of B. 26 

dendrobatidis to six antimicrobial agents. Growth inhibition was observed, by measurement 27 

of optical density, with all agents. Minimum inhibitory concentrations (µg/mL; isolate 1/2) 28 

were - voriconazole 0.016/0.008; itraconazole 0.032/0.016; terbinafine 0.063/0.063; 29 
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fluconazole 0.31/0.31; chloramphenicol 12.5/12.5; amphotericin B 12.5/6.25.  Killing effects 1 

on zoospores were assessed by observing motility. Amphotericin B and terbinafine killed 2 

zoospores within 5 and 30 min dependent on concentration, but other antimicrobials were not 3 

effective at the highest concentrations tested (100 µg/mL). This knowledge will help in drug 4 

selection and treatment optimization. As terbinafine was potent and has rapid effects, study of 5 

its pharmacokinetics, safety and efficacy is recommended. 6 

 7 
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Batrachochytrium dendrobatidis (Bd) is the cause of chytridiomycosis (Berger et al., 1 

1998) a skin disease that has caused global amphibian population declines and extinctions 2 

(Skerratt et al., 2007). Bd forms round sporangia that grow within epidermal cells of 3 

amphibian skin, and infective flagellated zoospores are released through discharge tubes that 4 

protrude through the skin surface (Berger et al., 2005). Treatment of chytridiomycosis is 5 

required to manage outbreaks of disease, reduce population impacts, and reduce the risk of 6 

spread in transport. Knowledge of in vitro drug sensitivity will optimize treatment regimens. 7 

 Previous in vitro studies showed growth inhibition of Bd by itraconazole and 8 

fluconazole (Berger et al., 2009), but the minimum inhibitory concentrations (MIC) are 9 

unknown. Voriconazole has potent inhibitory effects against European isolates in vitro 10 

(Martel et al., 2011). The antibiotics chloramphenicol (10-20 µg/mL); (Poulter unpub) was 11 

florfenicol (0.5-1.0 µg/mL), and sulfonamide (8 µg/mL) were effective, but macrolides and 12 

tetracyclines were not (Muijsers et al., 2012). Caspofungin had relatively high MICs (4-16 13 

µg/mL), varying non-significantly among isolates (Fisher et al., 2009). 14 

Successful treatment with topical Itraconazole is reported in various amphibian 15 

species (Forzán et al., 2008, Tamukai et al., 2011, Lamirande and Nichols 2002, Une et al., 16 

2012, Georoff et al., 2013), and tadpoles (Garner et al., 2009), but treatment failure and 17 

potential toxicity are also reported (Woodhams et al., 2012, Brannelly et al., 2012,  Georoff et 18 

al., 2013). Fluconazole baths (25 µg/mL) extended the course of disease in Litoria caerulea 19 

but did not clear infection (Berger et al., 2009). Voriconazole topical solutions at low 20 

concentrations (1.25 µg/mL) successfully resolved infection in Alytes cisternasii (Martel et 21 

al., 2011). Chloramphenicol by continuous bath exposure was effective in subclinical and 22 

severe chytridiomycosis in Litoria caerulea, combined with electrolyte therapy (Young et al., 23 

2012). Topical florfenicol sprays reduced burden of infection in Alytes muletensis but all 24 

remained infected (Muijsers et al., 2012).  25 
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Daily topical application of terbinafine (50 µg/mL) cleared infection in naturally infected 1 

Lithobates catesbeiana, and five other species, whereas 5 µg/mL was ineffective (Bowerman 2 

et al., 2010). In vitro effects were not described. 3 

For the present study, the in vitro potency of six antimicrobial drugs against two 4 

Australian isolates of Bd was assessed by determining MIC with constant exposure, and 5 

observing effectiveness of short-duration, high concentration exposure on zoospores. 6 

Bd isolates were cultured and cryoarchived by routine methods (Berger et al., 2009). 7 

Isolate 1 was collected from a temperate region in 2009 from a tadpole of Limnodynastes 8 

peronii (Couta Rocks, Tasmania; CoutaRocks-Limperonii--2009- LB1). Isolate 2 is from 9 

tropical rainforest and was collected in 2010 from a tadpole of Litoria genimaculata (Paluma, 10 

Queensland; Paluma-Lgenimaculata-2010-MW1). Cultures were maintained in TGhL 11 

medium (8g/L tryptone, 0.5g/L gelatine hydrolysate, 1g/L lactose; Sigma-Aldrich, Australia). 12 

After 7 days growth, about 1 mL of culture was spread onto a TGhL agar plate, air-dried, 13 

sealed with parafilm and incubated at 22ºC. After 3 days, zoospores were collected by 14 

flooding the plate with up to 3 mL of TGhL medium for 15 min, counted in a 15 

haemocytometer, and diluted to approximately 10
6 

zoospores/mL.  16 

Amphotericin B (250 μg/mL solution) and chloramphenicol powder were supplied by 17 

Sigma-Aldrich. Terbinafine, fluconazole and voriconazole preparations were Lamisil AT 18 

(Novartis), Diflucan IV (Pfizer) and VFend IV (Pfizer) respectively, diluted to working 19 

concentrations in sterile single-distilled water. As itraconazole solution (Sporanox, Janssen 20 

Pharmaceutica) precipitated when it was diluted, a solution was prepared of analytic standard 21 

dissolved in dimethyl sulfoxide (DMSO, 99%; Sigma-Aldrich), and diluted to final 22 

concentration in 0.1% DMSO solution.  23 

For each drug, 50% dilution series were prepared in 96 well flat-bottom cell culture 24 

plates (Corning Costar, USA). In the short-exposure studies, duplicate series were prepared, 25 
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and control wells contained only TGhL and distilled water. In the growth inhibition studies, 8 1 

replicate series were prepared, with 8 positive control wells containing distilled water and 2 

TGhL only, and 8 negative controls with 0.1% F10SC disinfectant (F10 Biocare, UK) in 3 

distilled water. Positive growth controls also contained 0.1% DMSO, when assessing 4 

inhibitory effects of itraconazole dissolved in 0.1% DMSO. Finally, 50 µL of zoospore 5 

suspension (5 x 10
4
 zoospores) was placed into each well of the plates. 6 

Plates were examined immediately after preparation to confirm presence of motile 7 

zoospores and absence of clumped sporangia. For short-exposure studies, wells were 8 

examined after 5 and 30 min. Absence of motile zoospores was considered to indicate a lethal 9 

effect, with wells recorded either as killed or alive. For growth inhibition studies, plates were 10 

incubated at 21-23°C. On day 7, optical density was measured using a spectrophotometer 11 

plate reader at 492 nm, as described previously (Rollins-Smith et al., 2002), and the cultures 12 

microscopically examined. Positive controls contained a dense monolayer on the bottom of 13 

wells, and all negative controls were killed.  14 

Statistical analysis of optical density data was performed using IBM SPSS for 15 

Windows. Mean density from the 8 wells at each concentration was determined. The MIC 16 

was defined as the lowest concentration with mean optical density +1SD, at least 90% lower 17 

than the difference between positive and negative controls. Visual examination of Q-Q plots 18 

assessed normal distribution of optical density at each concentration. 19 

In growth inhibition tests, isolates differed minimally in sensitivity (Table 1), with no 20 

more than one dilution difference between MIC for any agent. Voriconazole and itraconazole 21 

were most potent, terbinafine and fluconazole were intermediate, while amphotericin B and 22 

chloramphenicol had the lowest potency of the tested agents. 23 

Optical density appeared to correlate well with microscopic observations as an 24 

indicator of growth inhibition. Density readings for positive and negative controls were 25 
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normally distributed. In experimental columns, optical density occasionally deviated from 1 

normal distribution, particularly at dilution stages immediately lower than MIC.  2 

Comparison of optical density of killed controls was previously reported as an 3 

endpoint assessment (Gibble et al., 2008, Rollins-Smith et al., 2002). In the present study, 4 

mean density slightly greater than the 95% confidence interval of the mean negative control 5 

density were occasionally observed in cultures observed to have no growth. This is attributed 6 

to apparent partial development, as the zoospores settle and increase in size, but no 7 

development occurs. This may reflect fungistatic effects, rather than rapid killing of the 8 

controls. The criterion of 90% density inhibition compared to the positive control growth was 9 

elected a posteriori. Variable inhibition endpoints for optical density, from 50% (Fisher et al., 10 

2009) to 80% (Gibble et al., 2008) have been previously applied. Our method is slightly more 11 

conservative. 12 

Itraconazole and voriconazole had potent inhibitory effects (Table 1). The observed 13 

MIC of voriconazole (0.008-0.0016 µg/mL) is consistent with the 0.00625-0.0125 µg/mL 14 

range previously described (Martel et al., 2011). Fluconazole was less potent (MIC 0.31 15 

µg/mL), and this may explain its failure to treat chytridiomycosis in amphibians in a clinical 16 

trial when used topically at 25 µg/ml (Berger et al., 2009). Further trials with higher exposure 17 

rates may be valuable. For these agents, zoospores remained motile after 30 min at the 18 

highest concentrations tested (100 µg/mL). Short-duration topical exposure will not kill 19 

zoospores at the skin surface, even at concentrations greatly exceeding the MIC, and 20 

treatment efficacy will depend on persistence of adequate drug concentrations in the skin. 21 

This may contribute to the observed failure of short-duration itraconazole therapy in some 22 

instances (Georoff et al., 2013, Woodhams et al., 2012). Our data suggest that the frequency 23 

of itraconazole application, in addition to the applied concentration, is important to the 24 

clinical outcome.  High potency of itraconzole and voriconazole support these drugs as 25 
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treatment choices, but the lack of rapid effect means that systemic therapy may be more 1 

appropriate than topical application. 2 

Chloramphenicol was also inhibitory but with lower potency (Table 1). The observed 3 

MIC (12 µg/mL) is similar to a previous unpublished reported MIC of 10-20 µg/mL (Poulter 4 

unpub). Partial inhibition was observed below the stated MIC, but its significance is 5 

unknown. No effect on motility was observed after 30 minutes of high-concentration 6 

exposure. Severe chytridiomycosis in L. caerulea was treated by continuous exposure to 20 7 

µg/mL chloramphenicol for 28 days (Young et al., 2012), which is only slightly greater than 8 

the in vitro MIC. Due to its low potency, this agent is a poor candidate for intermittent 9 

application, and topical concentrations lower than 20µg/mL are unlikely to be of clinical 10 

benefit. 11 

Zoospore motility ceased after 5 min of exposure to terbinafine (6.25-12.5 µg/mL) 12 

and amphotericin B (50 µg/mL), and 30 min at lower concentrations of terbinafine (3.12 13 

µg/mL) and amphotericin B (12.5 µg/mL). No difference was detected between isolates. 14 

Bowerman et al., 2010 report successful treatment of chytridiomycosis using topical 15 

terbinafine at 50-100 µg/mL, well above the MIC (0.063 µg/mL) and slightly greater than 16 

that required to kill zoospores within 5 min. This rapid effect is likely to contribute 17 

substantially to the therapeutic outcome when intermittent topical therapy is used, as 18 

prolonged drug retention at the site of infection may be less important. Terbinafine is thus a 19 

strong candidate for further trials of intermittent topical treatment. However, further work is 20 

required to assess the lethal concentrations of this drug against sporangia, which may be more 21 

resistant. Amphotericin B was included as a model fungicidal agent; previous studies indicate 22 

it is too toxic for clinical use in amphibians (Martel et al., 2011). 23 

Evaluation of optical density was chosen for determination of the study endpoint, as it 24 

was expected to provide a more quantitative evaluation than direct examination alone and 25 
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appears sensitive in comparing growth. However, the high starting zoospore density required 1 

was difficult to achieve. We suggest microscopic examination is an easier method for MIC 2 

screening and our observations suggest similar results are achieved (data not shown). 3 

To optimize treatment regimes, pharmacokinetic studies and clinical trials are needed 4 

to examine absorption, and maintenance of drug concentration in the infected skin over time, 5 

and correlation with clinical outcome (Berger et al., 2010). The data presented in this study 6 

will aid in the interpretation of the clinical relevance of observed drug concentrations. 7 

This study helps with selection of antifungal agents for clinical trials. Terbinafine is 8 

potent and apparently fungicidal to zoospores at low concentrations, and there is one report of 9 

it being effective and safe in a range of species (Bowerman et al., 2010). Therefore, we 10 

suggest further work is warranted to optimize its use, and compare with more widely used 11 

treatments.  12 
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 1 
Table 1: Minimum Inhibitory Concentrations of formulations against Batrachochytrium 2 

dendrobatidis, resulting in at least 90% inhibition compared with positive controls. 3 

 4 
 5 

* Limperonii- CoutaRocks-2009- LB1  6 

** Lgenimaculata- Paluma-2010-MW1  7 

 8 

 9 

 10 

 Minimum Inhibitory Concentrations (µg/mL) 

 Amphotericin  Chloramphenicol Terbinafine Fluconazole Voriconazole Itraconazole 

Isolate 1* 12.5  12.5 0.063 0.31 0.016 0.031 

Isolate 2** 6.25 12.5 0.063 0.31 0.0078 0.016 
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