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Abstract

Assisted breeding technology (ART), including artificial insemination (AI), has the potential to advance the conservation and

welfare of marsupials. Many of the challenges facing AI and ART for marsupials are shared with other wild species. However, the

marsupial mode of reproduction and development also poses unique challenges and opportunities. For the vast majority of

marsupials, there is a dearth of knowledge regarding basic reproductive biology to guide an AI strategy. For threatened or

endangered species, only the most basic reproductive information is available in most cases, if at all. Artificial insemination has

been used to produce viable young in two marsupial species, the koala and tammar wallaby. However, in these species the timing of

ovulation can be predicted with considerably more confidence than in any other marsupial. In a limited number of other marsupials,

such precise timing of ovulation has only been achieved using hormonal treatment leading to conception but not live young. A

unique marsupial ART strategy which has been shown to have promise is cross-fostering; the transfer of pouch young of a

threatened species to the pouches of foster mothers of a common related species as a means to increase productivity. For the

foreseeable future, except for a few highly iconic or well studied species, there is unlikely to be sufficient reproductive information

on which to base AI. However, if more generic approaches can be developed; such as ICSI (to generate embryos) and female

synchronization (to provide oocyte donors or embryo recipients), then the prospects for broader application of AI/ART to

marsupials are promising.
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1. Introduction

Marsupials include some of the most highly threa-

tened species in Australia and highly iconic species in

great demand by zoos. The development of assisted
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breeding technology (ART) and artificial insemination

(AI) has the potential to advance the conservation and

welfare of marsupials. Marsupial semen collection,

handling and basic properties were the subject of a paper

[1] at the 1977 Symposium of the Zoological Society of

London, which led to Paul Watson’s landmark book

‘Artificial Breeding of Non-Domestic Animals’ [2].

However, despite the three decades that have passed AI,

and ART generally, have been demonstrated to have the

potential to make a significant impact on conservation
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and reproductive management of only one marsupial

species, the koala (Phascolarctos cinereus; [3,4]). In the

koala, 32 pouch young have been produced and birth

rates following AI using extended and chilled semen are

only slightly below those achieved by natural mating [3].

Furthermore, AI technology has now been incorporated

in state government koala management policy [5]. In only

one other marsupial species, the tammar wallaby,

Macropus eugenii, have live births been achieved after

AI [6]. Hormone-induced superovulation and AI have

been successfully used as a basic research tool, and in

development of fertility control vaccines for the tammar

wallaby and common brushtail possum, Trichosurus

vulpecula using fresh [7], and in the case of brushtail

possum, frozen-thawed sperm [8]. However, in these

studies, fertilisation or cleaving embryos, not full term

development, has been the endpoint [9–12], and these

embryos failed to develop beyond the unilaminar

blastocyst stage in the hormonally manipulated females

[13]. Other than these three species, the literature on AI or

conventional ART for marsupials is very limited.

The koala and tammar wallaby studies have thus far

only involved zoo-based or captive colony bred animals.

The captive husbandry of the koala is well established

[14], and the reproductive biology of the tammar wallaby

is one of the best studied for any marsupial (for review see

[15]). Arguably the koala and tammar wallaby are special

cases, because the timing of ovulation can be predicted

with considerably more confidence than in any other

marsupial. The koala is an induced ovulator and

techniques to artificially induce ovulation have been

successfully developed [3,4,14,16–18] and the tammar

has a highly predictable post-partum estrus, which can be

tightly synchronized by removing pouch young, and a

well-defined window of ovulation [19–21]. In a limited

number of other marsupials, such precise timing of

ovulation has only been achieved using hormonal

treatment, which is likely to have undesirable effects.

Many of the challenges facing AI and ART for

marsupial conservation or animal welfare outcomes are

shared with other wild species; nevertheless, marsu-

pials also offer unique challenges and opportunities.

For the vast majority of marsupials, there is a dearth of

knowledge regarding female reproductive anatomy, the

endocrinology of estrus, and the dynamics of sperm

transport and ovulation to guide an AI strategy. For

threatened or endangered species, only the most basic

reproductive information is available in most cases, if

at all. This highlights the importance of developing new

techniques on closely related non-endangered analo-

gue species [22]. However, there is a unique marsupial

ART strategy which has been shown to have consider-
able promise; this is the transfer of pouch young of

threatened species to the pouches of foster mothers of a

common species as a means to increase productivity

[23]. Recently, cross fostering has been adopted by

some wildlife agencies and zoos in Australia as tools

for the conservation and management, of captive and

wild macropodoid marsupials (e.g. [24]).

2. Current status of knowledge

2.1. Collection and handling of semen

Semen collection by electroejaculation (EEJ) has

been established in several macropodids (tammar

wallaby, yellow-footed rock wallaby, Matchie’s tree

kangaroo, eastern and western grey kangaroos), plus the

common wombat, southern-hairy-nosed wombat, koala

and common brushtail and ring-tailed possum [25–31].

Electroejaculation has allowed for the assessment of

seasonal changes in semen quality observed in at least

three marsupials: the tammar wallaby [32], southern

hairy-nosed wombat [33], and koala (Allen et al.,

unpublished). Semen collection by electroejaculation

has also recently become possible in the grey short-

tailed opossum (Monodelphis domestica; Paris et al.,

unpublished) but is still sub-optimal.

The electroejaculation of dasyurid marsupials (Aus-

tralian carnivores and insectivores) appears particularly

problematic. For example, there have been a number of

attempts to electroejaculate the largest of all dasyurids,

the Tasmanian devil (Sarcophilus harrisi) [22]; although

spermatozoa have been collected, the ejaculate was of

limited volume or contaminated with urine and the sperm

concentration low (Johnston and Blyde, unpublished

observations). Semen collection by electroejaculation in

the majority of dasyurids is likely to be even more

difficult, given their small size (20–50 g) and as many

have a highly acute seasonal production of spermatozoa.

However, small diameter rectal probes have been

constructed and used with partial success in other small

marsupials (e.g. 100 g grey short-tailed opossum; Paris

et al., unpublished) and 60 g phascogale (Taggart,

unpublished observation) and may be applicable to

small dasyurids. Conversely, natural breeding is well

established for several small dasyurids in captivity

(reviewed in [34]) and thus AI may not be a high priority

for this group.

However, radiographic examination of the male tracts

of animals infused with radiopaque dye into the vas

deferens has been a useful approach to better under-

standing of electroejaculation in other marsupials,

including the tammar wallaby [35] and such an approach
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could be useful for electroejaculation development for AI

in threatened dasyurids such as the Tasmanian devil and

northern quoll.

The only currently reliable means of collecting

sperm from dasyurid marsupials is by epididymal

dissection. Unfortunately, sperm from the cauda

epididymis of dasyurids have relatively poor motility

(percentage motile and character of the progressive

motility) compared with macropods, brushtail possum,

common wombat and the koala [36–38] and have a

relatively short survival time in vitro (approximately 3

d at 4 8C Middleton, Czarny and Harris, unpublished

observation).

The koala remains the only marsupial in which

semen has been successfully collected with an artificial

vagina (AV) [39]. It is difficult to imagine many other

marsupials would be suitable for this approach.

2.2. Sperm freezing and low temperature extension

Interestingly, for all marsupials so far examined, the

spermatozoa do not appear to exhibit a susceptibility to

cold shock (brushtail possum, tammar wallaby, koala,

eastern grey kangaroo and common wombat) [40]. As a

result, marsupial sperm cryopreservation diluents do not

necessarily require the addition of egg yolk, but they do

require a high concentration of glycerol (koala 14%;

common wombat 14%; southern hairy-nosed-wombat 6–

8%; brushtail possum 17.5%; eastern grey kangaroo

20%; ring-tailed possum 6–8%; northern brown bandi-

coot 6–8%’ long footed potoroo 6–8%) in order to obtain

reasonable levels of post-thaw survival [22]. Recently,

Zee et al. [41] have suggested the use of dimethyl amide

as an alternative to glycerol for the cryopreservation of

koala sperm (50% post-thaw motility). Molinia and

Rodger [42] reported that a combination of glycerol

(7.5%) and DMSO (10%) produced some (10%) survival

of tammar wallaby spermatozoa after thawing and

washing by centrifugation. However, progressive moti-

lity of the motile sperm was high (3 on a scale of 0–5) and

it is possible that these sperm could be used for surgical

insemination in the upper uterus or oviduct close to the

time of ovulation. At the other extreme, the cryopre-

servation success of wombat spermatozoa is remarkable;

sometimes reaching as high as 90% post-thaw motility

[29,43]. In the possum 50–70% post-thaw motility was

achieved [42,44] and thawed sperm used to achieve

fertile conceptions following AI into the uterus [8] and

vagina (Molinia, Myers and Rodger, unpublished). The

most common way of cryopreserving marsupial semen is

in straws that are frozen in liquid nitrogen vapour [29] or

in a programmable freezer [41,43]. Some studies have
also been successful using a pelleting technique on dry

ice [8,37,42].

The most appropriate rate of freezing for marsupial

spermatozoa appears to be species dependent. Most

studies have used relatively rapid freezing techniques.

Johnston et al. [43] conducted the only study to directly

compare freezing rates and the percentage of glycerol.

They reported that koala sperm frozen in a higher

glycerol concentration (14% compared to 8%) and a

slower rate (6 8C/min compared to rapid liquid nitrogen

vapour: 3 cm above the liquid nitrogen surface) resulted

in higher post-thaw survival. A similar but less

significant effect was found in the cryopreservation

of common wombat spermatozoa [43].

Koala spermatozoa also appear to be able to tolerate

in vitro conditions extremely well and have been known

to survive at 5 8C for upwards of 42 d in Tris-citrate

buffer [45]. Koala sperm stored for 3 d at 4 8C has also

been used for successful AI [3]. McCallum and

Johnston [37] have also reported the successful storage

of common wombat spermatozoa in the cauda

epididymis. After storage for 3 d, the sperm were

dissected out of the cauda epididymis and still had a

motility of approximately 60%. These sperm were then

cryopreserved and the resultant post-thaw motility was

approximately 50%.

Studies specifically relating to abnormal sperm

morphology in marsupials are rare, although Johnston

et al. [26] did develop a spermatogram for the koala in

which the incidence of various tail abnormalities were

described; a range of sperm head morphologies have

also been noted in the koala, and also wombatid

marsupials [31]. The significance of the various sperm

heads with respect to fertilising potential remains to be

investigated. Recently, Johnston et al. [46] developed a

test to assess the quality of sperm DNA in koala; studies

on common wombat, eastern grey kangaroo, ring-tailed

possum will soon follow.

A problem with the cryopreservation of koala

spermatozoa is that post-thaw survival is compromised

very quickly once the sperm has been thawed and

incubated at 35 8C. Most concerning is the loss of

nuclear integrity that is characterised by a relaxation

(swelling) of the chromatin, presumably resulting in a

loss of fertility [43,46]. Prevention of chromatin

damage will need to be solved if marsupial cryobanking

is to be a viable option and is currently the topic of a

number of studies, which have investigated the

relationship between DNA fragmentation and the

relaxation of the chromatin [41,46]. The results of

these studies have shown that, whereas a small number

of koalas do suffer from sperm DNA fragmentation
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(double stranded breaks of DNA), chromatin relaxation

is not directly related to this phenomenon. Chromatin

relaxation is more likely to be associated with the lack

of cysteine residues in the marsupial protamines and

the presence of basic sites in the chromatin used in the

packing of sperm DNA of the koala (Johnston and

Gosalvez, unpublished observations).

The cryopreservation of macropod spermatozoa

has been a major challenge and little has improved

since the early studies of Molinia and Rodger [42]. A

major advance in this area came with the use of the

cryomicroscope and fluorescent molecular probes to

assess membrane integrity used these techniques to

discover that kangaroo sperm frozen in 20% glycerol

and a rate of 10 8C/min could maintain a post-thaw

motility of 70%, as long as the sperm were not warmed

above 20 8C. Warming the sperm above this tempera-

ture quickly compromised the integrity of the plasma

membrane [47–51].

2.3. Estrus detection and female synchronization

As discussed earlier, a contributing factor to the

success of AI in the koala is that ovulation can be

induced relatively simply [3,4,18]. By contrast,

although ovulation cannot be induced by such

manipulation in the tammar wallaby, birth and post-

partum estrus can be tightly synchronized by removal of

pouch young and ovulation is reasonably predictable,

thus facilitating successful AI [6]. In animals in which

the exact time of birth was not observed (making the

time of ovulation less predictable), relatively simple

refinements such as noting the skin colour of the

newborn pouch young as it changed from bright to dull

red then pink, further improved the timing of AI by up to

7 h [6]. In the grey short-tailed opossum, it has been

known for some time that exposure to male pheromones

in urine induces female breeding activity [52–54].

2.4. Sperm in the female tract

The dynamics and timing of sperm transport and

ovulation is known for several marsupial species (tammar

wallaby, Virginian opossum, brown antechinus, fat-tailed

dunnart, brushtail possum and grey short-tailed opossum)

[10,20,54–62]. This information informs decisions on the

time, site and number of sperm to artificially inseminate.

It should be noted, however, sperm dynamics can still

differ between natural and artificial inseminates, for

example, sperm numbers in the utero-oviducts are

rapidly depleted 6 h post IU-AI, compared to sperm

populations following natural mating [6,62]. In dasyurid
and didelphid marsupials there is good evidence of

short (hours) and long term (days) sperm storage in

morphologically distinct oviductal crypts (see below). In

the two other marsupials examined in some detail

(brushtail possum and tammar wallaby), there is no

evidence of significant short term sperm storage in either

the highly secretory anterior vaginal region adjacent to

the cervices or the existence of specialised crypts in the

oviducts [10,62,63].

Dasyurid and didelphid marsupials ejaculate rela-

tively small numbers of sperm which are either very large

(dasyurids) or paired (didelphids) [64]. In both cases,

despite the relatively small number of sperm deposited by

the male, the proportion of these transported to the

oviducts is unusually high, with efficiencies that range

from 1 in 1 or 1 in 7 ejaculated sperm reaching the site of

fertilisation for brown antechinus, to 1 in 300 for grey

short-tailed opossum [54,65]. This compares to the

brushtail possum and tammar wallaby, and indeed most

eutherian mammals, which are less ‘efficient’ (e.g.

tammar wallaby 1 in 7000) [20]. Thus, inseminating low

numbers of sperm in the urogenital sinus (UGS) of

dasyurids/didelphids should be more efficient than

inseminating millions of sperm at the same site in a

tammar wallaby. Marsupial sperm are confronted with a

relatively high viscosity environment in the female

reproductive tract [61,63,66,67]. In this environment,

sperm from several marsupial families (Dasyuridae,

Peramelidae and Macropodidae) have been observed

moving rapidly in a sinusoidal manner across surfaces,

much like a snake, rather than swimming per se, or in the

Didelphidae, as sperm pairs with superior motility over

single sperm [28,38,67,68]. These unique sperm move-

ment modes may explain the high migration efficiency

observed in dasyurid and didelphid marsupials.

Prolonged sperm storage in oviductal crypts, and the

apparent long time for sperm capacitation, in some

dasyurid and peramelid marsupials, however, may make

timing of AI problematic in these species [58,69–72].

Natural mating studies in brown antechinus [58] have

demonstrated optimal fertility when mating occurs

�9.5 d before ovulation, but reduced fertility when

sperm reside in the female tract <5 or >13 d.

Conversely, this might prove useful as it provides a

broad time window over which AI could be performed,

if inseminated sperm can survive in vivo for a sufficient

number of days.

2.5. Site of insemination

An understanding of the anatomy of the marsupial

female reproductive tract is essential to a discussion of
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Fig. 1. Stylized marsupial female reproductive tracts, showing the path of natural insemination (dashed lines with arrow heads); (A) prior to first

parturition in all marsupials, where the two sides of the female tract are completely separate (path via right side only shown), (B) in subsequent

matings in those species, where the vaginal septum is perforated at first parturition, allowing sperm from either side of the vagina to access both

cervices and, (C) in those species where a permanent median vagina is formed after the first parturition, allowing direct access from the urogenital

sinus to the cervices.
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AI, because it greatly restricts access to the cervices, the

primary target for AI in most eutherian mammals

(Fig. 1). Although the detailed anatomy of the vaginal

complex differs between marsupial groups, there are

common features based on embryology which pose

challenges for AI. The opening to the exterior which is

easily accessible is to the common UGS which is the

site of penile penetration, female urine flow and the

birth passage. At its anterior end, the UGS commu-

nicates with the bladder and two relatively narrow

openings to separate lateral vaginae which in many

marsupials expand out to form large and separate sac-

like pouches into which the natural ejaculate is received.

Presumably, semen ejaculated into the UGS is moved

up to the anterior vaginae by mating-induced contrac-

tions of the muscular lateral vaginae. In macropodid

marsupials, however, the viscous ejaculate is deposited

directly into the permanent median vagina, where

semen rapidly fills the highly secretory anterior vagina

[20], adjacent to the cervices [63]. Despite the great

variability in vaginal anatomy in all marsupials, uterine

and oviduct anatomy is remarkably similar. All have

completely separate left and right side systems, each

with its own cervix. In most marsupials, the fimbriated

end of the oviduct is open to the peritoneum except in, at

least, the koala and wombat where the oviduct forms a

bursa which encloses the ovary [73,74]. Birth in

marsupials is not via the lateral vaginae, but by a

transient birth canal which appears at the time of

parturition between the central section of the vaginal

complex and the underlying UGS. In most marsupials

(with the exception of macropodids and wombats) this

structure breaks down and normal anatomy is re-

established after parturition. Commonly after parturi-

tion, the two sides of the lateral vaginae do commu-

nicate via the perforated central wall between them,

creating a common vaginal system. In macropods

(kangaroos and wallabies) after the first parturition, the

birth canal persists as a median ‘third’ vaginal canal and

a relatively direct route for AI. In all studies thus far, AI

has been either via the UGS (koala, tammar), vagina

(tammar, possum) or uterus (tammar, possum).

Sperm transport and ovulation do not appear to be

affected by anaesthesia after AI to the urogenital

sinus (UGS-AI) or uterus (IU-AI) in the brushtail

possum or tammar wallaby [6,9,10] or vaginal AI in

brushtail possum [9,13]. While it is tempting to suggest

that the relative success of UGS-AI in the koala could

be partly explained by the absence of anaesthesia,

koala joeys have also been born following deposition

of semen directly into the lateral vaginal ostia in

anaesthetised koalas [4]. In addition, IU-AI immedi-
ately post-ovulation would not offer a viable option in

marsupials due to the narrow window of fertilisation,

limited by rapid mucin deposition around the oocyte.

In all marsupials, an oviduct secreted mucin layer is

deposited on the surface of the zona pellucida, pre-

venting sperm access. That this occurs at around the

time of fertilisation, it may be component of the block

to polyspermy in marsupials [56].

As discussed above, the female vaginal anatomy of

marsupials is highly variable among species [75]. An

understanding of this anatomy is crucial if non-surgical

insemination by catheter is to be utilized. Artificial

insemination catheter dye studies in tammar, southern

hairy-nosed wombat (Lasiorhinus latifrons) and the grey

short-tailed opossum (M. domestica) have been under-

taken to determine the effectiveness of this method of

insemination [76,77]. In the polyovular opossum, only

UGS-AI by catheter is feasible due to convoluted lateral

vaginae and the absence of a median vagina. However,

sperm can traverse the incomplete septum that divides

each cervix and thereby fertilize oocytes on both sides of

the tract. In the monovular wombats and koala, the

vaginal septum prevents semen from either side reaching

the contralateral cervix. In the monovular post-partum

tammar wallaby by contrast, there is no septum and the

median vagina provides direct access to both cervices

permitting insemination by catheter.

3. Advantages and applications

Artificial insemination and other ART potentially

offer an essentially similar set of tools to assist in

conservation breeding programs for a range of verte-

brates. This is especially true if the gametes can be stored

indefinitely, because it then facilitates the long term use

of this material for genetic management and the

maximisation of genetic diversity in the future [22].

One of the most immediate advantages of assisted

breeding and AI is that, as in agriculture, it can essentially

eliminate the need to transport live animals for breeding

programs, either nationally or internationally. For highly

iconic species, like the koala, this is an important issue

and underpins the research to date of Johnston and his

colleagues in Queensland (e.g. [3]). In field situations,

AI-ART offers a potentially highly effective method to

manage genetic diversity in fragmented populations

without translocation of animals with its inherent risks

(e.g. rock wallabies). Furthermore, AI and ART have the

advantage of offering the screening of disease free

gametes or embryos for use in species such as the koala

(e.g. Chlamydia [78,79]) and Tasmanian devil, where

disease is a major threatening process.
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As discussed briefly, there is a uniquely marsupial

approach to ART, termed cross fostering, which has

shown considerable promise. It has been applied to

enhance the reproductive rate and productivity of young

of threatened species from the marsupial families

Macropodidae and Potoroidae [23,80–84]. This appr-

oach makes use of the long established principle that

small pouch young, as early as day 1 of pouch life,

can be transferred to the pouch of an appropriately

prepared surrogate mother where normal development

to pouch emergence occurs [15,83,85]. Using this

approach, pouch young have been harvested in the

field from rock wallabies and potoroos, transported

cooled to a captive colony of a closely related surrogate

species and then the young re-attached to timed nipples

in the pouches of surrogate mothers [23,83,84]. There

are questions over the subsequent social training and

behaviour of these animals, but evidence to date is that

these animals do not show gross behavioural abnorm-

alities, but readily recognize and mate with their own

species provided once weaned, they are housed with

their own kind [23,80,83,85]. Cross fostering can

potentially increase the production of young of the

threatened species by 2–8-fold [23,80,83]. This unique

form of surrogacy allows harvesting of young animals

from captive or free ranging populations, the mother’s

of which would subsequently return to estrus and breed

again. The cross fostered young being either returned to

their site of origin, or used in reintroduction programs.

The process is elegant and simple and it optimises the

unique reproductive biology of the marsupial without

any need for more highly invasive or technically com-

plex procedures. This technology is obviously also

relevant to subsequent discussions of induced super-

ovulation and the production of multiple young in

normally monovular species, and arguably, may be a

more generally applicable method than AI for mar-

supials. This said, cross fostering can raise ethical

concerns, because a pouch young must be removed

and euthanased to provide the teat for the cross fos-

tered young. However, this is balanced by the potential

benefits of enhancing the breeding potential and

conservation outcomes for threatened marsupial fauna.

In addition, removal and euthanasia of small and unde-

veloped ‘embryo-like’ pouch young (RPY) is a well

established reproductive management tool to reactivate

cycling in marsupials.

Artificial insemination and other ART will find

continuing use as a research tool in situations like the

screening of fertility control vaccines/agents as a means

of non-lethal population control for the introduced

brushtail possum in New Zealand and in areas with local
overabundance of macropods in many regions of

Australia and the Koala in Victoria and South Australia

[11,86]. Also, with the growing importance of grey

short-tailed opossum as a biomedical model and the

availability of its genome [87], it is likely AI and

other ART will be required to generate, cryo-bank,

and reintroduce mutant/transgenic opossum strains in

captive research colonies.

4. Complications and problems

4.1. Semen collection and preservation

Electroejaculation, which is the method of choice

in most non-tractable wild animals, is not available for

all marsupial groups. In the grey short-tailed opossum,

EEJ is still sub-optimal compared to natural ejaculates

(1000-fold less sperm with reduced progressive

motility; Paris et al., unpublished). There are currently

no protocols for the electroejaculation of dasyurids,

but substantial research is being applied to electro-

ejaculation in the highly threatened Tasmanian devil

[88]. Although reasonable post-thaw viability and

motility has been achieved for cryopreserved sperm

of several marsupials, there are a number of examples

in which the extensive application of AI as a con-

servation management tool is impeded by poor

cryopreservation outcomes, including dasyurids and

most macropodids.

4.2. Effects of hormone treatments on embryo

production and development

Hormone-induced ovarian cycles and superovula-

tion are well established features of assisted reproduc-

tion in domestic species and humans, especially when

linked with conventional IVF or intra-cytoplasmic

sperm injection (ICSI) to produce embryos for transfer.

The normality of embryos produced by exogenous

hormone treatment/AI in marsupials has yet to be

established, but they do not develop to term in

stimulated and then inseminated brushtail possums

[13]. However, in the tammar wallaby, normal mating

and development to blastocyst stage has occurred in

females stimulated with FSH and LH [89]. In the

dunnart, mating, late stage embryos and full term

development occurs after treatment with eCG [90,91].

Thus, whatever the limitation of such oocytes and the

female tract environment, normal development is not

precluded, at least in polyovular species.

Although Magarey et al. [92] demonstrated normal

fertility among superovulated tammar wallabies follow-
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ing natural mating in subsequent cycles, it is still

not clear to what extent monovular marsupials can

produce offspring during superovulated cycles. Live

birth is also complicated by the fact that most target

species for superovulation have been monovular and

may be incapable of carrying multiple ‘super-ovulated’

pregnancies to term. That said, twinning does occur

in monovular marsupials and such superovulated

females could be the source of embryos for transfer

to the uteri of synchronized surrogates. As in all

marsupials, the number of available teats will set the

absolute limit on the number of neonates that could

survive in the pouch. However, as discussed earlier,

transfer of young to the pouches of surrogates for their

full growth and development is feasible, based on the

success of cross fostering.

Alternative strategies for ovulation induction (e.g.

removal of suckling pouch young (RPY) and pairing)

are still in general not sufficiently precise for timing

of AI. Except for relatively predictable species such as

the tammar wallaby and grey short-tailed opossum,

for the majority of marsupials, timing of the return to

estrus after RPY ranges over several days [75]. Perhaps

in these species, RPY could be combined with

ultrasonography, in those marsupials where preovula-

tory follicles are large enough to detect, and/or LH

injection to refine the time of ovulation. For example, in

a study on naturally cycling brushtail possums induced

by removal of pouch young (RPY), LH treatment

caused 70% of animals to ovulate, compared with 40%

that were not LH treated (Molinia, unpublished

observation). However, frequent handling to improve

accuracy of predicted ovulation, can delay the time of

estrus in the tammar wallaby [20]. In addition, due to

the acquisition of oviduct secreted mucin layers

(impenetrable to sperm) around the oocyte during

rapid transport to the uterus, the window for fertilisa-

tion is extremely brief for most spontaneously ovula-

ting marsupials, making the window of opportunity for

AI narrow.

Vaginal cytology could be an alternative strategy to

monitor natural cyclicity and determine the time of

estrus for AI, and has been reported in several

marsupials [52,93,94]. However, this does not over-

come the previously mentioned problems associated

with frequent animal handling, nor provide a level of

accuracy sufficient for the narrow window of insemi-

nation. Urogenital sinus smears tend to be a retro-

spective indicator of ovulation (appearance of white

blood cells) in relatively long estrus cycles and thus are

not generally likely to be useful for AI timing in most

marsupials.
5. Future research priorities

5.1. Is the koala a special case?

One of the key observations in marsupial AI is that

most marsupials do not behave like koalas and koalas do

not behave like most marsupials. Why are there such

striking differences between the efficient and reproduci-

ble AI success in koalas compared with those marsupials

(such as the tammar and possum) that have received equal

if not more research effort in this area? Even in wombats

(the closest relatives of koalas), AI has been unsuccessful

[95], despite numerous recent publications about wombat

reproductive physiology [94,96–101]. Future research

will need to address this fundamental question, if AI is

to have a significant impact in other marsupial species.

There are several obvious differences in reproductive

physiology that might partly explain this including: an

overt, prolonged estrus (up to 10 d), as well as induced

ovulation triggered by coitus and seminal factors in the

koala. This compares with a relatively short estrus (<1 d),

plus a spontaneous and variable ovulation time followed

by a narrow window for fertilisation in most other

well studied marsupials. It should be noted that all

substantial developments in AI of the three main species

of marsupial (koala, tammar and possum) have been the

result of access to relatively large numbers of individuals

in captivity in either research colonies or zoos.

5.2. Appropriate or inappropriate target species for

AI

It is difficult to assess which species are appropriate/

inappropriate for AI. However, as a starting point,

appropriate species might include those that would: (i)

have the greatest likelihood of success from this

procedure, or (ii) have an increasing need to help

manage genetics or improve its decreasing natural

fertility. The endangered brush-tailed rock wallaby and

northern hairy-nosed wombat may be two such

candidates. Of course, there are some species that are

so critically endangered (e.g. the highly stress-prone

Gilbert’s potoroo) that one might suggest are inap-

propriate for AI because the associated risks and

inefficiencies do not justify the method. In these

instances, effort may be better focussed on (semi)-

captive breeding in highly protected environments.

5.3. Synchronization of female reproductive activity

Relatively simple endocrinologically based systems

to synchronize ovarian function to optimise oocyte
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collection for IVF/ICSI or AI are well established

features of assisted breeding for humans and domestic

animals. No such system has been developed for mar-

supials, except the observation that lactating females

(possums, wallabies), which are naturally suppressed,

are good subjects for exogenous hormone stimulation

[9,12,102]. A feature of marsupial ovarian cycles is the

fact that the CL is maintained independent of pregnancy

hormones (reviewed in [15]). Thus, simple manipula-

tions which effectively induce luteolysis in eutherian

species have no effect in marsupials. As discussed,

removal of suckling young will reactivate natural

cycles, but even when this would be a useful ART

and not counter productive, the timing of return to

ovulation is generally very imprecise and ranges over

several days.

Although there has been considerable interest,

and success, in the use of long acting GnRH agonists

and steroid implants to suppress ovarian activity in

marsupials (e.g. tammar, koala, possum [103,104]).

This approach has, perhaps surprisingly, only recently

been applied to sychronization for AI, but preliminary

studies on the use of such a compound to manipulate

anterior pituitary function in male koalas was not

effective at the dose rates used [16]. A reasonably

generic strategy to synchronize female marsupial

reproductive activity is arguably the most critical

factor limiting the broader application of ART to

marsupials for research or conservation. This is true

whether the approach is for AI, oocyte donors, embryo

donors, or embryo recipients. Based on current practice

and developments in eutherian species, and the

demonstrated effectiveness of the GnRH agonist

(deslorelin/suprolelin) in female marsupials [103], this

would seem a very high priority for research.

5.4. Emerging potentially generic technologies for

broad taxon application

As just discussed, female synchronization is a

major problem for marsupials that needs to be

addressed, but ICSI in marsupials (tammar wallaby

and common wombat) by contrast appears relatively

generic [101,105,106]. Sperm injection is now so well

established for treatment of human infertility that

several million babies have been produced and in some

countries, it now is the preferred method of IVF.

Despite the apparent high-tech and manipulative

character of this technology, in the hands of experi-

enced technicians, it can be expected to be eventually

applicable to a wide range of species. In addition, ICSI

potentially overcomes many issues of spermatology
(e.g. sperm numbers, sperm motility, sperm cryopre-

servation, sperm capacitation and the short fertilisation

window due to mucoid). It should be noted, however,

that embryo development after ICSI did not progress

beyond the 8-cell stage at best in these marsupials, and

the track record of this technology in wildlife to date,

measured by the number of offspring produced, is poor

by comparison to AI [107]. That said, ICSI is likely in

the longer term to make an important contribution to

marsupial assisted reproduction and bypass many of the

current challenges faced by AI. In addition, ICSI has

the potential to use freeze-dried or cadaver material as a

source of sperm or spermatids for ART, as this has now

been achieved in rabbits as well as mice [108,109].

Despite the highly manipulative character of such

approaches, there is growing evidence of the normality

of such offspring [110]. Almost certainly, tertiary egg

coats (mucin and shell) will be required for subsequent

development of ICSI-produced marsupial embryos, but

such should not be an unachievable goal if effectively

synchronized fertilized egg or embryo recipients are

available for oviductal or uterine transfer.

There remains a caveat over the potential of freeze

drying, or even conventional freezing approaches, for

marsupial sperm [41,46]. The sperm of all marsupials,

but one sub-group of dasyurids the planigales, lack

disulphide-stabilized protamines in the sperm chroma-

tin [111]. In the mouse, the degree of disulphide

stabilization, which increases as sperm pass down the

epididymis, is correlated with success in using freeze-

dried sperm heads for ICSI [112]. However, despite this,

the heads of the fat-tailed dunnart sperm (a dasyurid

lacking protamines) remain intact with apparently

normal morphology after being freeze-dried [113].

Whether, such sperm can be used for ICSI has yet to be

tested, but it suggests that marsupial sperm heads have a

degree of stabilization despite the lack of protamines.

Further studies of DNA damage of marsupial sperm

following manipulation, cold storage or freezing, are

required to better understand the potential risks posed.

5.5. Cross fostering and pouch young transfer

Data on cross fostering is now available for 4 potoroid

and 13 macropodid species, with success varying widely

from complete failure to an 8-fold increase in the

production of pouch young (PY) annually [83]. Factors

implicated in successful cross fostering include; relative

size of donor and host females, size of PY at weaning,

differences in length of pouch life between species and

size differences between donor and surrogate young at

transfer. Studies have shown that females regulate milk
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composition and production irrespective of PY age and

that transfer to species with teats of more immature or

advanced staged mammary glands, will result in either

a slowing or acceleration of pouch young growth/deve-

lopment [23]. The relationship between milk (composi-

tion, hormones and volume), pouch young growth rate

and cross fostering success requires further investiga-

tion. Thus far, this approach has only been applied

to macropods and its applicability to marsupials more

generally needs to be examined.

6. Conclusions

If AI, and assisted reproduction more generally, are to

become widely used technologies for marsupial con-

servation, then there must be more generic approaches

which depend less on detailed knowledge of the species

reproductive biology generally and gamete biology

specifically. Except for a few, usually highly iconic

species such as the koala, or well studied species (e.g.

tammar wallaby, brushtail possum, gray short-tailed

opossum), there is unlikely to ever be sufficient basic

reproductive information on which to base AI in the

foreseeable future. Whatever approach is taken synchro-

nization of the female for AI, ET or oocyte donation will

be the major technical challenge. However, if technol-

ogies such as ICSI (to generate embryos) and female

synchronization (to provide recipients) can be developed

for marsupials then the prospects for broader application

of AI/ART are promising. If not, then the next 30 y of

research is unlikely to yield profoundly more practical

outcomes than the previous 30, except for cooperative or

high profile species. This would include the iconic koala,

and its near relative, the critically endangered northern

hairy-nosed wombat, and model species like the gray

short-tailed opossum and tammar wallaby. Progress on

ART for the common brushtail possum is also likely to

continue, because of the major focus on this species as an

introduced pest of major significance in New Zealand.

However, a major constraint will remain the level and

long term certainty of funding for research and the

maintenance of laboratory colonies of model marsupials.

If only a small fraction of the resources that have been

used to develop AI/ART for humans and domestic

animals in Australia were committed to AI/ART for

marsupial conservation outcomes, then much more

progress would have, and will be made.
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