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Abstract 

This study investigated the association of cephalopod genera with location and depth 

in the waters of the central Great Barrier Reef. Stations along short (40 km) transects 

were sampled using light-traps at four locations across the continental shelf and slope: 

coastal Great Barrier Reef Lagoon, inter-reef passages (Magnetic and Palm), near reef 

environments ranging from mid to outer-shelf locations and the Coral Sea. A total of 

13 cephalopod genera was caught from monthly cruises, conducted from October to 

January of 1990/91 and 1991/92. Octopus, the most abundant juvenile cephalopod 

was present in relatively high numbers at all shelf locations, with a few caught in the 

Coral Sea. The myopsid squid Photololigo was the most abundant squid in the 

collections but was rarely caught outside the Great Barrier Reef Lagoon. In contrast, 

the second most abundant squid, the oceanic Sthenoteuthis was uniformly distributed 

among all the habitats. Cephalopod assemblages at both depths in the Great Barrier 

Reef Lagoon were significantly different from those of the three other areas. This 

location supported highest abundances of Octopus, Photololigo and Abralia. 

Assemblages deeper in the water column were dominated by Octopus, and Abralia 

was always found near the benthos in the lagoon. In contrast Euprymna, the fourth 

most abundant genus was collected only at the surface. Reef passages and near-reef 

sites shared similar assemblages, with the squid component dominated by 

Sthenoteuthis. Very low numbers of cephalopods were caught in the Coral Sea using 

light attraction. High concentrations of cephalopods detected in the middle of the 

Great Barrier Reef Lagoon are consistent with present knowledge about 

oceanographic processes over this shelf. 
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Introduction 

Juvenile cephalopods are a diverse and important component of the nektonic 

community found in pelagic environments, being both predators and prey within the 

pelagic food chains and providing important sources of food for commercial fisheries. 

Despite this importance early life-histories of most cephalopods are poorly described 

and fundamental information is lacking. Australian waters have a rich diversity of 

cephalopod species (Lu & Phillips 1985), that extends into tropical waters (Roper & 

Hochberg 1987). High biological diversity and limited taxonomic base increases the 

difficulty of describing this fauna and juveniles of these species have received little 

attention. Historically, sampling has been limited by the effectiveness of towed nets as 

sampling devices. Juvenile squid are agile and effective swimmers capable of evading 

towed net designs (Vecchione 1987) and a size range of juveniles can only be 

obtained by using multiple gear types (Rodhouse et al. 1992). Logistically it is 

difficult to sample more than one location at a time using towed nets and hence 

synoptic views of spatial distribution usually ignore the temporal component in the 

data collection. This is no problem when distribution and abundance patterns are 

static, but juvenile squid distributions are often determined by current systems (eg. 

Illex illecebrosus Dawe & Beck 1985). Furthermore net damage suffered by small 

soft-bodied specimens hinders identification of specimens (Vecchione 1987). 

Automated light-traps (Doherty 1987) provide an alternative solution to both of these 

problems and allow juvenile cephalopods in good condition to be sampled through 

time at multiple locations (Thorrold 1992). 

The aim of this study was (1) to investigate the usefulness of light-traps as tools for 

sampling a range of juvenile cephalopod genera and (2) to describe the distribution 

and abundance of the juvenile cephalopod fauna sampled by light attraction. Our 

sampling was based on regular sampling of a cross-shelf transect from turbid coastal 

to clear oceanic environment, both close to and far from reefs to include maximum 

contrast. Here we describe the cross-shelf and vertical patterns to provide the spatio-

temporal framework for designing further work into the local dynamics or regional 

patterns of specific taxa. 
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Materials and Methods 

Sampling was based on repeated replicate trapping within four major cross-shelf 

locations near Townsville (Fig. 1): 

Great Barrier Reef (GBR) Lagoon. This is a 56 km wide stretch of open water 

dividing the mainland from the nearest coral reefs. It is a shallow (15-40 m) gently 

sloping soft bottom habitat. A number of factors combine to influence the 

hydrodynamics of the GBR Lagoon: the East Australian Current in the Coral Sea and 

the outer half of the continental shelf, wind stress on the shallowing water column 

near the coast, water depth and fresh-water discharge from rivers (Wolanski 1981, 

King & Wolanski 1992). When winds oppose the poleward influence of the East 

Australian Current, a coastal trapped layer is formed and velocity shear occurs across 

the GBR Lagoon (Wolanski & Ridd 1990). The cross-shelf extent of the coastal 

boundary layer is controlled by wind stress and is unstable over time. 

Reef Passages. Two broad relatively deep passages (Magnetic and Palm) 

dissect the reef matrix in the Townsville region of the GBR. Both provide major 

conduits for semi-diurnal tidal waves that oscillate perpendicular to the coast (bight 

et al. 1990a). When the East Australian Current meanders close to the shelf-break, 

upwelling can occur and cold intrusions can be forced along the bottom of the 

passages, occasionally extending as far inshore as the coastal boundary in the GBR 

Lagoon (Andrews & Gentien 1982). 

Coral Reefs. Four reefs (Keeper, Helix, Faraday and Myrmidon) of similar size, 

but different cross-shelf locations, were selected to represent shallow near-reef 

environs. All four reefs are located on the southern side of the Magnetic Passage and 

should have experienced the same dominant water flow. 

Coral Sea. Waters beyond the shelf break, where depths exceed 1000m, were 

sampled to determine which cephalopod taxa are associated with oceanic waters and 

to monitor exchange between coastal and oceanic habitats. 
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Sampling this range of locations required that each was sampled in a way 

appropriate to its physical nature. The greatest difference in sampling strategy was 

that the three open water locations (GBR Lagoon, reef passages and Coral Sea) were 

sampled by drifting light-traps, whilst waters near the coral reefs were sampled by 

anchored light-traps. The important difference is that water around anchored traps 

can be exchanged by local current patterns leading to larger swept volumes per hour 

of operation compared to the drifting light-traps that should act as lagranian drifters 

and fish the same body of water. Table 1 provides a summary of the sampling 

strategies employed at each location. To determine the vertical distribution of 

juvenile cephalopods in the water column light-traps were at two depths; at the 

surface and deep. In 1990/91 the deep light-traps fished at 20 m at all stations. 

During 1991/92 the deep light-traps were set within three meters of the benthos, 

except in the open sea where the maximum depth was 100 m. 

Table 1. Sampling program in each location. 

Location # of Stations Traps 
1990/91 

Depth(m) 	# of traps 
1991/92 

Depth(m) 	# of traps 
Lagoon 5 Drifting 0 2 0 2 

20 2 Near benthos 2 

Passage 5a  (lob) Drifting 0 2 0 2 
20 2 Near benthos 2 

Reef 4 Anchored 0 2 0 3 
20 1 20 2 

Open Sea 5 Drifting 0 2 0 2 
20 2 100 2 

a 1990/91 
b 1991/92 (Palm Passage was not sampled in 1990/91. 

All sampling was carried out during ten day periods centred on the new moons of 

October, November, December and January of 1990/91 and 1991/92. Stations in the 

GBR Lagoon, passages and Coral Sea were sampled a maximum of three nights each 

period. Water masses near the reefs were sampled for a maximum of nine nights, 

during each of those months. At the end of the first summer of sampling, it was clear 

that cephalopod catches in the Coral Sea were very low and that other locations 

4 



TROPICAL JUVENILE CEPHALOPOD ASSEMBLAGES 

warranted more sampling effort. Hence sampling effort was reduced offshore but 

increased elsewhere, notably by adding Palm Passage (in 1991/92 only). In addition 

to these changes bad weather resulted in occasional abandonment of stations and/or 

transects, which reduced effort equally in deep and shallow water (Table 2). 

Table 2. Total fishing effort (in light-trap 
hours) in each location and depth, 
pooled across the two summers. 

Location 	Deep 	Shallow 
Lagoon 	220 	 219 
Passage 	225 	 226 
Reef 	311 	 613 
Open Sea 	114 	 113  

Replication at each station was provided by simultaneously deploying two light-

traps at each depth several hundreds of meters apart. Each night the light-traps were 

fishing at the first station by 1930 hrs (Eastern Standard Time). Light-traps were 

retrieved after one hour of fishing and the catch was processed while the ship was 

moving to the next station on the transect. The last trap was recovered by 0530 hrs, 

which meant that it was only possible to sample five stations per night in this manner 

due to the distances between the stations. As stations in each location were sampled 

sequentially each night, time of night is confounded with station within a location. 

Likewise only one location could be sampled in a night, hence location is confounded 

with night. These effects were minimised, to some degree, by haphazardly selecting 

the location sampled on a night and the direction along the transect was sampled in 

each location on a particular night. Replication in the near reef waters consisted of 

shallow and deep light-traps anchored on the southern reef slope to standardise 

position with respect to water flow. All anchored light-traps at each reef fished for a 

total of three hours per night (between the hours of 2100 and 2200 hrs, 2400 and 

0100 hrs, and 0300 and 0400 hrs) to reduce the confounding effects of tide and time. 

Temperature and salinity profiles adjacent to drifting light-traps were obtained 

using a Seabird conductivity-temperature device during the cruises in October, 

November and January 1991/92. These data were used to determine the position of 
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the boundary layer in the Great Barrier Lagoon on the assumption that there would be 

a temperature differential across the front. To standardise for monthly changes in 

these parameters, deviations of temperature and salinity for each station were 

calculated from the pooled average for each month and the deviations averaged over 

time. 

Specimens were fixed and preserved in 100% ethanol and identification of the 

cephalopods was undertaken in the laboratory. Given taxonomic problems associated 

with juvenile cephalopods specimens were identified to the genus level. Dr. C.C. Lu 

(Victoria Museum, Australia) kindly identified sample specimens for a reference 

collection that was used for all subsequent identifications. Terminology describing the 

pre-adult phase of cephalopods has recently been defined (Young & Harman 1989) 

and we have used the term juvenile' to describe the stage between hatching and sub-

adult. 

Multivariate techniques were used to analyse the relationships between the 

cephalopod genera and locations. These techniques are useful to examine relative 

abundances of a suite of species. Multivariate analysis of variance (MANOVA) 

determined the effect of location, depth and their interaction on the density of the 

cephalopod assemblages. The data were examined for multivariate normality and 

homogeneity of variances (Multivariate Levene's Test). The data were log10+1 

transformed before analysis. The MANOVA was followed by a canonical 

discriminant analysis (CDA) to determine which cephalopod genera were associated 

with different locations and depths. 
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Results 

A total of 3862 juvenile cephalopods representing 13 genera, including sepioids, 

myopsids, oegopsids and octopods, were caught using light-traps during the two 

summers of sampling. The two most abundant genera were Octopus and Photololigo 

(Table 3). Most of the genera were very rarely caught, especially Sepia, Pyroteuthis, 

Ahrahopsis, Argonauta and Pteggioteuthis. 

The diversity of juvenile cephalopods was similar in the GBR Lagoon, the passages 

and the coral reefs. In the Coral Sea, very few juvenile cephalopods were captured 

and the diversity was very low. Sthenoteuthis and Octopus were both caught but in 

very low numbers. Numbers of juvenile cephalopods varied as a function of an 

interaction between location and depth (Table 4). Highest catches of juveniles were 

taken in the GBR Lagoon, especially from deep light-traps (Fig. 2). Catches from the 

reefs and passages were lower than those in the GBR Lagoon, but the relative 

proportion of cephalopods between depths remained the same with highest catches 

deeper in the water column (Fig. 2). 

Table 4. 	Analysis of variance table, examining the catch of juvenile cephalopods 
as a function of depth and location. Data for both summers of 
sampling have been combined. 

Source 	 df 	Sums of 	Mean Square F-value Probability 
Squares 	Estimates 

Location 3 51.729 17.243 173.89 0.0001 
Depth 1 1.703 1.703 17.17 0.0001 
Location*Depth 3 1.237 0.412 4.16 0.0060 
Error 2030 201.592 0.0992 

Catches among stations in the GBR Lagoon were significantly different (Table 5). 

Low numbers of cephalopods were caught on the edges of the GBR Lagoon, with 

elevated abundances at two stations (24 and 33 km) in the middle (Fig. 3). Clear 

temperature and salinity gradients are evident across the GBR Lagoon (Fig. 4). 

Surface water temperature and salinity at the two stations closest to the coast were 
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consistently higher than the average values for the GBR Lagoon. Further offshore 

surface water parameters were lower than the average. 

Table 5. Analysis of variance table, examining number of juvenile 
cephalopods caught at the four different stations within the 
GBR Lagoon. Data for both summers are combined. 

Source 	df 	Sums of 	Mean Square F-value Probability 
Squares 	Estimates 

Distance 4 	10.713 	2.678 	12.24 	0.0001 
Error 	434 	94.940 	0.219 

Octopus, the most abundant of all the cephalopod juveniles, was present at all 

locations, although rare in the Coral Sea. Juvenile Octopus were considerably more 

abundant in deep traps within each location and highest catches were taken in the 

GBR Lagoon (Table 3). Due to its numerical abundance, this genus greatly 

influenced the aggregate patterns shown in Figs. 2 and 3. Among the squid, 

Photololigo was also very abundant in the GBR Lagoon, but low numbers were 

caught around the reefs and in the passages. In contrast to Octopus, Photololigo was 

more common in surface waters (Table 3). The other nine genera were caught in 

relatively low numbers. Sthenoteuthis, the second most abundant squid, was 

ubiquitous throughout the areas sampled and was the only species caught with any 

consistency in the Coral Sea. The sepioid Euprymna, the fourth most abundant 

genera, was predominantly caught in the surface light-traps in the GBR Lagoon, 

passages and reefs. 

Multivariate analyses were carried out using the most abundant genera: Octopus, 

Photololigo, Sthenoteuthis, Euprymna, Sepioteuthis and Abralia. It was evident that 

the distribution of juvenile cephalopods was depth and location specific as indicated 

by the significant location-depth interaction (Pillai's Trace 0.466 F=24.4786 df 42, 

12198 Pr=0.0001). Most of the differences in juvenile cephalopod composition 

occurred between the GBR Lagoon and the other three locations (Fig. 4a). In 

particular the GBR Lagoon was clearly discriminated due to high numbers of Octopus 

and Photololigo. Without this dominance, the other locations appeared to be very 

similar (Fig 4a). An examination of the variation described by the second and third 
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axes clearly showed the differences between the depths (Fig. 4b). In particular, the 

GBR Lagoon exhibited different assemblages of cephalopods at the two depths. This 

major difference was largely due to Abralia (Table 3). This genus was only caught in 

relatively high numbers during the 1991/92 summer when light-traps were deployed 

close to the benthos. Abralia and Octopus were very dominant in samples caught in 

the deep traps in the GBR Lagoon, passages and reefs. Octopus was also caught 

more commonly in deep light-traps whereas the sepioid Euprymna was caught 

predominantly in the surface light-traps (Table 3). Photololigo, Sepioteuthis and 

Sthenoteuthis were more common in surface light-traps, but these genera were also 

relatively abundant in catches from deep light-traps (Table 3). The depth distribution 

of Sepioteuthis was dependent upon the location; they were present in deep samples 

at the reefs and surface traps in the GBR Lagoon. 
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Discussion 

This study demonstrates that submersible light-traps can be useful alternative 

sampling devices to assess the relative abundance of some cephalopod species. 

Twelve genera of juvenile cephalopods were caught using active attraction instead of 

passive collection. Although no independent assessment is available to show that we 

sampled all the available diversity, clearly a wide range of taxa show responses to light 

that can be exploited to determine their relative abundance levels. Both Octopus and 

Photololigo were caught in high enough numbers to allow the examination of 

temporal and spatial distributions in more detail (Moltschaniwskyj & Doherty 1994). 

The live state of all material collected by this method also demonstrates the usefulness 

of light-traps to provide material for physiological and behavioural investigations not 

previously possible. 

By deploying light-traps in drifting and anchored modes, we were able to sample a 

wide a range of habitats from coastal to oceanic conditions, near and far from reefs. 

However, there must be caution when interpreting light-trap catch rates. With little 

known yet about the sampling efficiency of light-traps, comparisons of catch rates can 

only provide an index of relative abundance. While this is adequate for many 

questions about recruitment and juvenile supply, such comparisons depend on 

unchanging efficiency. This is less of a problem when sampling the same place over 

time (eg. Milicich et al. 1992), but it can become a problem when sampling a wide 

range of environments as in this study. This assessment has not been tested for 

cephalopods, but the following arguments suggest that the patterns shown here were 

not caused by differential catching efficiency of the light-traps. 

By including pelagic and near-reef habitats this study deployed light-traps in water 

conditions ranging from shallow coastal turbid water to deep oceanic transparent 

water . Therefore biases in light-trap efficiency due to water clarity will result in 

better performance in clearer water. Thus any species demonstrating rising abundance 

away from the mainland could provide an ambiguous case. None of the species 

sampled in this study showed this pattern and highest catches were from lagoonal 
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stations close to the coast. While these may be biased estimates of true abundance it 

is likely that the inshore samples have underestimated densities, therefore resulting in 

a greater difference between inshore and offshore patterns than identified in our study. 

On this basis we do not believe that variable light-trap efficiency among different 

water masses contributed to the qualitative patterns of abundance observed. 

As different modes of deployment were necessary to sample habitats near and far 

from reefs caution is needed when comparing catch rates from drifting and anchored 

traps. Thorrold (1992) showed that drifting traps catch higher numbers of fish in 

open water than anchored ones implying that current speed past the light-traps 

affected capture efficiency. If this was true, real abundances may have been under-

estimated in near-reef habitats when sampling was deliberately spread over three 

sampling periods each night to include periods of tidal flow and slack. The extent to 

which this was offset by the longer period of sampling by light-traps each night in the 

near-reef habitat and the exposure to greater volumes of water is unknown and is 

unlikely to be simple. However, we have emphasised relative abundance levels of 

cephalopod genera rather than absolute comparisons. At this level light-traps 

captured similar cephalopod genera on the reefs and in the adjacent passages and few 

differences were detected the relative abundance of cephalopod genera. 

The greatest differences detected by this study were those related to cross-shelf 

location and depth. The Coral Sea yielded surprisingly sparse catches of cephalopods 

with only the oceanic genus Sthenoteuthis being caught with any consistency. Apart 

from this one genus that was ubiquitous to all locations and obviously able to tolerate 

a wide range of conditions, the Coral Sea appears not to provide suitable nursery 

conditions for any shelf taxa. This may be due to the oligotrophic status of the East 

Australian Current that dominates this habitat or the selective disadvantage imposed 

by rigid southward advection in this strong boundary current. Most genera sampled 

by this study complete their early life history on the continental shelf where there was 

no evidence that the coral reef habitat or passages contained any unique assemblages. 
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Using towed nets, Dunning (1985) was able to obtain reasonable numbers of 

juvenile ommastrephid squid in deep oceanic water off the east Australian coast, but 

far to the south. It appeared that the two techniques, towed nets and light-traps were 

catching different sized individuals. Ommastrephids caught in towed nets ranged in 

size from 0.8 mm to 4.4 mm (Dunning 1985) compared with 2.4 mm to 59.0 mm 

caught using the light-traps (unpub. data). This difference in sizes may be due to the 

abilities of the two techniques to target different ontogenetic stages. Or the two 

studies were sampling different locations and the larger ommastrephid juveniles are 

undergoing a shift into shallower water as they grow. Other studies have 

demonstrated that the light-traps do show size selectivity, capturing larger fish larvae 

and juveniles than towed plankton nets (Choat et al. 1993, Thorrold 1993) 

Although the highest diversity occurred in near reef waters, the GBR Lagoon was 

not that much different and yielded the highest catch rates for the six most abundant 

genera. High numbers of juvenile cephalopods in a region of the GBR Lagoon 24 to 

33 km offshore suggest that juveniles in this area either have higher probabilities of 

surviving or are aggregating, actively or passively, in this area. High numbers of 

juvenile cephalopods have also been caught in this area with towed nets (Jackson 

1986). There is a frontal system in this region of the GBR Lagoon, produced by the 

interaction of a coastal boundary water mass and the East Australian current 

(Wolanski 1981, Wolanski & Ridd 1990). Differences in the surface water 

temperatures and salinities across the GBR Lagoon indicate that this interaction of the 

two water masses is occurring midway across the GBR Lagoon. High secondary 

productivity (Sammarco & Crenshaw 1984, Thorrold & McKinnon 1992) and high 

densities of juvenile and larval fish (Thorrold in press) suggest this area is important 

biologically and hydrodynamically. Given that juvenile squid are able to exogenously 

feed within hours of hatching (Boucher-Rodoni et a/. 1987), the higher secondary 

production of the GBR Lagoon would provide suitable feeding grounds for rapidly 

growing predators. Boundary regions have been identified as areas in which juvenile 

cephalopods are an important component of the nektonic community (Reid et al. 

1991, Rodhouse et al. 1992). The interactions of cephalopods in this community are 
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not recognised and these areas may determine growth and survivorship of juvenile 

squid. 

The presence of a juvenile cephalopod assemblage characteristic of specific 

locations and depths has interesting implications on the dispersal of the juveniles to 

and away from adult populations. The location and depth occupied by juveniles will 

modify the extent and rate of dispersal, thereby determining growth rates and 

recruitment patterns (O'Dor & Coelho 1993). During the summer the longshore 

current is predominantly southward, however, closer to the coast in shallower water 

(<40 m) water moment is more restricted than on the outer shelf (Williams et al. 

1984). Dispersal rates and extent will also be affected by the depth in the water 

column, closer to the benthos dispersal will be more restricted than at the surface 

(Williams et al. 1984, Dight et al. 1990b). Given the complex nature of hydrology 

interacting with topography it is difficult to speculate on the source of juveniles. 

Generally the trend is for movement southward and inshore according to modelling of 

the dispersion of passive particles (Dight et al. 1990a). So it is likely that adult 

populations to the north and offshore may be responsible for the juvenile cephalopods 

caught in the GBR Lagoon. Since water movement is restricted across the shelf the 

dispersal of juvenile cephalopods across the shelf will be limited (Williams et al. 1984, 

Dight et al. 1990). Therefore, the observed cross-shelf patterns of abundance of 

different genera, may be a function of species specific spawning areas across the shelf. 

Such distinct cross-shelf patterns of species have been described for larval flathead 

(Andrews 1982) and juvenile Photololigo (Moltschaniwskyj and Doherty 1994). 

This is the first study that has used automated light-traps for a quantitative 

examination of juvenile cephalopod assemblages. It indicates that cephalopods may 

be an important component of a nektonic community that has been described in the 

GBR Lagoon (Sammarco & Crenshaw 1984). The use of light-traps to describe 

spatial and temporal abundance of pelagic organisms is still relatively new (Doherty 

1987). Ecological investigations of the juvenile phase of both pelagic and benthic 

cephalopods require the capture of juveniles over a variety of locations and in 

different water conditions. Catches of cephalopods were often very low making 
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generalisations about spatial patterns difficult to make. However, a sampling program 

concentrating on regions of importance, such as the GBR Lagoon, is now possible in 

the future. Light-traps are a successful and useful technique to capture juvenile 

cephalopods that have eluded other methods used in this region (Jackson 1986). 

Furthermore identification of areas where high densities of zooplankton, teleosts and 

cephalopods occur provides an exciting opportunity to investigate community 

interactions involving juvenile cephalopods, particularly from the perspective of squid-

predator-prey interactions. 
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Figure 1. 	A map of the continental shelf and slope of the coast of Townsville, 
Queensland, Australia. 	The locations and stations sampled are 

_ 	 _ _ .• 	 indicated, 
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Figure 2. 	A comparison of the average number of cephalopods captured per hour 
of light-trapping between the four locations sampled in the GBR. 
Values are the average per light-trap hour ± standard error. LS - GBR 
Lagoon shallow, LD - GBR Lagoon deep, PS - passage shallow, PD -
passage deep, RS - reef shallow, RD - reef deep, SS - open sea 
shallow, SD - open sea deep. 
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Figure 3. 	The distribution of cephalopods sampled using light-traps across the 
GBR Lagoon. 
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Figure 4. 	For each station in the GBR Lagoon the average deviation from the 
mean temperature and salinity for each month has been calculated. 
Standard errors for the average deviation over three months are shown. 
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Figure 5. 	Canonical discriminant analysis results, showing the relationship of 
each area-depth combination on the first two discriminant axes. Values 
plotted are means and standard errors of canonical scores for each 
location-depth combination. Location symbols as in Figure 2. 
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