Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration

Spandler, Carl, Pettke, Thomas, and Hermann, Joerg (2014) Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration. Earth and Planetary Science Letters, 391. pp. 296-306.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1016/j.epsl.2014.02...


Subduction of serpentinite is envisaged to play a key role in volatile and element recycling at convergent plate margins, but there is currently little known about the composition of the fluid phase(s) released by devolatilisation of deeply subducted serpentinite. We have performed a series of ultrahigh pressure experiments to examine the phase relations and fluid compositions produced by reaction of a natural serpentinite under sub-arc conditions. We employ a novel technique of forming synthetic fluid inclusions in olivine at run conditions to preserve samples of experimental fluids for subsequent analysis. Our experiments confirm that the breakdown of antigorite and chlorite are the most important fluid-producing reactions from serpentinite at sub-arc depths. For our low CaO/Al2O3 peridotitic composition at 3.5 to 4.0 GPa we find that clinopyroxene reacts out below 750 °C and chlorite breaks down progressively between 700 and 800 °C to form garnet harzburgite.

Raman analysis of synthetic fluid inclusions indicates that all experiments contained a single aqueous fluid phase, which – together with a lack of textural or mineralogical evidence for hydrous melting – indicates that the water-saturated solidus for our starting composition is above 900 °C at 4.0 GPa. Element concentrations in the fluid for three experiments were determined in situ via laser ablation ICP-MS of individual fluid inclusions. In general, the fluids are enriched in trace elements compared to the bulk starting material, but particularly so for Li, B, LILE, LREE, and U. Chlorite dehydration fluids have high Li/B, LREE/HREE and Ce/Y due to retention of some B in olivine, and retention of Y and HREE in garnet. Our results indicate that fluids produced by serpentinite dehydration at sub-arc depths may carry some of the slab-derived trace elements required for arc magmatism, and may fractionate key trace element ratios in the dehydrated residues, which in turn may ultimately contribute to the geochemical heterogeneity of mantle-derived magmas.

Item ID: 33179
Item Type: Article (Research - C1)
ISSN: 1385-013X
Keywords: serpentinite, subduction, experimental petrology, fluid inclusions, devolatilisation
Funders: Australian Research Council (ARC)
Projects and Grants: ARC DP1095280
Date Deposited: 14 May 2014 09:35
FoR Codes: 04 EARTH SCIENCES > 0402 Geochemistry > 040202 Inorganic Geochemistry @ 50%
04 EARTH SCIENCES > 0403 Geology > 040304 Igneous and Metamorphic Petrology @ 50%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page