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A transport theory that explicitly incorporates loss of flux due to annihilating collisions is de-
veloped and applied to low energy positron diffusion and annihilation. The use of more complete
momentum transfer and annihilation cross sections for helium has resulted in improved descriptions
of the time dependence of 〈Zeff〉 for positrons injected into gaseous helium. Similarly, the variation
of 〈Zeff〉 versus E/n0 for experiments where the annihilation region is immersed in an electric field
is in closer agreement with experimental data. Inclusion of loss of flux due to annihilation was found
to have a very small effect on the derived 〈Zeff(t)〉 for helium.

PACS numbers: 34.85.+x, 34.80.Bm, 31.25.Jf, 03.65.Nk

I. INTRODUCTION

In the classic positron gas annihilation experiment [1–
3], positrons are emitted into a gas, undergo thousands
of inelastic collisions while thermalising and eventually a
mixture of low energy positrons and ortho-positronium is
left in the gas. The free positrons and ortho-positronium
then experience elastic collisions until they are in ther-
mal equilibrium with the gas. When positrons collide
with atoms, there is always the possibility of in-flight an-
nihilation of the positron with the atomic electrons and
experiments typically result in the determination of a
number of annihilation parameters. One parameter is the
positronium fraction, i.e. the number of positrons surviv-
ing in the form of free positronium. Another parameter is
the annihilation parameter, Zeff(v), which can be defined
in terms of the spin-averaged annihilation cross section,
σann(v) by the identity [4]

Zeff(v) =
v σann(v)

πcr2
0

, (1)

where r0 is the classical electron radius, v is the positron
velocity and c is the speed of light. The annihilation
parameter is determined by measuring the intensity of
2γ annihilation as a function of time. Finally, there is
the pick-off annihilation rate which is a consequence of
annihilating collisions between the positron in long-lived
triplet positronium and the electrons in the target atom.

In addition, the time dependence of the Zeff during
thermalisation contains information about the momen-
tum transfer cross section, the initial energy distribution
of the positrons, and the energy dependence of Zeff . The
time dependent behaviour of Zeff for positrons annihilat-
ing in the rare gases has been extracted from the anni-
hilation signal [2, 5–8]. Experimental information about
the energy dependence of the positron-atom momentum
transfer and annihilation cross sections can also be ob-
tained by performing experiments in a static electric field
[9]. The presence of the electric field leads to the drifting

and diffusing positrons with a different energy distribu-
tion at equilibrium.

The present work solves the Boltzmann equation to
determine the behaviour of Zeff(t) for positrons thermal-
ising in helium. The present solutions gave a fit to the
experimental data [2, 7] that was significantly improved
over previous simulations [7, 10]. The variation of the
equilibrium Zeff versus electric field strength has also
been determined and again the agreement with experi-
mental data was a significant improvement over previous
calculations [9, 10].

II. TRANSPORT MODEL

In positron annihilation studies, positrons are released
from a source with an unknown distribution of energies
well above thermal energies. The positrons then ther-
malise through energy and momentum exchanging colli-
sions with the background gas, before eventually anni-
hilating. The process is necessarily non-equilibrium and
the positron velocity distribution is non-Maxwellian dur-
ing the thermalisation process. For positron annihilation
studies conducted in the presence of an applied electric
field, the field drives the electrons out of thermal equi-
librium, and the steady-state distribution is no longer
Maxwellian in nature. The connection between micro-
scopic scattering processes and macroscopic properties
including the measured annihilation rates is made under
non-equilibrium conditions through Boltzmann’s equa-
tion [11]. Under spatially homogeneous conditions, the
motion of a dilute ensemble of positrons (charge e) mov-
ing through a dense background gas of neutral atoms
(density n0) in the presence of an applied electric field E

can be described by the linear Boltzmann equation

∂f̃

∂t
+

eE

m
·
∂f̃

∂v
= −J(f̃ , f0) , (2)

where f̃(v, t) is the single-particle positron velocity dis-
tribution function, which is a function of velocity v and
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time t. The collision operator J(f̃ , f0) takes into account
binary interactions between the positrons of mass m and
the atoms of mass m0, where f0(v0) denotes the back-
ground gas velocity (v0) distribution function, which is
assumed to be Maxwellian at the gas temperature T0. For
the regime of interest, the interaction processes determin-
ing the macroscopic properties are elastic scattering and
annihilation, characterized respectively by a differential
elastic cross section σ(vcm, χ) (where vcm and χ are the
speed and scattering angle in the centre of mass frame),
and the annihilation cross section σann(vcm). The colli-
sion operator is then the sum of the respective operators
for each process: J(f̃ , f0) = Jelast(f̃ , f0) + Jann(f̃ , f0).
Integrating eq. (2) over velocity space results in the nor-
malization condition:

dN

dt
= −〈λ(t)〉N , (3)

where N(t) =
∫

f̃(v, t)dv is the total number of positrons
at time t, and 〈λ(t)〉 is the average annihilation rate:

〈λ(t)〉 =
1

N(t)

∫

Jann(f̃(v, t), f0)dv

=
1

N(t)

∫
{

∫

vcmσann(vcm)f0(v0)dv0

}

f̃(v, t)dv.

(4)

Equations (2) and (4) constitute a system of non-

linear equations that must be solved for f̃(v, t). If we
renormalise the velocity distribution function such that
f(v, t) = N(t)f̃(v, t), then we have following kinetic
equation to solve:

∂f

∂t
+ 〈λ〉f +

eE

m
·
∂f

∂v
= −J(f, f0) (5)

where

〈λ(t)〉 =

∫
{

∫

vcmσann(vcm)f0(v0)dv0

}

f(v, t)dv. (6)

Equations (5) and (6) constitute a system of non-linear
equations that must be solved for f(v, t).

Solution of the hierarchy of kinetic equations (5) re-
quires decomposition of f(v) in velocity space. The first
step in any analysis is typically the representation of the
distribution function in terms of the directions of velocity
space through an expansion in spherical harmonics [12] :

f(v, t) =
∞
∑

l=0

l
∑

m=−l

f (l)
m (v, t)Y [l]

m (v̂) , (7)

where Y
[l]
m (v̂) are spherical harmonics and v̂ denotes the

angles of v. While common practice is to set the up-
per bound of the l-summation to 1 (i.e., the two-term
approximation) and consider only m = 0 (i.e., a Leg-
endre polynomial expansion), we do not make any such

restrictive assumptions in this theory. In best practice,
the integer lmax is successively incremented until a pre-
scribed accuracy criterion is met, as considered below.
This is a multi-term solution of Boltzmann’s equation.
Combining eqs. (5) and (7) leads to the following system

of coupled partial integro-differential equations for f
(l)
m :

∑

l′m′

〈

lm

∣

∣

∣

∣

∂

∂t
+ 〈λ〉 +

eE

m
·

∂

∂c
+ J

∣

∣

∣

∣

l′m′

〉

f
(l′)
m′ = 0. (8)

Expressions for the matrix elements of the streaming op-
erators are given in [12, 13]. The collision matrices e.g.
〈lm |J | l′m′〉 = [J l

elast + J l
ann]δll′δmm′ are all diagonal in l

and m, since the collision operators are all scalars.
For positrons in atomic gases, we take advantage of

the small mass ratio and utilise the Davydov operator to
describe elastic collisions:

J0
elastf

(0)
0 =

m

m0v2

∂

∂v

{

vνm(v)

[

vf
(0)
0 +

kT0

m

∂

∂v
f

(0)
0

]}

(9)

J l
elastf

(l)
m = νl(v)f (l)

m δll′δmm′ for l≥1, (10)

and

νl(v) = n0v2π

∫ π

0

σ(vcm, χ) [1 − Pl(cos χ)] sin χdχ.

(11)
We note for l = 1, ν1 = νm = n0vσMT is the momentum
transfer collision frequency for elastic collisions. In this
low mass-ratio limit, the annihilation collision operator
takes the form:

J l
annf (l)

m = νann(v)f (l)
m δll′δmm′ for l≥0 (12)

where νann = n0vσann(v) is the annihilation collision fre-
quency, and hence,

〈λ(t)〉 = 4π

∫

νann(v)f
(0)
0 (v, t)v2dv. (13)

The annihilation rate can be expressed in terms of the
Zeff(v) parameter via:

Zeff(v) =
1

πr2
0cn0

νann(v), (14)

Likewise the average of Zeff(v) is related to the average
annihilation rate via:

〈Zeff(t)〉 =
1

πr2
0cn0

〈λ(t)〉. (15)

The value of 〈Zeff(t)〉 when thermal equilibrium is
reached for a given gas temperature is denoted as 〈Zeff〉T .



3

Another macroscopic variable of interest in the current
investigation is the mean energy of the positrons:

〈ε(t)〉 = 4π

∫

1

2
mv2f

(0)
0 (v, t)v2dv. (16)

Details of the numerical solution of the system of equa-
tion can be found in [14]. Firstly, it must be empha-
sized that we do not assume that annihilation can be
treated perturbatively [7] (i.e. setting Jann ≈ 0). The
explicit modification of the distribution function due to
the annihilation processes is strictly accounted for in a
self-consistent manner. Secondly, this is a true multi-
term theory, with none of the limitations of the two-term
approximation used in previous treatments [7, 10]. There
are no a priori assumptions on the quasi-isotropy of the
velocity distribution function. Further, higher-order col-
lision frequencies of eq. (11) including further angular
dependence (i.e. beyond the momentum transfer cross
sections) are accurately included in this multi-term the-
ory.

III. COLLISION MODEL

The collision model is based upon an earlier semi-
empirical model of positron scattering and annihilation
[15]. In this model, the interaction between the positron
and the atoms was written as the sum of two terms. The
first term is the repulsive direct interaction as computed
from the Hartree-Fock wave function of the target atom.
The second term is a semi-empirical polarization poten-
tial. In the earlier work [15], a single polarization poten-
tial was used for all partial waves. In the present work,
the polarization potential depends on the orbital angu-
lar momentum, L, of the colliding positron. The effective
Hamiltonian (in atomic units) for the positron with coro-
dinate r0 moving in the field of the atom is

H = −
1

2
∇2

0 + Vdir(r0) + V L
pol(r0) . (17)

The polarization potential is given the form

V L
pol(r0) = −

αd(1 − exp
(

−r6
0/ρ6

L

)

)

2r4
0

, (18)

where αd is the static dipole polarizability. The ad-
justable parameter, ρL are fixed by reference to some
external factor, e.g. the value of the scattering length
as deduced from a high precision ab-initio calculation.
All the complicated many-body interactions between the
positron and atomic electrons can be absorbed into the
polarization potential. There have been many investiga-
tions of positron-atom interactions in the past that have
used conceptually similar Hamiltonians [16–23].

The underlying philosophy of the collision model is
semi-empirical, no attempt at determining the specific
form of the polarization potential by ab-initio calcula-
tion is made. Phase shifts and cross sections produced

by this approach have been shown to reproduce ab-initio

calculations over an energy range up to 10 eV provided
the adjustable parameter in the polarization potential,
namely ρL is tuned to reproduce the ab-initio phase shift
at some energy [15]. The total elastic, σT, and momen-
tum transfer, σMT, cross sections are calculated using
formulae from [24], namely

σT =
4π

v2

∑

ℓ=0

(2ℓ + 1) sin2(δℓ) (19)

σMT =
4π

v2

∑

ℓ=0

(ℓ + 1) sin2(δℓ+1 − δℓ) (20)

where δℓ are the phase shifts.
Besides reproducing the low-energy elastic cross sec-

tion, this model potential approach also does a reason-
able job of reproducing Zeff(v). The annihilation param-
eter is computed from the scattering wavefunction using
[4, 25, 26]

Zeff(v) = Ne

∫

d3τ |Ψ(r1, . . . , rN )Φ(v, rN )|
2

, (21)

where Ψ(r1, . . . , rN ) is the anti-symmetrized wave func-
tion of the target atom, Φ(v, rN ) is the positron scatter-
ing function and d3τ represents an integration over all
electron co-ordinates. Equation (21) is not completely
general as the total system wave function is assumed to
have the product form Ψ(r1, . . . , rN )Φ(v, r0). The ex-
pression for Zeff(v) given by eq. (21) is spin-averaged. In
the plane wave Born approximation, where the positron
wave function is written as a plane wave, the annihilation
parameter is equal to the number of atomic electrons, i.e.
Zeff(v) = Ne.

The Zeff(v) predicted by Eq. (21) is likely to be an
underestimate. The attractive nature of the electron-
positron interaction leads to strong electron-positron cor-
relations that increase the electron density at the position
of the positron, and consequently enhances the annihila-
tion rate [27–30]. Therefore, an L-dependent enhance-
ment factor, GL is used to rescale the calculated Zeff(v)
for a given partial wave by a multiplicative factor, GL,
i.e. values for Zeff(v) would be computed by

ZG
eff(v) =

∑

L

GLZL,eff(v) , (22)

where ZL,eff(v) is the partial annihilation cross section
for a scattering positron with angular momentum L. The
values of GL are fixed by reference to a high quality ab-
initio calculation or to experimental data. This work is
concerned with low energy scattering and under these
circumstances the relative collision momentum distribu-
tion of the annihilating electron-positron pair is not ex-
pected to change much as the positron energy changes
slightly. This means that the errors in using an energy
independent enhancement factor should not be too large
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[31, 32]. There have been a number of investigations that
have shown that a single multiplicative factor (for each
L) can adequately represent the magnitude and energy
dependence over the energy range below the first excita-
tion threshold [15, 33–36].

A. Defining ρL and GL for He

The ability of the model potential calculations to real-
istically describe the low energy elastic and annihilation
cross sections depends crucially upon the choice of ρL and
GL. A number of sources have been used to provide the
reference data which was used to fix ρL and GL which are
tabulated in Table I. The cross section computed with
the values in Table I is termed the model potential (MP)
cross section set.

The value of ρ0 was almost the same used in [15]. This
was set by the requirement that the phase shift at v =
0.2 a−1

0 was the same as that from a Kohn variational
calculation from the University College London (UCL)
group [38]. We have also used the confined variational
method (CVM) [42] to compute the s-wave phase shift
at v = 0.2 a−1

0 . The CVM phase shift of 0.0406 rad is
compatible with the UCL phase shift of 0.041(1) rad [38].

The value of G0 was set using Zeff(v = 0) as calculated
with the Kohn variational method [39] using a basis of
explicitly correlated gaussians [43]. This calculation was
performed at Charles Darwin University (CDU). The an-
nihilation parameter converges slowly as the basis set in-
creases and one typically finds that Zeff(v) increases as
the dimension of the basis increases. The CDU value of
Zeff(v = 0) is about 2% larger than the Kohn variational
value of 3.93 from the UCL group [40]. The CDU value is
preferred for two reasons. First, there were absolutely no
constraints imposed upon the representation of the he-
lium ground state wavefunction. Such constraints are a
potential issue with the Kohn calculations from the UCL
group [44]. Second, the UCL Zeff(v = 0) value comes
from an analytic representation of the low energy Zeff(v)
which has an incorrect functional form. The UCL fit-
ting formula contains a term linear in v, but this is not
compatible with the effective range expansion for the low
energy Zeff(v) [45]. Moreover, the zero-energy Zeff of 3.99
implies that the room temperature value should be 3.95
and this is compatible with the most precise experimental
value of 3.94(2) [2].

The value of ρ1 was set by reference to the L = 1 Kohn
variational phase shift at v = 0.3 a−1

0 [38]. The value of
G1 was set by digitising the p-wave Zeff(v) taken from
Figure 1 of [38]. The G1 value of 3.96 is 30% larger than
G0. The tendency for the p-wave enhancement factor
to be significantly larger than the s-wave enhancement
factor has been noticed for other systems [34–36, 46].

The value of ρ2 was tuned to the L = 2 phase shift
from a convergent close coupling (CCC) calculation [41].
Since there have been no values of Z2,eff(v) published,
recourse is made to recent calculations of the He+ ion

FIG. 1: (color online) The elastic cross section, σT(v) (in
units of πa2

0) for positron scattering from helium.

FIG. 2: (color online) The momentum transfer cross section,
σMT(v) (in units of πa2

0) for positron scattering from helium.

[35, 36]. The d-wave enhancement factor is 20% larger
than the p-wave enhancement factor.

The elastic cross section is depicted in Figure 1 and
compared with other calculations and experiment. Cross
sections from a polarized orbital (PO) calculation [26, 49]
are shown in addition to the calculations mentioned pre-
viously. The MP cross section lies very close to the most
recent Kohn variational elastic cross section of the UCL
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TABLE I: The parameters αd, ρL and GL for helium in the model potential. The particular numerical criteria (and their
source) used to fix ρL and GL are specified.

Atom αd (a3
0) L ρL (a0) Source GL Source

He 1.383 [37] 0 1.510 δ0(v = 0.2) = 0.041 [38] 2.979 Zeff(v = 0.0) = 3.99 [39]

1 1.440 δ1(v = 0.3) = 0.019 [38] 3.96 Zeff(v = 0.4) = 0.497 [40]

2 1.00 δ2(v = 0.8) = 0.025 [41] 4.65 He+ (G2 − 1)/(G1 − 1) = 1.233 [36]

FIG. 3: (color online) The annihilation parameter, Zeff(v) for
positron scattering from helium. The 1977 Kohn variational
Zeff(v) was taken from Ref. [47] while the 1998 Kohn Zeff(v)
was taken from Ref. [48].

group [38]. This was expected since the UCL cross sec-
tion was used to set the cutoff parameters. The PO cal-
culation gives a scattering length which is larger in mag-
nitude and with a Ramsauer minimum occurring at a
higher velocity. The CCC calculation [41] has a scatter-
ing length that is slightly smaller in magnitude resulting
in a smaller cross section at energies below the Ram-
sauer minimum. There are two sets of experimental data
that are included, those by the Australian National Uni-
versity (ANU) [50] and Kyoto [51]. Cross sections from
some older experiments [52, 53] are not included to re-
duce clutter in the Figure.

The ANU and Kyoto group elastic cross sections do
lie closer to the CCC cross sections at the lowest ener-
gies. However, the cross sections based on Kohn varia-
tional calculations should be preferred. The Kohn vari-
ational phase shifts have been validated by new calcu-
lations based on the CVM [39, 42] which reproduce the
experimental 〈Zeff〉. The impact of systematic errors in
the experiments can become more severe at the lower
energies.

Figure 2 plots the momentum transfer cross section
as a function of v for energies below the Ps-formation
threshold. It is compared with the Kohn variational mo-
mentum transfer cross section from the UCL group [38]
and the CCC momentum transfer cross section of the
Curtin group [41]. The MP cross section lies very close
to the momentum transfer cross sections from the UCL
and Curtin groups.

The annihilation parameter as a function of v is de-
picted in Figure 3. The original Zeff(v) of Campeanu
and Humberston [7] is characterised by the small size
of Zeff(v) near v = 0.5 a−1

0 . However, there are some
obvious problems with the Campeanu and Humberston
Zeff . This curve shows a variation of Zeff(v) near v = 0
that is linear in v. However, an application of effective
range theory to annihilating collisions has shown that
Zeff(v) ≈ Z0 + v2Z2 where Z0 and Z2 are constants
[45]. Another limitation of this earlier calculation is the
omission of contributions from partial waves with L > 1.
For these reasons the Campeanu and Humberston Zeff(v)
should be regarded as being superseded by the later Kohn
variational calculations [40, 48].

The later variational calculation [48] did include con-
tributions from the d-wave, and the functional form of
Zeff(v) near v = 0 is more compatible with the expecta-
tions of effective range theory. This later calculation had
larger values of Zeff(v) at the minimum despite not in-
cludingcontributions from partial waves with L > 2. The
MP calculations do include terms from these higher par-
tial waves, with the contribution to Zeff at v = 1.1 a−1

0

being 0.101. This partly explains why the MP Zeff(v) is
larger than the KV Zeff(v).

IV. POSITRON DIFFUSION AND

THERMALISATION CALCULATIONS

A. Positron annihilation in helium under field-free

conditions

Initially we consider positron annihilation experiments
where positrons are released into a gas of known pressure
and the annihilation spectra is measured and interpreted
in terms of the transient 〈Zeff(t)〉 and the steady-state
value, 〈Zeff〉. For helium, the experimental results of the
UCL group for 〈Zeff(t)〉 are displayed in Figure 4 as a
function of the reduced time, n0t. Comparison with the
calculated transient 〈Zeff(t)〉 provides some assessment
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of the positron-helium elastic and annihilation cross sec-
tions.

There is limited information regarding the appropri-
ate initial conditions for the speed distribution of the
positrons at the start of the 〈Zeff(t)〉 measurements. Ac-
cordingly, there is little point in experimenting with a va-
riety of initial velocity distributions. The initial distribu-
tions will have positrons with energies up to the positro-
nium formation threshold. This choice was also made
by Campeanu and Humberston [7]. With this choice,
there are two obvious distribution functions that can be
adopted.

The first of these would be a constant speed distri-

bution, i.e. f
(0)
0 (v) = C where C is a constant up to

some cutoff velocity, vmax =
√

2εmax/m. The mean en-
ergy of this distribution function is given by the identity,
〈ε〉 = (3/5)(mv2

max/2). For helium, with vmax = 1.1438
a.u., this leads to 〈ε〉 = 0.39331 a.u. = 10.70 eV.

The second initial distribution would be one that was
constant in energy space, i.e. f

(0)
0 (ε)ε1/2 = C where C is

a constant up to some cutoff velocity, vmax. The mean en-
ergy of this distribution would be 〈ε〉 = (1/2)(mv2

max/2).
〈ε〉 = 0.32776 a.u. = 8.92 eV.

In Figures 4 and 5 the calculated temporal variation of
〈Zeff(t)〉 and the mean energy 〈ε(t)〉 are plotted. Besides
the two distributions specified above, we also show an

additional f
(0)
0 (v) = C distribution with vmax = 0.3320

a.u. (〈ε〉 = 0.90 eV). Also shown in Figure 4 is the UCL
experimental 〈Zeff(t)〉 and the previous simulation by
Campeanu and Humberston (CH) [7]. The UCL 〈Zeff(t)〉
initially has 〈Zeff(t = 0)〉 higher than its equilibrium
value, it decreases as t increases, until it stabilises be-
fore increasing to its equilibrium (thermal) value. This
indicates that the initial velocity distribution should have
a mean energy that is larger than the energy where
Zeff(v) is smallest. The CH profile, which used a con-
stant speed initial distribution, shows these qualitative
features. But, the minimum 〈Zeff(t)〉 during thermalisa-
tion is 0.3 smaller than the minimum 〈Zeff(t)〉 seen for the
UCL data and the value after thermalisation is achieved
is too small by 2.3%.

The 〈Zeff(t)〉 computed with the MP cross sections are
in better agreement with the UCL 〈Zeff(t)〉. The mini-
mum value of 〈Zeff(t)〉 is much closer to the minimum ob-
served in the UCL experiment. This is a consequence of
the larger value of Zeff(v) at the minimum. The asymp-
totic value of the MP 〈Zeff(t)〉 is only 0.01 to 0.03 smaller
than the UCL data for values of the reduced time greater
than 2 × 103 ns amagat. The thermalisation times are
also compatible with the thermalisation time for the UCL
experiment. The initial constant speed distribution has
a slightly longer thermalisation time than the initial con-
stant energy distribution.

Both the MP and CH simulations start with Zeff(v)
closer to 4.0 at the v = 0 threshold. However, the asymp-
totic value for the CH simulation as t → ∞ is more than
0.1 smaller than experiment and the MP asymptotic val-
ues. This is due to the incorrect functional dependence

FIG. 4: (color online) Temporal variation of 〈Zeff(t)〉 for
positrons thermalizing in gaseous helium at a temperature
of 293 K. The simulations are compared with the UCL ex-
perimental data [2] and the CH simulation [7]. The different
initial distributions are characterised by varying distributions
and average energies; Const v is a constant distribution in
v space below the Ps-threshold; Const ε is a constant distri-
bution in energy space below the Ps-threshold. See text for
details.

of the CH Zeff(v) with v near v = 0. As mentioned ear-
lier, the linear dependence of the CH Zeff(v) with v is
incompatible with effective range theory [45].

Figure 4 also depicts 〈Zeff(t)〉 for a positron distribu-
tion with the mean energy located at an energy lower
than the minimum in the Zeff(v) profile. The distribution
does not show any sign of the minimum in the 〈Zeff(t)〉
profiles seen in UCL experiment and other simulations.

The transient profiles, including the depth of the
minimum, are determined by an interplay between the
σMT(v), the annihilation cross section and the initial av-
erage energy of the positrons. An initial distribution with
positron energies up to the Ps-formation threshold is cru-
cial to a giving a correct prediction of the overall ther-
malisation time. While there are small uncertainties in
the MP σMT(v), these uncertainties have minimal im-
pacts on the thermalisation time and can be effectively
neglected as a source of error. The size of the dip in
〈Zeff(t)〉 is primarily driven by the dip in Zeff(v). The
Zeff(v = 0.42)/〈Zeff〉T ratio is 0.872 for the MP calcula-

tion with the f
(0)
0 (v) = C distribution. The ratio of the

dip in 〈Zeff(t)〉 measured with respect to the 〈Zeff〉T for
the UCL data is 0.90. The ratio can be expected to show
some sensitivity to the initial positron distribution used
to start the simulations.
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FIG. 5: (color online) Variation of 〈ε(t)〉 for positrons ther-
malizing in helium for different initial conditions. The tem-
perature of the helium gas was taken as 293 K.

B. Positron annihilation in helium in an electric

field

The application of an electric field in thermalisation
experiments drives the positrons out of thermal equi-
librium with the background helium gas. The steady-
state is achieved when the energy gain of the positrons
in the electric field is balanced by the energy loss from
collisions with helium atoms. The velocity distribution
of the positrons in the steady-state will no longer be
a Maxwellian distribution. As the field strength is in-
creased in magnitude, the cross sections and Zeff are
sampled over an increasingly larger energy range. Fur-
ther, the electric field modifies the steady-state velocity
distribution function, and hence 〈Zeff〉, and necessarily
modifies the transient response 〈Zeff(t)〉. The applica-
tion of an electric field to the thermalisation experiments
represents a test on the validity of the cross section set
at energies higher than thermal energies.

The variation of the steady-state 〈Zeff〉 with an ap-
plied electric field is displayed in Figure 6. The MP
cross section set is shown as are results from two pre-
vious transport calculations [7, 10]. Experimental data
from the University of Toronto [5], University of British
Columbia (UBC) [54] and the University College Lon-
don (UCL) [9] are presented. All calculated and exper-
imental data show the same trend, there is a tendency
for 〈Zeff(E/n0)〉 to decrease as the reduced electric field,
E/n0 is increased. The reason for the decrease is eas-
ily explained by reference to the functional dependence
of Zeff(v) and the mean energy of the positron cloud at

FIG. 6: (color online) Comparison of steady-state
〈Zeff(E/n0)〉 for thermalised positrons in helium at T0 = 293
K. The curve labelled MP 2014 uses the MP cross section set.
Also shown are experiments from the Toronto [5], UBC [54]
and UCL [9] laboratories. Previous transport calculations are
also depicted [7, 10]).

increasing E/n0. The increase in mean positron energy
with E/n0 is shown in Figure 7. The rapid increase in
〈ε〉 beginning at 2 V/(cm·amagat) is a consequence of the
Ramsauer-Townsend minimum in the momentum trans-
fer cross section at around 1.0 eV. For values of E/n0 > 5
V/(cm·amagat), the mean energy ranges from 1 - 3 eV
where Zeff(v) has a broad minimum with Zeff(v) ≈ 3.5.

There are effectively four sets of experimental data, the
data of the Toronto [5] and UBC [54] experiments, and
the two UCL datasets [9] which were taken at densities of
3.5 and 35.7 amagat. The present MP 〈Zeff(E/n0)〉 tends
to lie higher than three of the experimental datasets.
However, two of these data sets (Toronto and UBC)
should be given less weight since they do not reproduce
the accepted value for the zero-field 〈Zeff〉T . The 3.5 am-
agat data from the UCL experiment has large error bars
since the free positron annihilation signal was barely re-
solvable from the signal due to pick-off annihilation and
ortho-Ps decay [9, 55]. The most reliable experimental
dataset would be the 35.7 amagat set from the UCL ex-
periment.

The two previous transport calculations of
〈Zeff(E/n0)〉 [7, 10] both use roughly the same
Zeff(v) and both calculations give 〈Zeff(E/n0)〉 < 3.3 for
E/n0 > 5 V/(cm·amagat). The present MP calculations
have 〈Zeff(E/n0)〉 ≈ 3.5 for E/n0 > 5 V/(cm·amagat).
The present MP calculations have a larger 〈Zeff(E/n0)〉
simply because the MP Zeff(v) is larger than the CH
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Zeff(v) for the relevant values of v.
The most significant comparison in Figure 6 is between

the present transport calculation with the MP cross sec-
tions and the 35.7 amagat data from the UCL experi-
ment [9]. The UCL data tend to be about 2-3% smaller
than the MP curve for E/n0 < 3 V/(cm·amagat). How-
ever, this is a low energy region where the MP calcu-
lation should be most reliable. At these energies, the
functional dependence of Zeff(v) is largely governed by
effective range theory [45].

At higher electric fields, the MP 〈Zeff(E/n0)〉 are
larger than the Toronto and UBC data, although gen-
erally consistent when the scatter in the data is consid-
ered. The MP 〈Zeff(E/n0)〉 are however slightly below
the higher density experimental data of the UCL group
[9]. While the higher pressure UCL results [9] are more
accurate than their lower pressure results, at 35.7 ama-
gat, these results may include other multiple scattering
[56] and density effects [57] which have not been included
in our calculations. It is also worth noting that the dis-
crepancy is only 2-3%.

C. On the accuracy of a perturbation treatment of

annihilation and the two-term approximation used

in positron transport theory

If the annihilation collision frequency νann(v), or equiv-
alently Zeff(v), increases/decreases monotonically with
energy in the region sampled by the distribution func-
tion, there exists a preferential loss of positrons within
the higher/lower energy part of the distribution. The
annihilation cross section is usually many orders of mag-
nitude smaller than the momentum transfer cross sec-
tion and so it is often assumed that annihilation can be
treated as a perturbation. The loss of flux due to an-
nihilation is typically omitted during the calculation of
the distribution function (i.e. neglect the explicit νann in
Eq. (5)).

Calculations of positron transport in helium have also
been done with the flux loss due to annihilation included
in the calculation of the distribution function. At zero
field, this non-perturbative treatment will cause the dis-
tribution function to deviate slightly from the expected
Maxwellian distribution (at the helium temperature) and
therefore result in a small change in the 〈Zeff〉T computed
using eqs. (13) and (15). For helium, the differences be-
tween the actual temperature of the thermalised distribu-
tion and gas temperature are less than 0.13%, resulting
in a change to 〈Zeff〉T of 0.0015%.

The non-perturbative treatment can also be applied to
treat the steady-state diffusion of positrons in an electric
field. Figure 7 shows the thermalized 〈Zeff〉 and 〈ε〉 for
positrons diffusing in an electric fields. The differences
between the perturbative and non-perturbative treat-
ments are less than 4% for the mean energy and 0.14%
for 〈Zeff〉 over the range E/n0 ∈ [0, 20] V/(cm·amagat).
These differences are essentially not visible in Figure 7.

FIG. 7: (color online) The steady-state 〈Zeff〉 and mean en-
ergy 〈ε〉, positrons thermalizing in helium at T0 = 293 K
under the action of a reduced electric field E/n0 using the
new cross section set.

The validity of the two-term approximation used in
earlier transport calculations [7, 10] has been checked
with an investigation of the impact of the computational
parameter lmax in the spherical harmonic expansion in
eq. (7). This parameter accounts for the anisotropic na-
ture of the velocity distribution function, and also en-
ables greater account for the anisotropy in the differen-
tial cross sections to be included. The parameter lmax is
incremented until some convergence criteria is met, gen-
erally on the macroscopic parameters such as 〈Zeff〉. In
was found that the two-term approximation was sufficient
to guarantee accuracy to within 0.01% or better for all
transport properties over the range of reduced fields con-
sidered. This is expected since low energy positron he-
lium elastic scattering is dominated by the s-wave. Con-
sequently, collisional processes result in large momentum
exchanges with small energy exchanges and the quasi-
isotropy of the velocity distribution then follows.

V. CONCLUSION

Transport theory calculations of the thermalisation
and annihilation of positrons diffusing in helium have
been completed. The collision cross sections for helium
were model potential values that were tuned to the best
available calculations and experiment. The present cal-
culations of the positron diffusion are largely compati-
ble with the available experimental information. Lack
of detailed knowledge in the energy distributions of the
positrons at the start of the simulation does mean that
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some uncertainty must be attached to any conclusions.
The present transport calculations however provide a
greater degree of consistency with experiment than ear-
lier calculations [10, 47]. The closer agreement with
the experimental data has largely arisen from a more
complete description of the positron-helium annihilation
cross section. The use of a two-term distribution func-
tion and a perturbative treatment of positron annihila-
tion used in previous studies are found to have a very
small effect on the transient and steady-state behaviour
of the positron cloud.
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