
A Multicore Numerical Framework for Assessing the

Permeability of Reservoir Rocks

*
Peter G. Tilke,

§
Christopher R. Leonardi,

†
David W. Holmes, and

¶
John R. Williams

*
Department of Mathematics and Modeling, Schlumberger-Doll Research Center, 1 Hampshire Street,

Cambridge, MA 02139
§
Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue,

Cambridge, MA 02139
†
Department of Mechanical Engineering, James Cook University, Angus Smith Drive, Douglas, QLD 4811,

Australia
¶
Civil and Environmental Engineering and Engineering Systems, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139

Abstract. This paper presents a numerical framework that is capable of simulating multiphase flow in reservoir rocks at

the pore scale. The framework combines a suite of numerical methods, including smooth particle hydrodynamics (SPH)

and the lattice Boltzmann method (LBM), with shared-memory, multicore parallel processing to increase the flexibility

and scalability of solutions. By incorporating a suite of methods in the numerical framework, each with their own

relative strengths, the range of problems that can be solved is greatly increased. The utilized parallel programming

model exploits the large memory as well as the low latency of processor caches available in contemporary multicore

servers. Maximized cache performance is achieved by taking a fine-grained approach to domain decomposition and also

taking advantage of the spatial locality of data in the solvers. This results in scalable speed-up efficiency, whilst the

asynchronous distribution of fine-grained, parallel work tasks results in natural load balancing. Both the SPH and LBM

solvers are applied to determine the permeability of reservoir rocks from x-ray microtomographic images of samples.

Predictions of the absolute permeability of West Texas Dolomite and Berea Sandstone samples are presented, with both

comparing well with experimental data.

Keywords: permeability, dolomite, Berea sandstone, lattice Boltzmann, smoothed particle hydrodynamics.

PACS: 47.56.+r

INTRODUCTION

The permeability of a hydrocarbon reservoir is an

important input parameter in predictive production

simulations. In reservoir simulators each cell is

prescribed a permeability tensor which is statistically

interpolated from a limited number of data points.

However, as the size of cells decreases due to

advances in computational hardware, there is

motivation to honor the increasing resolution of the

simulator with a more accurate description of the

permeability distribution in the reservoir.

Determining the permeability of reservoir rocks via

displacement experiments on core samples can be

expensive and time consuming. It can also be

impractical when suitable core samples are not readily

available. For these reasons, a number of different

modeling approaches have been developed which

facilitate the prediction of absolute and relative

permeability (as well as other petrophysical properties)

of reservoir rocks from high resolution images of

small physical samples.

The most straightforward way to predict the

permeability of a porous rock is via an empirical

relationship based on porosity, hydraulic radius or

another combination of parameters, such as the

Kozeny-Carman equation [1]. More recently, micron-

scale x-ray tomography (CT) has been employed to

generate high resolution, 3D images of millimeter

scale samples [2]. These images can then serve as the

primary input for a range of numerical

experimentation procedures for the determination of

permeability and other properties. These procedures

include pore network models [3], and direct numerical

simulation of pore-scale fluid flow using the finite

difference (FD) method [4], the lattice Boltzmann

method (LBM) [5, 6], and smoothed particle

hydrodynamics (SPH) [7].

The numerical modeling strategies that have been

applied to the problem of multiphase flow in porous

media each have their own strengths and weaknesses.

In an attempt to leverage the capabilities of more than

one technique, this paper presents a generalized

numerical framework that incorporates a range of

these numerical methods. The framework combines

the LBM, SPH, FD and the discrete element method

(DEM), with shared-memory, multicore parallelism to

increase the flexibility and scalability of computations.

Using both LBM and SPH the framework has been

employed to determine the absolute permeability of

two oil reservoir rock samples. The numerical

permeability predictions compare well with published

experimental data for similar rock types.

GENERALIZED MULTI-SOLVER

FRAMEWORK

The development of a generalized multi-solver

framework has been motivated by the need to simulate

a variety of fluid-solid interaction phenomena which

occur in hydrocarbon reservoirs. The creation of the

framework has included development in three key

areas, namely, a plug-in solver framework for a range

of numerical methods, a distribution technique to

facilitate asynchronous, parallel computation on

multicore hardware, and a library of methods

including LBM, SPH, FD and DEM.

The numerical methods incorporated into the multi-

solver framework (i.e. LBM, SPH, FD, DEM) are well

established. Depending on their formulation, each

method is more suited to application in some problems

than others. Including each of them in the framework

provides flexibility when deciding the best approach

for solving reservoir flow problems. For example, SPH

excels at naturally reproducing free surface flows and

the interfaces of multiple phases. With the LBM, the

mapping of complex boundaries is straightforward,

and it can also be readily coupled with DEM and or

FEM to solve fluid structure interaction problems.

The plug-in solver framework acts as a

coordination layer for the execution of the chosen

numerical method. For example, SPH can be ‘plugged

into’ the framework, which then manages explicit time

integration and task distribution for parallel

computing. Additionally, the plug-in solver allows for

more than one method to be coupled together to

simulate, for example, particle suspensions using the

LBM and DEM, as shown schematically in Figure 1.

The multi-solver framework is underpinned by

three important implementation features, namely,

global time integration, function inheritance for each

solver, and a common data structure format. Global

time integration is realized using a single, explicit time

stepping scheme which controls the progression of

each of the solvers that is plugged into the framework.

Function inheritance for the solvers is made possible

by the use of a common base class of processing

methods (i.e. functions). The method class of the

chosen solver(s) inherits from the base class and

exposes its methods for the processing of information.

Finally, the use of a single data structure format for

each solver facilitates a common strategy for data

decomposition and thread-safe parallel processing.

The implementation of the multi-solver is aided by

inheritance and polymorphism, both of which are

attributes of high-level, object-oriented languages such

as C#.NET. In the discussion of the parallel efficiency

of the framework it will be shown that the use of a

fine-grained domain decomposition strategy can

largely circumvent the cost of memory management,

which is also a feature of C#.NET.

FIGURE 1. Schematic of the generalized multi-solver

framework, showing the LBM and DEM solvers ‘plugged

in’ and fully coupled. The framework manages time

integration via a global, explicit scheme. Computations are

parallelized via shared-memory, multicore hardware.

Asynchronous Parallelism Using Shared-

Memory, Multicore Hardware

The most common approach to parallel processing

of numerical methods utilizes a distributed memory

cluster as the underlying hardware. In this approach

the computational domain is decomposed into the

same number of sub-domains as there are nodes

available in the cluster. Each cluster node processes a

single sub-domain at each time step and, when all sub-

domains have been processed (in a time step), global

solution data is synchronized.

The synchronization of solution data at the end of

each time step involves the communication of ghost

regions between nodes. These ghost regions

correspond to neighboring sections of the problem

domain (resident in memory on other cluster nodes)

which are required on a cluster node for the processing

of its own sub-domain. In the LBM this is typically a

'layer' of grid points that encapsulates the local sub-

domain, but in SPH the layer of neighboring particles

required is equal to the radius of the compact support

zone. In 3D particle-based methods, such as SPH, it is

possible for the amount of data communicated in ghost

regions to be of the same order as the amount of

stationary data. As a consequence of Amdahl’s Law

[8], and the fact that communication between nodes

with packages is a serial process, this can significantly

degrade the scalability of the implementation.

Another challenge with distributed memory

parallelism can be sub-optimal load balancing, which

also degrades parallel efficiency. Simply decomposing

the problem into equal-sized sub-domains may not

result in an equitable distribution of work between the

cluster nodes. This is particularly relevant when the

computational work of a problem is heterogeneously

distributed throughout the domain. For example, in

porous media flows the work at rock locations can be

less than that at fluid locations, and in particle

suspensions, more work is required (due to

hydrodynamic coupling) in areas of above average

particle concentration than in other areas.

The issues of data communication and load

balancing are addressed in the multi-solver framework

by employing shared-memory, multicore hardware and

fine-grained domain decomposition, respectively.

Using shared-memory, multicore hardware for

parallel processing removes the need for ghost regions

and the transfer of data over relatively slow

connections between cluster nodes. Instead, all data is

accessible to all cores from either local caches (i.e. L1,

L2) or global memory (i.e. L3 cache, RAM). Access

times for these data stores are many orders of

magnitude shorter than cross-machine communication

[9]. When used with an optimum cache-blocking

strategy these access times significantly reduce the

latency associated with data reads and writes.

Cache-blocking in the multi-solver framework is

optimized by utilizing fine-grained domain

decomposition. Instead of partitioning the domain into

one sub-domain per core, a collection of significantly

smaller sub-domains is created. These sub-domains, or

computational tasks, are sized to fit in the low-level

cache (i.e. L1, L2) of a processing core, which

minimizes the time spent reading and writing data as a

task is processed. This minimization of access time is

important, particularly in memory-bound numerical

methods, such as the LBM and SPH.

In the LBM, the tasks created by fine-grained

domain decomposition could be cubic bundles of

nodes. In SPH these tasks could be bins populated

with particles via spatial hashing. On a multicore

server with a core count on the order of 10
1
~10

2
 the

number of tasks could be in the order of 10
3
~ 10

4
.

Multicore distribution of these tasks requires the use of

a coordination tool to manage them onto processing

cores in a load balanced way. While such tasks could

easily be distributed using a traditional approach like

scatter-gather, here the H-Dispatch distribution model

[10] has been used because of the demonstrated

advantages for performance and memory efficiency.

The H-Dispatch distribution model maintains a

thread on each core in the underlying multicore server.

These threads remain active throughout the duration of

the analysis so that local, temporary memory required

for processing tasks can be reused (thereby minimizing

garbage collection). The novel feature of H-Dispatch

is the way in which tasks are distributed to threads.

Rather than a scatter or push of tasks from the

manager to threads, here threads request values when

free. H-Dispatch manages these events-based,

asynchronous requests and distributes cells to the

requesting threads accordingly. It is this pull

mechanism that enables the use of a single thread per

core as threads only request a value when free, thus,

there is never more than one task at a time associated

with a given enduring thread (and its associated local

variable memory). Additionally, when all tasks in the

problem space have been dispatched and processed, H-

Dispatch identifies step completion (i.e.

synchronization) and the process can begin again. By

using many more tasks than cores, and events-based

distribution of these tasks, the computational workload

of the numerical method is naturally balanced.

The Lattice Boltzmann Method

The LBM (see [11] for a review) has emerged in

the last 20 years as a powerful numerical method for

the simulation of fluid flows. It has found application

in a vast array of problems including flows in porous

media, multiphase flows, and particle suspensions.

The LBM differs from conventional approaches to

computational fluid dynamics in that it does not

involve the discretization and solution of the

governing hydrodynamic equations (i.e. Navier-

Stokes). Instead, the LBM can be interpreted as a

discrete form of the Boltzmann equation at the

mesoscopic scale. The primary variables in the LBM

are particle distribution functions, which exist at each

of the lattice nodes that comprise the fluid domain.

These functions relate the probable amount of fluid

‘particles’ moving with a discrete speed in a discrete

direction at each lattice node at each time increment.

The particle distribution functions are evolved at each

time step via a two-stage, collide-stream process. The

collision process monotonically relaxes the particle

distribution functions towards their respective

equilibria, and in doing so governs the viscous

properties of the fluid. The redistributed (i.e. collided)

functions are then adjusted by a body force term (if

applicable), after which the streaming process

propagates them to their nearest neighbor nodes.

Spatial discretization in the LBM is typically based

on a square (2D) or cubic (3D) array of nodes. In the

present work the D3Q15 lattice is employed, which

includes a zero velocity vector, the six nearest-

neighbor velocity vectors, and the eight furthest-

neighbor velocity vectors.

The macroscopic fluid variables, density and

momentum flux, are calculated at each lattice node as

velocity moments of the particle distribution functions.

In this study the immersed moving boundary

(IMB) method [12] is employed to handle the

hydrodynamic coupling of the fluid and structure.

Further details of the IMB method and its coupling to

the FEM/DEM can be found in Owen et al. [13].

The obvious choice for decomposition of the LBM

domain data is to use cubic nodal bundles. An

important advantage of this approach is the ease with

which the bundle size can be used to optimize cache

blocking. By adjusting the bundle size, the associated

computational task can be re-sized to fit in cache close

to the processor (e.g. L1 or L2). This minimizes cache

misses and the associated retrieval of data from RAM,

which occurs with significantly greater latency.

To ensure thread safety, two copies of the LBM

particle distribution functions at each node are stored.

Nodal processing is undertaken using a pull-collide

sequence. Incoming functions are read from neighbor

nodes (non-local read), collided, and then written to

the future set of functions for the current node (local

write). On cache-sensitive multicore hardware, this

sequence of operations outperforms collide-push,

which requires local reads and non-local writes [9].

The benefit of optimized cache blocking is found

by varying the bundle size and measuring the speed-

up. This was performed for a simple, 200
3
 problem

[14] and the optimal performance point (92% speed-up

efficiency) was found at a side length of 20.

Additionally, it was found that this optimal side length

could be applied to larger domains (300
3
 and 400

3
) and

still yield maximum speed-up efficiency. This suggests

that the optimum bundle size for the LBM can be

determined in an a priori fashion for specific hardware.

Smoothed Particle Hydrodynamics

SPH is a mesh-free, Lagrangian particle method

which was first proposed for the study of astrophysical

problems [15, 16], but is now widely applied to fluid

mechanics problems [17]. A key advantage of particle

methods such as SPH is their ability to advect mass

with each particle, thus removing the need to explicitly

track phase interfaces for problems involving multiple

fluid phases or free surface flows. However, the

management of free particles brings with it the

associated computational cost of performing spatial

reasoning at every time step.

SPH theory has been detailed widely in the

literature with various formulations having been

proposed. The methodology of authors such as

Tartakovsky and Meakin [18, 19] and Hu and Adams

[20] has been shown to perform well for the case of

multi-phase fluid flows. Their particle number density

variant of the conventional SPH formulation removes

erroneous artificial surface tension effects between

phases and allows for phases of significantly differing

densities. Such a method has been used for the

performance testing in this work.

Solid boundaries in the simulator are defined using

rows of virtual particles [21], and no-slip boundary

conditions are enforced for low Reynolds number flow

simulations using an artificially imposed boundary

velocity method [22].

The data associated with each particle in the SPH

implementation is stored in a collection of bins. These

bins are analogous to the bundles used in the LBM,

and form the collection of SPH tasks that is distributed

to cores using H-Dispatch. Particles are assigned to

bins using spatial hashing based on their Cartesian

coordinates. By storing particle data based on its

physical location the number of bins accessed while

determining the interaction of a particle and its

neighbors is minimized.

As in the LBM, care must be taken to avoid

common shared memory problems such as race

conditions and thread contention. To circumvent the

problems associated with using locks [23] the SPH

data can be structured to remove the possibility of

thread contention altogether. By storing the present

and previous values of the SPH field variables (e.g.

position, velocity etc.), necessary gradient terms can

be calculated as functions of values in previous

memory, while updates are written to the current value

memory. This reduces the number of synchronizations

per time step from two (if the gradient terms are

calculated before synchronizing, followed by the

update of the field variables) to one, and a rolling

memory algorithm switches the index of previous and

current data with successive time steps.

By definition, the SPH bins can be used to

maximize cache blocking just as the bundles were in

the LBM, and test results showed similar speed-up

efficiency to that of the LBM [14]. The SPH results

also highlighted the influence that read/write access

times have on the performance of memory-bound

numerical methods such as SPH. The parallel SPH

implementation was tested in both single-search

(perform spatial reasoning once per time step and store

the results in memory for use twice per time step) and

double-search forms (perform the spatial search twice

per time step, as needed). The results showed that the

double-search code scaled well, but the single-search

code scaled poorly. On first consideration this

outcome seems counterintuitive, as the code with more

computation performs better. However, it actually

highlights the penalty associated with reading/writing

more data than is necessary in an algorithm that is

already memory-bound.

ABSOLUTE PERMEABILITY OF

RESERVOIR CORE SAMPLES

The ability of the SPH and LBM solvers to predict

the permeability of porous media has been extensively

benchmarked. In [18] SPH was used to determine the

drag coefficient and permeability of fluid in a periodic

cubic array of spheres for porosity values between

10% and 99%. The correlation of the SPH predictions

with published Stokes flow solutions [23] was

excellent. This range of test problems was repeated

with the LBM, yielding almost identical results.

The multi-solver framework was then applied to

numerically determine the porosity-permeability

relationship of two rock samples, namely West Texas

Dolomite and Berea Sandstone. For both samples, the

structural model geometry was generated from a CT

image which had been segmented to classify voxels

(i.e. pixels) as either rock/clay or pore. The Dolomite

image measured 500
3
 (125 million voxels, total) and

was scanned at a resolution of 1m, corresponding to a

0.5mm
3
 sample. The Berea image was taken from a

cylindrical core sample measuring 4.95mm in diameter

and 5.43mm in length at resolution of 2.8m. This

resulted in a voxelated image set that measured

1840×1840×1940 (6.568 billion voxels, total) in size.

Current hardware limitations prevented either of the

full images from being analyzed in one numerical

experiment. Instead, a set of sub-blocks with voxel

dimensions between 200
3
 and 400

3
 was taken from

each of the full images for flow testing. A rendered

representation of the pore space in one of the 300
3

Dolomite sub-blocks is shown in Figure 2. The results

of the sub-block tests were then used to generate a

porosity-permeability relationship for each rock type.

Spatial discretization of the permeability analyses

was handled similarly for both the SPH and LBM

solvers. In the LBM the grid spacing was set equal to

the voxel size. In SPH the particles were initialized

with a density of approximately one per voxel, which

convergence tests showed to be adequate for capturing

the dominant flow channels.

FIGURE 2. A rendered representation of the pore volume

in a 3003 Dolomite sub-block (the rock is not shown).

Water ( = 10
3
kgm

-3
,  = 10

-6
m

2
s

-1
) was used as the

driving fluid in all analyses. Flow was driven through

the porous media by a constant body force in the

negative z-direction. The four domain surfaces parallel

to the direction of flow were designated no-flow

boundaries and the in-flow and out-flow surfaces were

specified as periodic. Due to the incompatibility of the

two rock surfaces at these boundaries, periodicity

could not be applied directly. Instead, the experimental

arrangement was replicated by adding a narrow

volume of fluid at the top and bottom of the domain.

The results of the Dolomite permeability tests are

graphed in Figure 3. Experiments [25] have shown that

the permeability-porosity relationship for Dolomite is

strongly dependent on the crystal size of the rock.

These crystal-size bands have been included in the plot

of numerical results. The mean crystal size of the

tested sample placed it in Band III, which is where the

LBM and SPH predictions predominantly lie.

The results of the Berea permeability tests (using

the LBM only) are also graphed in Figure 3. The

experimentally determined permeability for the sample

is included for comparison. It can be seen that the

numerical predictions are slightly higher than

measured value, although the correspondence between

the two measurements is reasonable. Both rock test

results suggest that the presented numerical procedure

is appropriate for determining rock permeability.

100

1,000

10,000

0.20 0.25 0.30 0.35 0.40

A
b

so
lu

te
 P

er
m

ea
b

il
it

y
 (

m
D

)

Porosity (f)

SPH Dolomite 200³
LBM Dolomite 200³
LBM Dolomite 300³
LBM Dolomite 400³
LBM Berea 300³
LBM Berea 400³
Berea Experimental

FIGURE 3. Results of the Dolomite and Berea permeability

tests undertaken. Guidelines from experimental data [25] for

Dolomite are included for comparison.

DISCUSSION

This paper has presented a multi-solver framework

that is capable of leveraging a range of numerical

methods to solve coupled problems in hydrocarbon

reservoirs. As the range of implemented and verified

modeling capabilities increases, so too will the scope

of applications. For example, current research is

testing the permeability characterization process for

applicability in low porosity rock samples, and the

combination of non-Newtonian fluids and suspended

particles is being applied to simulate the transport of

proppants in hydraulic fractures.

The LBM and SPH solvers in the framework were

used to predict the absolute permeability of West

Texas Dolomite and Berea Sandstone samples. The

numerical results compared well with experimental

data. However, it should be noted that the 200
3

Dolomite results showed that the SPH predictions

were consistently greater than those from the LBM

(for identical sub-samples). This discrepancy warrants

further investigation.

With the completion of a robust procedure for

predicting the absolute permeability of rocks,

immediate development will focus on quantitative

predictions of the relative permeability of samples

under two-phase (i.e. oil and water) flow.

ACKNOWLEDGMENTS

The authors are grateful to the Schlumberger-Doll

Research Center for their support of this research, and

for supplying the CT images analyzed in this study.

REFERENCES

1. Bernabé, Y., and Bruderer, C., J. Geophys. Res. 103(B1),

513-525 (1998).

2. Arns, C. H., Bauget, F., Ghous, A., Sakellariou, A.,

Senden, T. J., Sheppard, A. P., Sok, R. M., Pinczewski,

W. V., Kelly, J. C., and Knackstedt., M. A., Petrophysics

46(4), 260-277 (2005).

3. Blunt, M. J., Jackson, M. D., Piri, M., and Valvatne.,

P. H., Adv. Water Resour. 25(8-12), 1069-1089 (2002).

4. Zhan, X., Schwartz, L. M., Toksöz, M. N., Smith, W. C.,

and Morgan, F. D., Geophysics 75(5), F135-F142 (2010).

5. Arns, C. H., Bauget, F., Limaye, A., Sakellariou, A.,

Senden, T. J., Sheppard, A. P., Sok, R. M., Pinczewski,

W. V., Bakke, S., Berge, L. I., and Øren, P.-E., SPE

Journal 10(4), 475-484 (2005).

6. Kameda, A., Dvorkin, J., Keehm, Y., Nur, A., and Bosl,

W. Geophysics 71(1), N11-N19 (2006).

7. Williams, J. R., Holmes, D., and Tilke, P., Comp. Meth.

Appl. Sci. 25, 113-134 (2011).

8. Herlihy, M., and Shavit, N., The Art of Multiprocessor

Programming, Burlington:MorganKaufman, 2008, pp13.

9. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., and

Rüde, U., Parallel Process. Lett. 13(4), 549-560 (2003).

10. Holmes, D. W., Williams, J. R., and Tilke, P. G.,

Comput. Phys. Commun. 181(2), 341-354 (2010).

11. Chen, S., and Doolen, G. D., Annu. Rev. Fluid Mech. 30,

329-364 (1998).

12. Noble, D. R., and Torczynski, J. R., Int. J. Mod. Phys. C

9(8), 1189-1201 (1998).

13. Owen, D. R. J., Leonardi, C. R., and Feng, Y. T.,

Internat. J. Numer. Methods Engrg. 87(1-5), 66-95

(2011).

14. Leonardi, C. R., Holmes, D. W., Williams, J. R., and

Tilke, P. G., “A Multi-Core Numerical Framework for

Characterizing Flow in Oil Reservoirs” in Spring

Simulation Multiconference-2011, edited by

L. T. Watson et al., Simulation Series 43(2), Red Hook:

Simulation Councils, 2011, pp. 166-174.

15. Lucy, L. B., Astro. J., 82, 1013-1024 (1977).

16. Gingold, R. A., and Monaghan, J. J., Mon. Not. R.

Astron. Soc. 181, 375-389 (1977).

17. Liu, G. R., and Liu, M. B., Smoothed Particle

Hydrodynamics: A Meshfree Particle Method,

Singapore: World Scientific, 2007.

18. Tartakovsky, A. M., and Meakin, P., J. Comput. Phys.

207, 610-624 (2005).

19. Tartakovsky, A. M., and Meakin, P., Adv. Water Resour.

29, 1464-1478 (2006).

20. Hu, X. Y., and Adams, N. A., J. Comput. Phys. 213, 844-

861, (2006).

21. Morris, J. P., Fox, P. J., and Zhu, Y., J. Comput. Phys.

136, 214-226 (1997).

22. Holmes, D. W., Williams, J. R., and Tilke, P. G., Int. J.

Numer. Anal. Met. 35(4), 419-437 (2011).

23. Adl-Tabatabai, A. R., Kozyrakis, C., and Saha, B.,

Queue 4(10), 24-33 (2007).

24. Larson, R. E., and Higdon, J. J. L., Phys. Fluids A 1(1),

38-46 (1989).

25. Sneider, R. M., and Sneider, J. S., Search and Discovery

10007, (2000).

