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Abstract. This paper presents a numerical framework that is capable of simulating multiphase flow in reservoir rocks at 

the pore scale. The framework combines a suite of numerical methods, including smooth particle hydrodynamics (SPH) 

and the lattice Boltzmann method (LBM), with shared-memory, multicore parallel processing to increase the flexibility 

and scalability of solutions. By incorporating a suite of methods in the numerical framework, each with their own 

relative strengths, the range of problems that can be solved is greatly increased. The utilized parallel programming 

model exploits the large memory as well as the low latency of processor caches available in contemporary multicore 

servers. Maximized cache performance is achieved by taking a fine-grained approach to domain decomposition and also 

taking advantage of the spatial locality of data in the solvers. This results in scalable speed-up efficiency, whilst the 

asynchronous distribution of fine-grained, parallel work tasks results in natural load balancing. Both the SPH and LBM 

solvers are applied to determine the permeability of reservoir rocks from x-ray microtomographic images of samples. 

Predictions of the absolute permeability of West Texas Dolomite and Berea Sandstone samples are presented, with both 

comparing well with experimental data. 
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INTRODUCTION 

The permeability of a hydrocarbon reservoir is an 

important input parameter in predictive production 

simulations. In reservoir simulators each cell is 

prescribed a permeability tensor which is statistically 

interpolated from a limited number of data points. 

However, as the size of cells decreases due to 

advances in computational hardware, there is 

motivation to honor the increasing resolution of the 

simulator with a more accurate description of the 

permeability distribution in the reservoir. 

Determining the permeability of reservoir rocks via 

displacement experiments on core samples can be 

expensive and time consuming. It can also be 

impractical when suitable core samples are not readily 

available. For these reasons, a number of different 

modeling approaches have been developed which 

facilitate the prediction of absolute and relative 

permeability (as well as other petrophysical properties) 

of reservoir rocks from high resolution images of 

small physical samples. 

The most straightforward way to predict the 

permeability of a porous rock is via an empirical 

relationship based on porosity, hydraulic radius or 

another combination of parameters, such as the 

Kozeny-Carman equation [1]. More recently, micron-

scale x-ray tomography (CT) has been employed to 

generate high resolution, 3D images of millimeter 

scale samples [2]. These images can then serve as the 

primary input for a range of numerical 

experimentation procedures for the determination of 

permeability and other properties. These procedures 

include pore network models [3], and direct numerical 

simulation of pore-scale fluid flow using the finite 

difference (FD) method [4], the lattice Boltzmann 

method (LBM) [5, 6], and smoothed particle 

hydrodynamics (SPH) [7]. 

The numerical modeling strategies that have been 

applied to the problem of multiphase flow in porous 

media each have their own strengths and weaknesses. 

In an attempt to leverage the capabilities of more than 

one technique, this paper presents a generalized 

numerical framework that incorporates a range of 



these numerical methods. The framework combines 

the LBM, SPH, FD and the discrete element method 

(DEM), with shared-memory, multicore parallelism to 

increase the flexibility and scalability of computations. 

Using both LBM and SPH the framework has been 

employed to determine the absolute permeability of 

two oil reservoir rock samples. The numerical 

permeability predictions compare well with published 

experimental data for similar rock types. 

GENERALIZED MULTI-SOLVER 

FRAMEWORK 

The development of a generalized multi-solver 

framework has been motivated by the need to simulate 

a variety of fluid-solid interaction phenomena which 

occur in hydrocarbon reservoirs. The creation of the 

framework has included development in three key 

areas, namely, a plug-in solver framework for a range 

of numerical methods, a distribution technique to 

facilitate asynchronous, parallel computation on 

multicore hardware, and a library of methods 

including LBM, SPH, FD and DEM. 

The numerical methods incorporated into the multi-

solver framework (i.e. LBM, SPH, FD, DEM) are well 

established. Depending on their formulation, each 

method is more suited to application in some problems 

than others. Including each of them in the framework 

provides flexibility when deciding the best approach 

for solving reservoir flow problems. For example, SPH 

excels at naturally reproducing free surface flows and 

the interfaces of multiple phases. With the LBM, the 

mapping of complex boundaries is straightforward, 

and it can also be readily coupled with DEM and or 

FEM to solve fluid structure interaction problems. 

The plug-in solver framework acts as a 

coordination layer for the execution of the chosen 

numerical method. For example, SPH can be ‘plugged 

into’ the framework, which then manages explicit time 

integration and task distribution for parallel 

computing. Additionally, the plug-in solver allows for 

more than one method to be coupled together to 

simulate, for example, particle suspensions using the 

LBM and DEM, as shown schematically in Figure 1. 

The multi-solver framework is underpinned by 

three important implementation features, namely, 

global time integration, function inheritance for each 

solver, and a common data structure format. Global 

time integration is realized using a single, explicit time 

stepping scheme which controls the progression of 

each of the solvers that is plugged into the framework. 

Function inheritance for the solvers is made possible 

by the use of a common base class of processing 

methods (i.e. functions). The method class of the 

chosen solver(s) inherits from the base class and 

exposes its methods for the processing of information. 

Finally, the use of a single data structure format for 

each solver facilitates a common strategy for data 

decomposition and thread-safe parallel processing. 

The implementation of the multi-solver is aided by 

inheritance and polymorphism, both of which are 

attributes of high-level, object-oriented languages such 

as C#.NET. In the discussion of the parallel efficiency 

of the framework it will be shown that the use of a 

fine-grained domain decomposition strategy can 

largely circumvent the cost of memory management, 

which is also a feature of C#.NET. 

 

 

FIGURE 1.  Schematic of the generalized multi-solver 

framework, showing the LBM and DEM solvers ‘plugged 

in’ and fully coupled. The framework manages time 

integration via a global, explicit scheme. Computations are 

parallelized via shared-memory, multicore hardware. 

Asynchronous Parallelism Using Shared-

Memory, Multicore Hardware 

The most common approach to parallel processing 

of numerical methods utilizes a distributed memory 

cluster as the underlying hardware. In this approach 

the computational domain is decomposed into the 

same number of sub-domains as there are nodes 

available in the cluster. Each cluster node processes a 

single sub-domain at each time step and, when all sub-

domains have been processed (in a time step), global 

solution data is synchronized. 

The synchronization of solution data at the end of 

each time step involves the communication of ghost 



regions between nodes. These ghost regions 

correspond to neighboring sections of the problem 

domain (resident in memory on other cluster nodes) 

which are required on a cluster node for the processing 

of its own sub-domain. In the LBM this is typically a 

'layer' of grid points that encapsulates the local sub-

domain, but in SPH the layer of neighboring particles 

required is equal to the radius of the compact support 

zone. In 3D particle-based methods, such as SPH, it is 

possible for the amount of data communicated in ghost 

regions to be of the same order as the amount of 

stationary data. As a consequence of Amdahl’s Law 

[8], and the fact that communication between nodes 

with packages is a serial process, this can significantly 

degrade the scalability of the implementation. 

Another challenge with distributed memory 

parallelism can be sub-optimal load balancing, which 

also degrades parallel efficiency. Simply decomposing 

the problem into equal-sized sub-domains may not 

result in an equitable distribution of work between the 

cluster nodes. This is particularly relevant when the 

computational work of a problem is heterogeneously 

distributed throughout the domain. For example, in 

porous media flows the work at rock locations can be 

less than that at fluid locations, and in particle 

suspensions, more work is required (due to 

hydrodynamic coupling) in areas of above average 

particle concentration than in other areas. 

The issues of data communication and load 

balancing are addressed in the multi-solver framework 

by employing shared-memory, multicore hardware and 

fine-grained domain decomposition, respectively. 

Using shared-memory, multicore hardware for 

parallel processing removes the need for ghost regions 

and the transfer of data over relatively slow 

connections between cluster nodes. Instead, all data is 

accessible to all cores from either local caches (i.e. L1, 

L2) or global memory (i.e. L3 cache, RAM). Access 

times for these data stores are many orders of 

magnitude shorter than cross-machine communication 

[9]. When used with an optimum cache-blocking 

strategy these access times significantly reduce the 

latency associated with data reads and writes. 

Cache-blocking in the multi-solver framework is 

optimized by utilizing fine-grained domain 

decomposition. Instead of partitioning the domain into 

one sub-domain per core, a collection of significantly 

smaller sub-domains is created. These sub-domains, or 

computational tasks, are sized to fit in the low-level 

cache (i.e. L1, L2) of a processing core, which 

minimizes the time spent reading and writing data as a 

task is processed. This minimization of access time is 

important, particularly in memory-bound numerical 

methods, such as the LBM and SPH. 

In the LBM, the tasks created by fine-grained 

domain decomposition could be cubic bundles of 

nodes. In SPH these tasks could be bins populated 

with particles via spatial hashing. On a multicore 

server with a core count on the order of 10
1
~10

2
 the 

number of tasks could be in the order of 10
3
~ 10

4
. 

Multicore distribution of these tasks requires the use of 

a coordination tool to manage them onto processing 

cores in a load balanced way. While such tasks could 

easily be distributed using a traditional approach like 

scatter-gather, here the H-Dispatch distribution model 

[10] has been used because of the demonstrated 

advantages for performance and memory efficiency. 

The H-Dispatch distribution model maintains a 

thread on each core in the underlying multicore server. 

These threads remain active throughout the duration of 

the analysis so that local, temporary memory required 

for processing tasks can be reused (thereby minimizing 

garbage collection). The novel feature of H-Dispatch 

is the way in which tasks are distributed to threads. 

Rather than a scatter or push of tasks from the 

manager to threads, here threads request values when 

free. H-Dispatch manages these events-based, 

asynchronous requests and distributes cells to the 

requesting threads accordingly. It is this pull 

mechanism that enables the use of a single thread per 

core as threads only request a value when free, thus, 

there is never more than one task at a time associated 

with a given enduring thread (and its associated local 

variable memory). Additionally, when all tasks in the 

problem space have been dispatched and processed, H-

Dispatch identifies step completion (i.e. 

synchronization) and the process can begin again. By 

using many more tasks than cores, and events-based 

distribution of these tasks, the computational workload 

of the numerical method is naturally balanced. 

The Lattice Boltzmann Method 

The LBM (see [11] for a review) has emerged in 

the last 20 years as a powerful numerical method for 

the simulation of fluid flows. It has found application 

in a vast array of problems including flows in porous 

media, multiphase flows, and particle suspensions. 

The LBM differs from conventional approaches to 

computational fluid dynamics in that it does not 

involve the discretization and solution of the 

governing hydrodynamic equations (i.e. Navier-

Stokes). Instead, the LBM can be interpreted as a 

discrete form of the Boltzmann equation at the 

mesoscopic scale. The primary variables in the LBM 

are particle distribution functions, which exist at each 

of the lattice nodes that comprise the fluid domain. 

These functions relate the probable amount of fluid 

‘particles’ moving with a discrete speed in a discrete 

direction at each lattice node at each time increment. 

The particle distribution functions are evolved at each 



time step via a two-stage, collide-stream process. The 

collision process monotonically relaxes the particle 

distribution functions towards their respective 

equilibria, and in doing so governs the viscous 

properties of the fluid. The redistributed (i.e. collided) 

functions are then adjusted by a body force term (if 

applicable), after which the streaming process 

propagates them to their nearest neighbor nodes. 

Spatial discretization in the LBM is typically based 

on a square (2D) or cubic (3D) array of nodes. In the 

present work the D3Q15 lattice is employed, which 

includes a zero velocity vector, the six nearest-

neighbor velocity vectors, and the eight furthest-

neighbor velocity vectors. 

The macroscopic fluid variables, density and 

momentum flux, are calculated at each lattice node as 

velocity moments of the particle distribution functions.  

In this study the immersed moving boundary 

(IMB) method [12] is employed to handle the 

hydrodynamic coupling of the fluid and structure. 

Further details of the IMB method and its coupling to 

the FEM/DEM can be found in Owen et al. [13]. 

The obvious choice for decomposition of the LBM 

domain data is to use cubic nodal bundles. An 

important advantage of this approach is the ease with 

which the bundle size can be used to optimize cache 

blocking. By adjusting the bundle size, the associated 

computational task can be re-sized to fit in cache close 

to the processor (e.g. L1 or L2). This minimizes cache 

misses and the associated retrieval of data from RAM, 

which occurs with significantly greater latency. 

To ensure thread safety, two copies of the LBM 

particle distribution functions at each node are stored. 

Nodal processing is undertaken using a pull-collide 

sequence. Incoming functions are read from neighbor 

nodes (non-local read), collided, and then written to 

the future set of functions for the current node (local 

write). On cache-sensitive multicore hardware, this 

sequence of operations outperforms collide-push, 

which requires local reads and non-local writes [9]. 

The benefit of optimized cache blocking is found 

by varying the bundle size and measuring the speed-

up. This was performed for a simple, 200
3
 problem 

[14] and the optimal performance point (92% speed-up 

efficiency) was found at a side length of 20. 

Additionally, it was found that this optimal side length 

could be applied to larger domains (300
3
 and 400

3
) and 

still yield maximum speed-up efficiency. This suggests 

that the optimum bundle size for the LBM can be 

determined in an a priori fashion for specific hardware. 

Smoothed Particle Hydrodynamics 

SPH is a mesh-free, Lagrangian particle method 

which was first proposed for the study of astrophysical 

problems [15, 16], but is now widely applied to fluid 

mechanics problems [17]. A key advantage of particle 

methods such as SPH is their ability to advect mass 

with each particle, thus removing the need to explicitly 

track phase interfaces for problems involving multiple 

fluid phases or free surface flows. However, the 

management of free particles brings with it the 

associated computational cost of performing spatial 

reasoning at every time step. 

SPH theory has been detailed widely in the 

literature with various formulations having been 

proposed. The methodology of authors such as 

Tartakovsky and Meakin [18, 19] and Hu and Adams 

[20] has been shown to perform well for the case of 

multi-phase fluid flows. Their particle number density 

variant of the conventional SPH formulation removes 

erroneous artificial surface tension effects between 

phases and allows for phases of significantly differing 

densities. Such a method has been used for the 

performance testing in this work. 

Solid boundaries in the simulator are defined using 

rows of virtual particles [21], and no-slip boundary 

conditions are enforced for low Reynolds number flow 

simulations using an artificially imposed boundary 

velocity method [22]. 

The data associated with each particle in the SPH 

implementation is stored in a collection of bins. These 

bins are analogous to the bundles used in the LBM, 

and form the collection of SPH tasks that is distributed 

to cores using H-Dispatch. Particles are assigned to 

bins using spatial hashing based on their Cartesian 

coordinates. By storing particle data based on its 

physical location the number of bins accessed while 

determining the interaction of a particle and its 

neighbors is minimized. 

As in the LBM, care must be taken to avoid 

common shared memory problems such as race 

conditions and thread contention. To circumvent the 

problems associated with using locks [23] the SPH 

data can be structured to remove the possibility of 

thread contention altogether. By storing the present 

and previous values of the SPH field variables (e.g. 

position, velocity etc.), necessary gradient terms can 

be calculated as functions of values in previous 

memory, while updates are written to the current value 

memory. This reduces the number of synchronizations 

per time step from two (if the gradient terms are 

calculated before synchronizing, followed by the 

update of the field variables) to one, and a rolling 

memory algorithm switches the index of previous and 

current data with successive time steps. 

By definition, the SPH bins can be used to 

maximize cache blocking just as the bundles were in 

the LBM, and test results showed similar speed-up 

efficiency to that of the LBM [14]. The SPH results 

also highlighted the influence that read/write access 



times have on the performance of memory-bound 

numerical methods such as SPH. The parallel SPH 

implementation was tested in both single-search 

(perform spatial reasoning once per time step and store 

the results in memory for use twice per time step) and 

double-search forms (perform the spatial search twice 

per time step, as needed). The results showed that the 

double-search code scaled well, but the single-search 

code scaled poorly. On first consideration this 

outcome seems counterintuitive, as the code with more 

computation performs better. However, it actually 

highlights the penalty associated with reading/writing 

more data than is necessary in an algorithm that is 

already memory-bound. 

ABSOLUTE PERMEABILITY OF 

RESERVOIR CORE SAMPLES 

The ability of the SPH and LBM solvers to predict 

the permeability of porous media has been extensively 

benchmarked. In [18] SPH was used to determine the 

drag coefficient and permeability of fluid in a periodic 

cubic array of spheres for porosity values between 

10% and 99%. The correlation of the SPH predictions 

with published Stokes flow solutions [23] was 

excellent. This range of test problems was repeated 

with the LBM, yielding almost identical results. 

The multi-solver framework was then applied to 

numerically determine the porosity-permeability 

relationship of two rock samples, namely West Texas 

Dolomite and Berea Sandstone. For both samples, the 

structural model geometry was generated from a CT 

image which had been segmented to classify voxels 

(i.e. pixels) as either rock/clay or pore. The Dolomite 

image measured 500
3
 (125 million voxels, total) and 

was scanned at a resolution of 1m, corresponding to a 

0.5mm
3
 sample. The Berea image was taken from a 

cylindrical core sample measuring 4.95mm in diameter 

and 5.43mm in length at resolution of 2.8m. This 

resulted in a voxelated image set that measured 

1840×1840×1940 (6.568 billion voxels, total) in size. 

Current hardware limitations prevented either of the 

full images from being analyzed in one numerical 

experiment. Instead, a set of sub-blocks with voxel 

dimensions between 200
3
 and 400

3
 was taken from 

each of the full images for flow testing. A rendered 

representation of the pore space in one of the 300
3
 

Dolomite sub-blocks is shown in Figure 2. The results 

of the sub-block tests were then used to generate a 

porosity-permeability relationship for each rock type. 

Spatial discretization of the permeability analyses 

was handled similarly for both the SPH and LBM 

solvers. In the LBM the grid spacing was set equal to 

the voxel size. In SPH the particles were initialized 

with a density of approximately one per voxel, which 

convergence tests showed to be adequate for capturing 

the dominant flow channels. 

 

 

FIGURE 2.  A rendered representation of the pore volume 

in a 3003 Dolomite sub-block (the rock is not shown). 

 

Water ( = 10
3
kgm

-3
,  = 10

-6
m

2
s

-1
) was used as the 

driving fluid in all analyses. Flow was driven through 

the porous media by a constant body force in the 

negative z-direction. The four domain surfaces parallel 

to the direction of flow were designated no-flow 

boundaries and the in-flow and out-flow surfaces were 

specified as periodic. Due to the incompatibility of the 

two rock surfaces at these boundaries, periodicity 

could not be applied directly. Instead, the experimental 

arrangement was replicated by adding a narrow 

volume of fluid at the top and bottom of the domain. 

The results of the Dolomite permeability tests are 

graphed in Figure 3. Experiments [25] have shown that 

the permeability-porosity relationship for Dolomite is 

strongly dependent on the crystal size of the rock. 

These crystal-size bands have been included in the plot 

of numerical results. The mean crystal size of the 

tested sample placed it in Band III, which is where the 

LBM and SPH predictions predominantly lie. 

The results of the Berea permeability tests (using 

the LBM only) are also graphed in Figure 3. The 

experimentally determined permeability for the sample 

is included for comparison. It can be seen that the 

numerical predictions are slightly higher than 

measured value, although the correspondence between 

the two measurements is reasonable. Both rock test 

results suggest that the presented numerical procedure 

is appropriate for determining rock permeability. 
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FIGURE 3.  Results of the Dolomite and Berea permeability 

tests undertaken. Guidelines from experimental data [25] for 

Dolomite are included for comparison. 

DISCUSSION 

This paper has presented a multi-solver framework 

that is capable of leveraging a range of numerical 

methods to solve coupled problems in hydrocarbon 

reservoirs. As the range of implemented and verified 

modeling capabilities increases, so too will the scope 

of applications. For example, current research is 

testing the permeability characterization process for 

applicability in low porosity rock samples, and the 

combination of non-Newtonian fluids and suspended 

particles is being applied to simulate the transport of 

proppants in hydraulic fractures. 

The LBM and SPH solvers in the framework were 

used to predict the absolute permeability of West 

Texas Dolomite and Berea Sandstone samples. The 

numerical results compared well with experimental 

data. However, it should be noted that the 200
3
 

Dolomite results showed that the SPH predictions 

were consistently greater than those from the LBM 

(for identical sub-samples). This discrepancy warrants 

further investigation. 

With the completion of a robust procedure for 

predicting the absolute permeability of rocks, 

immediate development will focus on quantitative 

predictions of the relative permeability of samples 

under two-phase (i.e. oil and water) flow. 
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