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Abstract. In this paper we present a brief comparison of existing equation of state laws used in
Smoothed Particle Hydrodynamics (SPH) and introduce some new expressions for the equation of
state for pressure, as well as to calculate temperature. In SPH literature practical examples of heat
conduction and energy are scarce when compared with fluid flow formulations that determine pres-
sure simply from density and an artificial speed of sound. Such simplifications may be appropriate for
isothermal flow problems; however, a more thermodynamically rigorous formulation is necessary for
complex and thermally driven problems, particularly in geophysics. This work discusses conventional
equations of state, as well as presenting some new relations. This includes having pressure depend on
the energy of the system, and applying these relations to a number of proof of concept examples
demonstrating natural convection and examining the parameters of the new equation of state. These
developments facilitate future work towards modelling more complex physical phenomena such as
heat driven convective flow.

Introduction

Heat transfer in fluids and its effect upon motion is of interest in many areas within science and en-
gineering including desalination plans, within reactor cores in power plants and in complex enhanced
oil recovery techniques such as steam assisted gravity drainage. This is especially true when consider-
ing complex multi-fluid or multi-phase interactions that are seen in these cases. With the introduction
of heat conduction into the smoothed particle hydrodynamics (SPH) framework, it is necessary to
consider what effect temperature will have upon the dynamics of a system.

SPH has been widely used since its inception in the areas of momentum dominant fluid flow to
great success. However, there has been limited investigation into areas of buoyancy dominant flow.
While there has been some modelling of buoyancy dominant flows, such as modelling natural convec-
tion in a closed box and of the Rayleigh-Bérnard instability [1, 2], this has been done using an artificial
modification of the body force term in typical SPH via application of the Boussinesq approximation.
The use of SPH should allow for these phenomena to be modelled without the utilisation of ad hoc
relations. The logical source for motion for a thermally driven system is within the equation of state.
The simplest example of an equation of state is the ideal gas law, which while used for weakly polar
gases at low pressures and moderate temperatures, is indicative that temperature and energy play an
important part in the dynamics of a system. Energy is not typically considered in standard SPH for-
mulations and thus the equation of state used is based on a the speed of sound within the fluid being
modelled, as well as its density [3]. With the desire to model thermally dependant problems, how we
use the equation of state in SPH needs to be revised.

While there has been a number of examples of heat conduction in SPH [1, 4], there has been
little agreement in literature in regards to how to connect energy and motion in the system, or if this
is even possible. There has been little work involving coupling the energy to the equation of state.
There have been examples in wider literature of using energy to influence the governing dynamic
equations in SPH [5], but this has mostly been used as diffusive tuning parameters and none have
taken the temperature into account. In proof of concept examples in this work, we will demonstrate
our first steps towards an equation of state that has temperature influence pressure and density, and
thus, its dynamics by inducing motion. This requires a new approach to the equation of state for a



buoyancy dominant system, with the intention that this be valid for both typical momentum dominant
systems and multi-fluid systems to encompass and model more complex physical phenomena such as
temperature dependent properties and change of state.

Heat Conduction

SPH discretizationmethods has been detailed widely in literature with a range of varying formulations.
The direction chosen in this work is based on fundamentals formalized by authors such as Tartakovsky
andMeakin [6] and Hu and Adams [7] who base their SPH formulations around the concept of particle
number density as opposed to the more standard density. This variant has been shown to perform more
accurately for multi-fluid flows, which while not the focus of this particular work, will be examined
in the future.

The rate of change in internal energy due to conduction and with spatially or thermally varying
conductivity is

dU
dt

=
1

ρ
∇ (κ∇T ) (1)

where U is internal energy, κ is thermal conductivity, ρ is density and T is temperature. Applying
SPH discretization methods to (1) and applying a modification to account for discontinuous thermal
conductivities from Cleary and Monaghan [4], the following expression for heat conduction as a func-
tion of particle number density is obtained
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where m is mass, n is the particle number density, ni = ρi/mi =
∑

j Wij , Wij is the smoothing
function and rij = ri − rj are position vectors. Since energy exchange is always balanced between a
given pair of particles that are interacting, it is ensured that thermal energy conservation is maintained
and that heat will flow from a higher temperature to a lower temperature inherently.

Time Integration for Heat Conduction Dominant Problems. In this work we integrate the dif-
ferential rate equations through the implementation of a Leapfrog numerical integration scheme. In
traditional SPH formulations, the following conditions on time step length are enforced in order to
achieve stable solutions [8]:

∆t ≤ 0.125
(
h2/ν

)
∆t ≤ 0.25 (h/3c) ∆t ≤ 0.25min

i
(h/3 |Fi|)1/2 (3)

where ν is the particle kinematic viscosity, c is the speed of sound and |Fi| is the magnitude of force
on a particle. These time step equations relate to the viscous dissipation condition, the CFL condition
and the magnitude of acceleration on a particle condition respectively.

For a problem where heat conduction is the dominant mechanism and no motion is present, it is
difficult to use any of the existing formulations to determine an appropriate time step. As such, a new
condition is proposed to estimate the time step for a problem where heat conduction is dominant.

Following a finite difference approach, a generalised expression to constrain the size of the timestep
for a heat conduction problem yields the following

∆t ≤ const
ρcph

2

κ
(4)

A 2D solid conduction problem was modeled in order to determine the magnitude of the constant
required for Equation (4). This was done by turning off all motion within the model as it is most
probable that other time constraints, such as the viscous condition, are going to more critical. The
material chosen to test this equation had material properties of a density of 1000 kg/m3, a heat capacity



of 460 J/kg◦C, a thermal conductivity of 52 W/m◦C and problem space properties of a smoothing
length of 6.03x10−3 m.

Using a trial and error approach, convergence was found for a constant value of 0.5. To have a
reasonable factor of safety, the constant value to be used in problems is 0.25, which also brings it in
line with the already present time constraint expressions for traditional SPH problems.

Development of an Energy Based Equation of State

The equation of state is used in SPH to determine the pressure a given particle exerts on its surround-
ings. For standard incompressible flow problems, using a truly physical equation of state will result in
prohibitively small time steps. As such, fluids are modelled as quasi-incompressible. This also leads
to most equation of states being modified on a case by case basis. The most common form for the
equation of state used for incompressible flows, is the Morris [9] equation of state

p = c20 (ρ− ρ0) (5)

where p is pressure, c0 is the artificial speed of sound and ρ0 is a reference density. The majority
of state equations are similar in this regard being a function of density that is modified by a reference
density and scaled by a constant (the artificial speed of sound). The other feature seen in some equation
of states is an influence from amore gaseous equation of state by raising part of the equation to a power.
This was first introduced by Monaghan [3] for modelling free surface flows

p = B ((ρ/ρ0)
γ − 1) (6)

where γ is a constant that is usually taken to be 7, similar to what is used in a gaseous equation
of state, and B is a problem dependant parameter. It is simple to see how both equations of state
are in actuality quite similar. The subtraction of 1 seen in (6) was introduced to remove nonphysical
boundary effects at a free surface [8] and this has a similar effect in (5) and is a common feature of
state equations that are also valid for free surface flows.

An equation of state incorporating temperature was developed to model a simple natural convec-
tion test case. The aim was to determine if it is possible to observe natural convection flow without the
use of the Boussinesq approximation [1, 2]. To begin the development of an energy based equation of
state, a simple expression was proposed to determine what effect changing different parameters would
have upon a thermally dynamic system.

p = c20T (ρ/ρ0)
γ (7)

In this case, γ is free to vary and c20 is simply being treated as a constant without any direct physical
significance for the time being. There also isn't any term to account for free surface effects as all
systems initially considered will be contained.

It is also logical to include the calculation of temperature within the scope of the equation of state
instead of determining it during the Leapfrog time stepping and to instead iterate internal energy during
that phase. As such, a straightforward expression to calculate temperature is used.

T = U/cp (8)

To demonstrate Equation (7), a number of proof of concept problems are presented. Figure (1)
shows a cross section of a pipe with a radius of 0.1m submerged within a fluid. The pipe is held
at a constant 80◦C, while the ambient fluid and adiabatic enclosure is at 40◦C with a gravitational
acceleration of 0.001m/s2 in the negative y direction. The fluid has a density of 1000 kg/m3, a dynamic
viscosity of 0.001 kg/ms, a heat capacity of 4181 J/kg◦C and a thermal conductivity of 50W/m◦C. All
thermal and viscous properties are assumed to be constant and independent of temperature.

Figure (2) shows a simple Rayleigh-Bénard instability problem in a 1m x 1m domain. The fluid
is split via a sinusoid of y = 0.6 + 0.2 sin (−πx) with the upper portion initially being at 40◦C and



(a) t = 375s (b) t = 500s

Fig. 1: Temperature visualisation of a submerged pipe with equation of state parameters c20 = 0.05
and γ = 4.

(a) t = 200s (b) t = 250s

Fig. 2: Temperature visualisation of a Rayleigh-Bénard problem with equation of state parameters
c20 = 0.05 and γ = 4.

the lower portion initially at 80◦C with a gravitational acceleration of 0.001 m/s2 in the negative y
direction. The fluid used in this problem has the same properties as that seen in Figure (1).

Having demonstrated that Equation (7) is capable of reproducing natural convection phenomena
without the use of the Boussinesq approximation, the next stage is refining its parameters and es-
tablishing what effect they have upon a given system. The problem chosen to test the parameters of
Equation (7) is a 1 m by 1 m 2D box enclosing a fluid at 60◦C with one side held constant at 80◦C,
the other at 40◦C, an adiabatic top and bottom, and a gravitational acceleration of 0.001 m/s2 in the
negative y direction. The fluid has a density of 1000 kg/m3, a dynamic viscosity of 0.001 kg/ms, a heat
capacity of 4181 J/kg◦C and a thermal conductivity of 50 W/m◦C. All thermal and viscous properties
are assumed to be constant and independent of temperature.

Figure (3) shows the effect increasing the value of γ has upon the system. In these cases, the
influence of the ratio of a particles current density to its initial density is increased. The greater this
influence, the less of a tendency there is for particles to clump together due to external forces. This has
the result of decreasing the amount of compressibility that is possible within the system. However, if
this value is too large, it may restrict motion in the system by not allowing any displacement due to
the small amount of compression (however temporary) this may cause. Allowing for motion in this
way can be related back to the requirement that there be some degree of quasi compressibility in SPH.
Figure (4) shows the effect increasing c0 has upon the system. The effect here is more straight forward
as it is essentially a scaling factor on the magnitude of pressure present and so will be dependant on the
type of problem and the values of parameters within the system. In the example shown, it can be seen
that the larger this scaling value, the more resistant the particles are to motion due to the relatively



(a) γ = 2 (b) γ = 4

(c) γ = 6 (d) γ = 8

Fig. 3: Temperature visualisation of enclosed box with c0 = 0.01, varying γ and after 500s.

weaker effect gravity has by comparison. When the scaling value is low, the inter-particle pressures
are insufficient compared to gravity and end up compacted together at the bottom of the problemspace.

In a more true representation of the equation of state, various parameters would be included in this
c0 term and will also serve as a guide to determine an appropriate value. One such parameter would
be the heat capacity of the fluid since it would be more physically true for an equation of state to have
the energy of the particle influence the pressure as a function of its energy instead of simply as its
temperature. This will be considered in future work for a full and rigorous development of an energy
based equation of state for a SPH formulation to more robustly include heat transfer and the flow on
phenomena associated with this in fluid dynamics.

The concept has been proven through clear convection phenomena being modelled, that are not
possible using traditional forms for the equation of state. Now true and accurate forms of this need to
be developed based on subsequent verification work. This robust equation of state will be useful in a
wider range of problems than are currently possible to be modelled.

Conclusions

In this paper we have presented a comparison of existing equation of state laws, as well as introduc-
ing some new expressions for calculating pressure and temperature based on an energy approach. A
candidate for determining the critical time step value for a heat conduction problem was also pre-
sented, however, it will almost always be the case that in dynamic problems, other constraints upon
the timestep size will be more critical. A number of proof of concept problems demonstrating the po-
tential of an energy based equation of state to model thermally dynamic systems was presented and
this will work towards a more physical equation of state used in the future. Ongoing work is involved
in refining and further investigating the parameters of the equation of state to determine the most
effective variables for a system that is both thermally active and physically driven.



(a) c20 = 0.01 (b) c20 = 0.05

(c) c20 = 0.1 (d) c20 = 0.5

Fig. 4: Temperature visualisation of enclosed box with varying c20, γ = 1 and after 500s.
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