RF Electronics
Design and Simulation

Filter Comparison, $f_c = 1$ GHz, $BW = 75$ MHz

Attenuation in dB

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Frequency (GHz)

-80 -70 -60 -50 -40 -30 -20 -10 0

1.0 GHz

CF Span

0 dB 100 dB

-100 -80 -60 -40 -20 0 20 40 60 80 100 dB
RF Electronics
Design and Simulation

Cornelis J. Kikkert
James Cook University
Townsville, Queensland, Australia
Contents

Preface VIII
Acknowledgement IX
About the Author IX

Chapter 1: Introduction 1
Computer Simulation 3
References 3

Chapter 2: Computer Simulation 4
Introduction 4
Basic Operation 5
 Example 2.1: Low Pass Filter 5
Equations in AWRDE 9
Optimisation 10
 Example 2.2: Diplexer 10
 Example 2.3: Amplifier 15
Transistor Models 17
Determination of Line Parameters 21
Nonlinear Simulation 23
Transient Circuit Simulation 24
 Example 2.4: Buck DC-DC Converter 24
Harmonic Balance Circuit Simulation 29
Black Box Matching of Circuits to Measurements 31
 Example 2.5: Bandpass T Matching Network 31
 S Parameter Measurements 33
 Impedance Measurements 36
Summary 43
References 43

Chapter 3: Transformers and Hybrids 45
Introduction 45
Wideband Transformers 46
 Example 3.1: RF Transformer Design 47
 Bifilar and Trifilar Windings 48
Transmission line transformers with ferrite cores 49
Transformer Hybrids 51
Power Combiner / Splitter 52
 Wilkinson Transformer Hybrid 53
 Example 3.2 Wilkinson Transformer Hybrid Design 54
Transmission Line Hybrid with Ferrite Cores 55
Chapter 4: Transmission Line Transformers and Hybrids

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
</tbody>
</table>

Introduction

- Example 4.1: Bandwidth Calculation
- Wilkinson Transmission Line Hybrid
- Compensated Wilkinson Hybrid
- Unequal Split Wilkinson Hybrid
- Wideband Wilkinson Hybrid
- Example 4.2: 90 to 270 MHz Wilkinson Hybrid

Quarter Wave Hybrid or 1.5 \(\lambda \) Rat-race hybrid

Branchline Coupler

Backward Travelling Wave Hybrid

- Edge Coupled Lines
- Example 4.2: 20 dB Coupler
- Lange Coupler
- Broadside Coupled Lines
- Example 4.3: 100 Watt 3 dB Broadside Coupler

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
</tr>
<tr>
<td>74</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>82</td>
</tr>
<tr>
<td>82</td>
</tr>
<tr>
<td>86</td>
</tr>
<tr>
<td>87</td>
</tr>
<tr>
<td>89</td>
</tr>
</tbody>
</table>

Chapter 5: Frequency Mixers

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
</tr>
</tbody>
</table>

Introduction

Definition of Terms

- Conversion Loss
- Isolation
- Compression Point
- Dynamic Range
- Two-tone Third Order Intermodulation Distortion
- Third Order Intercept Point
- LO Level

Example 5.1: Mixer LO Level Calculation

Single Diode Mixer

Computer Simulation of Mixers

Balanced Mixer

Double Balanced Mixer

Microwave Mixers

- Microwave Mixer using a Branchline Coupler

Active Single Transistor Mixer

Gilbert Cell Active Mixer

Quadrature Mixers

Active IQ Mixers
Chapter 6: Oscillators

- Principles of Oscillators
 - Requirements
- Oscillator Types
 - Positive Feedback Oscillators
- Oscillator Design Process
- Frequency Selective Networks
 - Oscillator Design Procedure
 - Step 1: Select an amplifier type
 - Step 2: Design an amplifier
 - Step 3: Design a resonator
 - Step 4: Linear Oscillator Analysis
 - Step 5: Nonlinear Oscillator Analysis
- Crystal Oscillators
 - Quartz Crystals
 - Example 6.1: Crystal Oscillator Design
- RF and Microwave Oscillators
 - Example 6.2: 1 GHz Microstrip Oscillator Design
- Dual Resonator Oscillator
 - Design Improvements
- References

Chapter 7: RF Filters

- Introduction
 - Electrical Filters
 - Acoustic Filters
- Filter Design Revision
 - Filter Tables
 - Butterworth Filters
 - Bessel Filter
 - Chebyshev Filter
 - Cauer-Chebyshev Filter
- RF Lowpass Filter Design
- Bandpass Filter Design
 - LC Bandpass Filters
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Pass to Band-Pass Transformation</td>
<td>176</td>
</tr>
<tr>
<td>LC Coupled Resonator Filter</td>
<td>176</td>
</tr>
<tr>
<td>HF Filters</td>
<td>183</td>
</tr>
<tr>
<td>Cauer-Chebyshev Bandpass Filters</td>
<td>184</td>
</tr>
<tr>
<td>Parallel Coupled-Line Filter</td>
<td>184</td>
</tr>
<tr>
<td>Example 7.1: 1 GHz, 70 MHz Bandwidth Filter</td>
<td>184</td>
</tr>
<tr>
<td>Hairpin Filter</td>
<td>187</td>
</tr>
<tr>
<td>Helical Filters</td>
<td>191</td>
</tr>
<tr>
<td>Example 7.2: 100 MHz, 1 MHz Bandwidth Filter</td>
<td>192</td>
</tr>
<tr>
<td>Interdigital Filters</td>
<td>195</td>
</tr>
<tr>
<td>Round Rod Interdigital Filters</td>
<td>196</td>
</tr>
<tr>
<td>PCB Interdigital Filters</td>
<td>197</td>
</tr>
<tr>
<td>Example 7.3: 1GHz, 70 MHz Bandwidth Filter</td>
<td>198</td>
</tr>
<tr>
<td>Direct Coupled Resonator Filters</td>
<td>203</td>
</tr>
<tr>
<td>Example 7.4: 1 GHz, 500 MHz Bandwidth Filter</td>
<td>204</td>
</tr>
<tr>
<td>Fine Tuning the Filter</td>
<td>206</td>
</tr>
<tr>
<td>Microstrip Filter Comparison</td>
<td>208</td>
</tr>
<tr>
<td>EM Simulation</td>
<td>213</td>
</tr>
<tr>
<td>Coaxial Filters</td>
<td>220</td>
</tr>
<tr>
<td>Ceramic Filters</td>
<td>223</td>
</tr>
<tr>
<td>SAW Filters</td>
<td>224</td>
</tr>
<tr>
<td>References</td>
<td>224</td>
</tr>
</tbody>
</table>

Chapter 8: Amplifiers: Stability, Noise and Gain
226

Introduction
226

MMIC
226

Requirement for Stability
227

Smith Chart Revision
228

Scattering Parameter Revision
229

Stability
231

Stability Circles
231

Unconditional Stability
233

Conditional Stability
233

Stability Factors: Measures of Stability
233

Design for Maximum Gain
234

Amplifier Noise Figure
234

Improving the Noise Figure
239

Improving Amplifier Stability
242

Couplers at Input and Output
242

Resistors at Output
244

References
246
Chapter 9: Impedance Matching of Power Amplifiers 248

Introduction 248
Large Signal Parameters 248
Types of Matching 248
Choice of Components and Q value 248
LC Matching 249
PI Network 250
Low Pass T Network 251
Bandpass L Network 252
Bandpass T Network 252
Capacitive Impedance Transformer 253
Example 9.1: 150 MHz, 35W Amplifier 254
PI Network 257
Low Pass T Network 257
Bandpass L Network 258
Bandpass T Network 258
Capacitive Impedance Transformer 259
Transformer Matching 260
Transmission Line Matching 262
Broadband Matching 263
Example 2: Broadband Amplifier 268
References 276

Chapter 10: Circuit Manufacture 277

Introduction 277
Subtractive Process: Conductive Track Removal 277
Additive Process: Depositing Tracks and Vias 277
Printed Circuit Board Materials 278
Conventional PCB Substrates 278
Paper and Resin Substrates; FR2 and FR3 278
Fibreglass and Epoxy Substrates; FR4, FR408, IS400 279
Microwave and RF Printed Circuit Board Materials 280
RT/duroid 58X0 280
RT/duroid 6000 281
RO3000 and RO3200 281
RO4000 281
Other Laminates 282
Multilayer Boards 282
Non-Clad Substrates 283
Alumina Substrates 283
Other Substrates 283
Manufacturing

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing using a PCB Milling Machine</td>
<td>284</td>
</tr>
<tr>
<td>Manufacturing using Laser Ablation</td>
<td>284</td>
</tr>
<tr>
<td>Layout Hints</td>
<td>284</td>
</tr>
<tr>
<td>Thin Film</td>
<td>285</td>
</tr>
<tr>
<td>Thick Film</td>
<td>286</td>
</tr>
<tr>
<td>Printing Screens</td>
<td>287</td>
</tr>
<tr>
<td>Pastes (Inks)</td>
<td>287</td>
</tr>
<tr>
<td>RF Applications of Thick Film Circuits</td>
<td>288</td>
</tr>
<tr>
<td>Low Temperature Cofired Ceramic (LTCC)</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td>289</td>
</tr>
</tbody>
</table>

Appendix: Importing Local Vendor and XML Libraries

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>291</td>
</tr>
<tr>
<td>Local Vendor Libraries</td>
<td>291</td>
</tr>
<tr>
<td>Spice XML Libraries</td>
<td>292</td>
</tr>
<tr>
<td>References</td>
<td>294</td>
</tr>
</tbody>
</table>
Preface

The material presented in this book evolved from teaching analogue electronics courses at James Cook University over many years. When I started teaching electronics design, computer simulation tools were non-existent and most of the design optimisation was done by replacing components in hardware. It was a big step forward when EESOF became available in the mid 1980’s. The computer simulation tools have progressed enormously since then. Early in my career, I was given the following advice for designing electronic circuits. “Get the circuit to work and then start taking components out. Put back the one that stops the circuit from working.” This is a silly statement, since in a proper design removing any component will stop it from working, but it does illustrate the goal of any designer: Design a circuit that will work first time, according to specification. It must do so reliably and at as low a cost as possible. Since labour is expensive, the circuits also should not require any adjustments after manufacture in order that they meet the specifications.

Using the computer simulation used in this book, we can now design our analogue electronic circuits such that they satisfies all these conditions. We can change active device parameters in the simulation, to ensure that variations in performance during manufacturing do not cause the circuit to fail to meet the specifications. We can check that the circuit will meet specifications under any permitted temperature, power supply and input signal variations. For RF circuits, we can change microwave PCB substrates for lower cost FR4 type substrates and ensure that the circuit still performs correctly. For consumer or space critical applications, the computer simulation tools used in this book will allow Low Temperature Cofired Ceramic (LTCC) circuits to be designed. With those circuits one cannot open them up to change components. They must be correct right from the start.

During the last 20 years, much of the analogue electronics in radio and TV receivers has been replaced with digital electronics, causing a change in the operating frequency of analogue electronic designs. There has been a rapid growth in the number of radio transmitters and receivers used. Many developed countries now have more mobile phones than people and most smart-phones and computers use WLAN/WiFi to access the internet. WLAN/WiFi, Bluetooth, Wireless Gigabit, WiMax, Zigbee, W-CDMA and LTE are all relatively new communication systems using microwave (above 1 GHz) frequency bands. Because of this demand for radio spectrum, the operating frequencies are getting higher and the spectrum is becoming more crowded.

This explosion in microwave system applications, requires a matching RF and microwave electronic design capability from our engineers. More stringent filtering is required and less intermodulation distortion is permitted from amplifiers, to ensure systems do not interfere with each other. 20 years ago most electronic designs using microwave frequencies were for military, instrumentation or high-end communication applications, such as microwave radio links operated by Telcos. Now most microwave designs are for consumer applications. As a result the emphasis on reducing the cost of both the circuit and the design has become more important. RF and microwave circuit simulation play a significant part in this cost reduction.

It is important for Universities to realise however that computer simulation of an electronic design is not the end point, but only a step in the realisation of the production of hardware that operates as required. That is why in this book, firstly computer simulation has been used to enhance the understanding by students and designers of the properties and limitations of their designs, and secondly many photographs and
measured performance of the hardware realisation of these designs presented have been included.

I hope that the material presented in this book will increase the RF and microwave design skills of many students and practicing designers.

This whole book is suitable for teaching RF and microwave electronic design in the final year of an undergraduate Bachelor Degree program or as a course in a postgraduate program. Chapter 2 can be used at earlier years of a Bachelor Degree program to teach the principles of computer simulation and design of analogue electronic circuits. These computer simulation techniques are not limited to RF and Microwave frequencies. For that reason, chapter 2 includes examples operating below 100 kHz. The modelling of mains (50/60 Hz) power distribution transformers, described in chapter 2, could not have been done without the optimisation capability of AWRDE.

Unless otherwise indicated, any of the hardware shown in photographs, have been designed by the author and produced by him with assistance from JCU technical staff. There are some photos of hardware from unknown manufacturers (UM). Those have been labelled with (UM).

Acknowledgment

I thank my wife Maxine for her patience and tolerance of my absences, as I tried to fulfil my desire to teach students the art of electronic design and for the time spent in writing this book.

I also thank my past and present colleagues at James Cook University, for their encouragement and feedback on the course that resulted in this book. I thank AWR for making their software available for teaching at James Cook University at a reasonable cost. Without that, this book could not have been written. I thank Dane Collins and Sherry Hess from AWRCorp, for the novel step that we took in distributing this book on their web site. That allows this book to be used by many more students. Finally I thank Mike Heimlich, who peer reviewed this book and made very many valuable comments, which resulted in this book being much better than the draft version.

About the Author

Cornelis Jan Kikkert obtained his BE and PhD from Adelaide University in 1968 and 1972 respectively. He is a Fellow of Engineers Australia and a Life Senior Member of IEEE. He was a lecturer at Adelaide University for 3 years and was at James Cook University in Townsville for 37 years, as a lecturer, senior lecturer, associate professor and head of Electrical and Computer Engineering. He "retired" in 2010 to have more time for research and is now an Adjunct Associate Professor at both James Cook University and The University of Adelaide.

He has more than 30-year experience in the design of electronics for communication equipment, broadcast transmitters, satellite beacon receivers, weather satellite receivers and many other applications, as well as the design of electronic instrumentation for measuring RF and microwave signals.

He is the author of more than 90 peer-reviewed papers, 3 book chapters and an inventor on 8 patents.

Email Keith.Kikkert@jcu.edu.au, Keith.Kikkert@adelaide.edu.au.