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Abstract

The Global Financial Crisis triggered a revision of the VaR based Basel 1l market risk
framework to address extreme events. The revised VaR methodology remains unchanged
under Basel 111, however ongoing studies to evaluate VVaR continue in academia and by the
Basel Committee. In this paper, we assess VaR models for Australian banks over the past ten
years and provide statistical evidence of their effectiveness. Results indicate that one year
parametric and historical models produce better measures of VaR than models with longer
time frames. VaR estimates produced using Monte Carlo simulations show very low
percentage of violations but higher level of violations. VaR estimates produced by the
ARMA GARCH model show relatively high percentage of violations, however, the level of
violations is quite low. Our findings shed light on the rationale and design of the revised

Basel 1l VaR methodology which has also been adopted under Basel I11.
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1. Introduction

Value-at-Risk (VaR) is a risk measurement methodology that demonstrates the worst loss
over a predetermined time horizon that will not be exceeded with a given level of confidence.
See Jorion (2007) and Alexander (2008) for further explanation of the VaR measure. It
allows the user to make a statement such as: this VaR figure is the maximum expected loss,
with 99% confidence, in any one day. A VaR measurement is based on the examination of the
percentiles of the distribution, summarising the downside risk of an institution due to
financial market variables. This results in a single figure that is easy to interpret. VaR has a
wide range of applications such as risk management and the determination of capital

adequacy requirements.

Despite the apparent advantages of the ease of use of the VaR measurement it has been
criticised in the literature and in practice predominantly due to unexpected extreme events
which cause the distribution of asset returns to exhibit “fat tails”. Li (2011) demonstrates
concerns expressed by practitioners in regard to fat tails as revealed in interviews with bank
risk managers relating to Basel Il. Another apparent shortcoming of VaR is that it focuses on
the probability of a loss, regardless of the magnitude of the violations when they do occur
(see Basak and Shapiro (2001), Berkowitz and O’Brien (2002) and Szegd (2002)). As
Berkowitz and O’Brien (2002) demonstrated, although the violations of VVaR in their dataset

are infrequent, the magnitudes are surprisingly large.

The literature postulates new methodologies for calculating VaR. For example, Wang and
Cheng (2011) propose a new methodology specifically designed to examine tail risk.
Gaglianone et al (2011) also propose a new methodology for estimating VaR to identify
periods of increased risk exposure. As demonstrated in Li (2011), many practitioners also

resort to other methods such as stress testing, Conditional VaR (CVaR) and Extreme Value



Theory (EVT) as complementary approaches. However, the models that have persisted in the

literature are the parametric approach, the historical approach and Monte Carlo simulations.

In Australia, Allen and Powell (2007) attempt to explain market risk at the industry level
using VaR measures. Allen and Powell (2009a) examine the conditional credit VaR
methodology. The authors then use this methodology to allow banks to incorporate industry
risk using the relationship between market and credit risk. Allen and Powell (2009b) use the
conditional credit VaR methodology to examine market value at risk from an Australian
sectoral perspective. Allen, Singh, and Powell (2012) present a comparative analysis of

conditional autoregressive VaR models with other volatility models such as GARCH (1,1).

Much of the literature on VaR focuses on US and European commercial banks, see for
example Berkowitz and O’Brien (2002), Cuoco and Liu (2006), Lucas (2001), Fiori and
lannotti, (2007), Perignon, Deng and Wang (2008) and Perignon and Smith (2010a and b),
Berkowitz, Christoffersen and Pelletier (2011) to name a few. This is expected given the
importance of the VaR calculation for commercial banks under the Basel Accords. Berkowitz
and O’Brien (2002) provide a particularly interesting insight into VaR calculations using
proprietary profit and loss information of six large US banks. They use a 99 percent
historical model and compare this with an ARMA GARCH model. Results of this research

show that the ARMA GARCH model is better able to adjust to changes in volatility.

More recently, studies have begun to show that there can be significant variation in results
using different approaches to calculating VaR. For example, Kim et al (2011) compare
backtests of VaR ARMA GARCH models and produce similar results with Berkowitz and
O’Brien (2002). In addition, Da Veiga, Chan and McAleer (2011) show different

performances of five volatility models used to forecast VaR thresholds.



This paper assesses and compares a number of different measurement approaches including
parametric, historical, Monte Carlo simulations and ARMA GARCH to examine the returns
of the nine largest banks in Australia. The period covered includes the Global Financial

Crisis, during which time widespread VaR measures were highly criticised.

This paper is organised as follows. Section 2 outlines the basic types of VaR models, Section
3 describes the application of VaR measurement to the Basel 11 and Il Accords, Section 4
provides a discussion of the data and methodology and the results are presented in Section 5.

Section 6 provides a summary.



2. Theoretical Assessment of the Basic Types of VaR Models

VaR models may be categorised into four groups of analytic techniques®. First, the parametric
approach calculates the historical standard deviation and then scales the appropriate factors;
secondly, the historical approach directly reads the quantile from the historical distribution;
thirdly, Monte Carlo simulation estimates VaR from repeatedly simulated prices or returns of
the financial instrument and fourthly the ARMA GARCH model is used to estimate the mean

and variance of the distribution which can then be used to estimate the VaR.

Parametric VaR models, in contrast to the nonparametric category, attempt to fit a parametric
distribution such as a normal distribution to the data. Specifically, the models are applied to
portfolios assuming that returns are independent and identically distributed with a normal
distribution including portfolios of cash, futures and/or forward positions on commaodities,

bonds, loans, swaps?, equities and foreign exchange (Alexander, 2008).

The historical method uses the empirical quantile of the historical distribution of return series
in a very direct way as a guide to what might happen in the future. The main advantage of the
historical method is that it makes no assumptions about risk factor changes being from a
particular distribution. By relying on actual prices, this method allows nonlinearities and non-
normal distributions. It does not rely on specific assumptions about valuation models or the

underlying stochastic structure of the market. The historical method is therefore able to

! According to Li (2011) in practice the choice of VaR method is a function of the nature of the portfolio. For
fixed income and equity, parametric approach is assumed to be adequate. If there are more exotic options, a
more advanced full revaluation method such as historical or Monte Carlo simulation is required.

2 Between the value of a bond (or swaps) portfolio and interest rates, there is a non-linear relationship but it has
already been captured by the sensitivities to the risk factors that are in present value of basis point terms.
Because the discount factor in present value of basis point terms is a linear function of the interest rate,

parametric VaR models can be applied for such portfolios, as suggested by Alexander (2008).



reliably predict the VaR as shown by Winker and Maringer (2007), but they also find a
substantial amount of hidden risk when it is used for a risk constraint in portfolio

optimisation.

Monte Carlo simulation is a flexible and powerful methodology that has numerous
applications to finance including VaR estimation. It is a process of repeatedly simulating the
prices or returns of financial instruments or portfolios, to be confident that the simulated
distribution of portfolio values is sufficiently close to the ‘true’ distribution of actual portfolio
values, which is used as a reliable proxy. VaR then can be estimated from this proxy
distribution (see Alexander, 2008, Jorion, 2007 and Dowd, 2005). However, its
computational time is a major drawback, consequently it is often too expensive to implement
on a frequent basis. Also, the potential of model risk cannot be ignored, because Monte
Carlo relies on specific stochastic processes for the underlying risk factors as well as the
pricing model for securities such as options or mortgages. For further details see Jorion

(2007).

With ARMA and GARCH methodology, an ARMA model is used to estimate the mean of
the distribution and a GARCH model is used to calculate the volatility of the distribution.
These parameters are then used as inputs in the VaR calculation. ARMA methodology is
frequently used in forecasting time series models with considerable accuracy, particularly in
the short term. ARMA combines two different specifications into one equation, an
autoregressive (AR) process and a moving average (MA) process. The AR process includes
past values of the dependent variable while the MA process includes past error terms. Hence
an ARMA (1,1) process includes only the most recent past values of the dependent variable
and the most recent error term in the regression equation. The GARCH methodology of
Bollerslev (1986) is an adaptation of the Auto Regressive Conditional Heteroskedasticity

model (ARCH) (Engle, 1982) known as the Generalised ARCH model. As discussed in
6



Vlaar (2000) and Sjélander (2009) GARCH modelling is used to model the time varying
volatility of financial assets, which in practice is possible to limit the number of lagged
squared disturbance terms and conditional variances to one, resulting in a GARCH(1,1)

model.

3. VaR application in Basel 11 and 111

In the field of prudential supervision, VaR has been embraced as the fundamental market risk
measurement methodology to calculate regulatory capital under the Basel Accords. Basel 1l
in particular promotes further application and dramatic development of VaR models. The
Basel Committee suggests calculating VaR on a daily basis at the 99 percent level with a one
tailed confidence interval; the historical observation period is “constrained to be a minimum

length of one year” (BCBS, 2006).

Banks are required to ensure that their internal models have been adequately validated by
conducting regular backtesting over the recent 250 days under Basel Il. Described as a
procedure of ‘reality checks’ by Jorion (2007), backtesting tests whether realised (current)
exposures are consistent with the shortcut method prediction over all margin periods within
one year (BCBS, 2006), to prove the model validation to supervisors. If the actual loss

occurred on a day is greater than the VaR estimation for that day, an “exception” is recorded.

The Basel Committee requires banks to meet minimum capital requirement for their market
risk exposures based on VaR estimations, multiplied by a multiplication factor. The
multiplication factor is set on the basis of banks’ model validation assessment—VaR
backtesting. If the number of exceptions from VaR backtesting during the previous 250 days
is less than 5 which falls in “green zone”, multiplication factor k is normally set equal to 3. If
number of exceptions is 5, 6, 7, 8, and 9 which fall in “yellow zone”; the multiplication factor

is set equal to 3.4, 3.5, 3.65, 3.75, and 3.85 respectively. A multiplication factor of 4 is set for



the “red zone” in which the number of exceptions equals to 10 or more (BCBS, 2006). As
specified in the Basel 1l Accord (BCBS, 2006), the green zone corresponds to backtesting
results that do not themselves suggest a problem with the quality or accuracy of a bank’s VaR
models; the yellow zone encompasses results that do raise questions on models’ quality or
accuracy; the red zone indicates a problem with a bank’s VaR models according to

backtesting result.

The empirical effectiveness of VaR models based on the above criterion has been evaluated
in the literature. Brummelhuis and Kaufmann (2007) evaluate the time scaling of VaR
estimations using the square-root-of-time rule as specified in Basel II. Sjélander (2009)
compares VaR models with shorter estimation periods with the 1 year minimum estimation
period required by Basel Il. Girtler, Hibbeln and Vdéhringer (2010) compare VaR and
expected shortfall models in relation to their suitability in assessing the concentration of the

risk of credit portfolios according to the Basel Il requirements.

Research on the empirical performance of VaR measures also includes those that evaluate the
validity requirements in Basel Il, such as Kerkholf and Melenberg (2004), Kerkholf,
Melenberg and Schumacher (2010), Kaplanski and Levy (2007), De la Pena, Rivera and
Ruiz-Mata (2006), Dowd (2006) and Hurlin and Tokpavi (2006). These studies analyse the

range of the backtesting penalty structures (as described above) with multiplication factors.

Studies on VVaR models published before the Global Financial Crisis, such as Alexander and
Baptista (2006) warn that the use of VaR under Basel Il may increase financial market
fragility. They suggest that certain banks will end up selecting riskier portfolios when a VaR
constraint is imposed under the Basel Accords. They suggest that inaccurate risk assessments
based on VaR may lead to excessive risk exposures and capital charges that are consequently

not sufficient to absorb the losses.



The Global Financial Crisis triggered a revision of Basel II’s VaR based market risk
framework to address extreme events. The Basel Committee set up some more restrictive
requirements in the revision, however the VaR methodology itself remains unchanged in the
Basel Il revision. This means the features and parameters of VaR methodologies as described
above, haven’t been changed under the Basel Il revision. In accordance with the Basel Il
structure, the Basel Committee has kept the VaR methodology intact while the reviewing

continues (BCBS, 2011).

The number of ongoing studies testing VaR models has increased following the Global
Financial Crisis, due to the repercussions for financial institutions that miscalculated risk
exposures. For example, Kim et al (2011) backtest VaR models based on different
distributional assumptions during Global Financial Crisis and investigate the difference
between VaR values for non-normal models compared to normal models including ARMA
GARCH models. Pesaran and Pesaran (2010) examine asset return correlations during the
Global Financial Crisis and the ability of VaR models to characterise market risk. Zhao et al
(2010) introduce a new approach for estimating VaR, which is then used to show the
likelihood of the impacts of the current financial crisis. Obi, Sil and Jeong-Gil (2010)
examine the market risk exposure of investments in the South African stock market during
the Global Financial Crisis using VaR as a measure of market risk. McAleer, Jiménez-Martin
and Pérez-Amaral (2012) investigate the performance of a variety of single and combined
VaR forecasts in terms of daily capital requirements and violation penalties under Basel II.
They present evidence to support the claim that the median point forecast of VVaR is generally

robust to events such as the Global Financial Crisis.

Under Basel I, its revision and Basel 11, the VaR methodology itself has been continuously
applied either for supervisory purposes or for banks’ internal risk management without major

amendments. Therefore, it is important to evaluate the accuracy and effectiveness of VaR
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models using Australian bank data, given that the Australian banking sector performed
relatively well during the Global Financial Crisis having implemented Basel 11 principles at

an early stage.

4. Data and Methodology

The daily share prices for the largest nine banks in Australia by market capitalisation were
collected from Datastream for the full time period available for each bank up to 30 June

2011. Comparative analysis includes data for the period 1 July 2001 to 30 June 2011.

Table 1 provides return statistics for each of the banks over the full history for each bank.
Consistent with the approach by Gupta and Liang (2005), we have applied VaR methodology
to daily share price returns. This approach circumvents several problems in calculating VaR
including the proprietary nature of profit and loss information, the complex portfolio
structure of major banks and the inclusion of non-linear assets such as options and interest

rate derivatives commonly held by large commercial banks.

The approach in this study also follows the workings of Berkowitz and O’Brien (2002),
which focuses on bank VaR estimates using a parametric model with 99 percent confidence,
consistent with the Basel Il and Il requirements. In this study we also use a 1 year, 3 year, 5

year, 7 year and 10 year time frame to determine the parameters of p and ¢, where:

VaR =p—2.330

for a 99 percent parametric model and

p = the mean of the daily share price returns

o = the standard deviation of the daily share price returns.

10



In this study we also use the historical approach to calculate VaR. Using this approach we
calculate the lowest 1 percentile loss in daily returns. A 1 year, 3 year, 5 year, 7 year and 10

year time frame is again used to calculate the VaR.

Monte Carlo simulations are used to generate share returns using formula provided in Boyle

(1977), namely:

Se1=Siexp[r-8%2+8X]

where:

St = the current stock price at time t

r = the risk free rate of return

8% = the variance of the stock price returns

X =a normally distributed random variable with zero mean and unit variance.

In addition, the antithetic variate method, as described in Boyle (1977), is used as a variance
reduction technique to reduce simulation error. Five thousand simulated pathways are derived
for the bank share prices, followed by 5000 simulated pathways where the random numbers
generated are the negative of the first 5000 random numbers. The returns generated using the

Monte Carlo simulations are then used to estimate VaR.

We also use an ARMA(1,1) plus GARCH(1,1) model of share returns as an alternative VaR
model as suggested by Berkowitz and O’Brien (2002). The reduced form model of r; is

estimated by:
n=pu + prigt+ U + Kut-l (1)

where u; is an i.i.d. innovation with mean zero and variance o;. The volatility process o IS

described by

11



ot = 0 + 0U%1 + @B (2)

where ®, 0 and ¢ are parameters to be estimated. We apply the standard GARCH model
where innovations are assumed to be conditionally Normal. Thus the 99 percent VaR forecast
at time t is given by w1 — 2.330 1+1, where i1 IS the predicted value of r.1 from equation (1)

and 0w+ IS the estimated volatility from equation (2).

Assessment of each of the models is conducted out of sample. Therefore, there are no
forecasts for the first 260 days, with forecasts thereafter using only information that would
have been available on that day to calculate VaR. VaR estimates are calculated every day
thereafter. The sample size is different for each of the banks due to the availability of

historical share prices. This process forms the basis for our model validation.

As described in Dowd (2005), model validation involves applying statistical methods to
determine whether the forecasts of a VaR model are consistent with the model assumptions.
This process may also be used to compare different models that may be used for VaR
forecasts. Model validation is considered vital to making a judgement on the performance of
risk models. Hence this approach is adopted in this paper in two ways. Firstly, the bank’s
share returns are examined to assess the normality or otherwise of the distribution. Second,
model validation is used to compare the parametric, historical, Monte Carlo simulation and
ARMA GARCH models. This process of out of sample forecast evaluation is also known as
backtesting. As explained in Alexander (2008) failure of a backtest indicates VaR model

misspecification and/or large estimation errors.

12



5. Results

Summary statistics are reported in Table 1 for each of the nine banks daily share price returns
representing the profits and losses for these banks. The length of time varies from 3403
trading days to 30 June 2011 to 10,043 trading days to 30 June 2011. Table 1 shows that eight
of the nine banks had a positive average return since the bank was listed, with a minimum
daily return of -35.85% and a maximum daily return of 37.81%. The highest standard

deviation was 2.26% and the lowest standard deviation was 1.34%.

Table 1 — Bank Daily Return Summary Statistics

Bank Daily Return Summary Statistics

Observations Mean Standard Deviation Kurtosis Skewness Minimum Maximum  99th Percentile
Bank 1 10,043 0.03% 1.54% 10.93 -44.40% -23.80% 14.21% -4.10%
Bank 2 5,509 0.05% 1.67% 15.92 -47.85% -25.53% 12.12% -4.36%
Bank 3 10,043 0.04% 1.59% 10.99 -28.74% -18.87% 17.35% -4.39%
Bank 4 5,164 0.05% 1.34% 6.06 10.63% -9.09% 12.51% -3.82%
Bank 5 3,403 -0.01% 1.97% 40.64 -126.69% -35.85% 23.31% -4.86%
Bank 6 9,103 0.05% 1.57% 6.59 19.86% -13.14% 15.11% -4.11%
Bank 7 6,002 0.04% 1.55% 12.33 15.41% -18.11% 17.89% -4.22%
Bank 8 4,800 0.04% 1.76% 21.89 140.78% -10.57% 29.06% -4.50%
Bank 9 3,893 0.07% 2.26% 29.73 104.10% -23.22% 37.81% -6.09%
Average 6,440 0.04% 1.69% 17.23 4.79% -19.80% 19.93% -4.49%

Histograms of the daily share price returns are presented in Figure 1. These figures also
incorporate the measures of kurtosis and skewness as shown in Table 1. The kurtosis and
skewness estimates (relative to the Normal distribution) displayed in column 4 and 5 appear
to be quite large. This is reflected in the histograms of daily share price returns and is

consistent with previous research such as that by Lucas (2001) and Cuoco and Liu (2006).
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Figure 1 — Bank Daily Return Distribution
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Table 2 — Summary of Bank 99% 1 Year VaR Parametric Models

Obsenations Mean VaR Number of Violations % of Volations Mean Violation Kupiec

Bank 1 9782 -3.42% 171 1.75% -1.29% 0.0000
Bank 2 5249 -3.56% 99 1.89% -1.18% 0.0000
Bank 3 9782 -3.43% 164 1.68% -1.64% 0.0000
Bank 4 4903 -2.91% 86 1.75% -1.09% 0.0000
Bank 5 3142 -4.37% 65 2.07% -1.67% 0.0000
Bank 6 8842 -3.45% 169 1.91% -1.12% 0.0000
Bank 7 5741 -3.40% 99 1.72% -1.23% 0.0000
Bank 8 4539 -3.89% 75 1.65% -0.93% 0.0000
Bank 9 3631 -4.67% 57 1.57% -2.04% 0.0003
Awerage 6179 -3.68% 109 1.78% -1.35%

Table 2 provides the results of the analysis of a 99% 1 year VaR parametric model. It shows
that the losses are occurring about 1.78 of every 100 days for these large commercial
Australian banks. This appears to be a high number of violations as we would expect 1
violation in every 100 days. However, this result is consistent with prior literature such as
Pérignon, Deng and Wang (2008) and Berkowitz and O’Brien (2002) which shows that VaR
estimates are higher than expected and higher than proves to be the case. These research
papers postulate an understatement of the diversification benefits achieved by banks investing
in a wide range of assets. However, Pérignon and Smith (2010 a and b) further investigate
the reasons behind the high VaR estimates and shows that the diversification benefits are not
understated by the banks. In addition, as discussed in section 4, this result of 1.78 violations
in every 100 days would be considered to be in the green zone under the Basel methodology.
This methodology suggests that a model is in the “green zone”, acceptable level, if the
number of exceptions from VaR backtesting during the previous 250 days is less than 5. Our

results fall in this category.

Column 6 of Table 2 shows that when a loss does occur it is on average 1.35% below the

estimated VaR. Figure 2 and Figure 3 provide a graphical representation of this information.
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Figure 2 shows the daily returns for each of the banks along with the VaR estimate for each
day. Figure 3 isolates each violation of VVaR. These figures show the timing of each of the
violations of VVaR and the magnitude of each violation. Figure 2 and Figure 3 show that the
largest violation was for bank 5, which experienced a violation of VaR by approximately
30% in June 2003. This event clearly influenced the kurtosis and skewness estimates for
bank 5 as shown in Table 1. The Kupiec test in column 7 of Table 2 attempts to determine

whether the observed number of violations of the model is consistent with the expected

number of violations for a given probably as described in Kupiec (1995). The null hypothesis

is that the model is correct and with such low p values we can reject this null hypothesis for

each of the banks using this test.
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Figure 2 — Bank Daily VaR Models
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Figure 3 — Bank Daily 99% VaR Violations
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Table 3 provides a comparison of parametric VaR models using different lengths of time to
estimate p and 6. Column 5 shows that 1 year model has the lowest % of violations and
column 6 shows that the 1 year model also has the lowest mean violation when such an event
occurs. However, it is likely that our results are influence by events at the time of the Global
Financial Crisis. During this time large and expected negative returns occurred. Models with
longer time horizons took longer to incorporate this new information. However, the models
with a shorter time horizon were faster to respond to the changing economic conditions
incorporating larger VaR’s, as shown in column 3 of Table 3. Using the Kupiec test we can
reject the null hypothesis that this is the correct model for each of the banks using the

parametric VaR model.

Table 3 — Comparison of Parametric Bank VaR Models

Obsenations Mean VaR Number of Violations % of Volations Mean Violation Kupiec

Awerage 1 Yr 6179 -3.68% 109 1.78% -1.35% 0.0000
Awerage 2 Yr 5921 -3.75% 108 1.85% -1.42% 0.0000
Awerage 3 Yr 5655 -3.76% 112 2.04% -1.49% 0.0000
Awerage 4 Yr 5386 -3.71% 114 2.20% -1.53% 0.0000
Awverage 5 Yr 5128 -3.79% 100 2.11% -1.52% 0.0000
Awerage 6 Yr 4868 -3.76% 94 2.11% -1.55% 0.0000
Awerage 7 Yr 4614 -3.64% 103 2.36% -1.52% 0.0000
Awerage 8 Yr 4355 -3.76% 90 2.38% -1.62% 0.0000
Awverage 9 Yr 4092 -3.66% 98 2.75% -1.55% 0.0000
Awerage 10 Yr 3824 -3.69% 93 2.84% -1.59% 0.0000

Table 4 provides an analysis of a 99% 1 year VaR historical model. It shows that the losses
are occurring 1.47 in every 100 days for each these large commercial Australian banks.
Column 3 of Table 4 shows that that the average VaR for the banks is -3.92% which is more

negative than that of the equivalent parametric model in Table 2. Column 5 of Table 4 shows
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that there was an average of 1.47% violations which is lower than the parametric model
however, it is still above the expected 1% or 1 in 100 days. Column 6 of Table 4 shows that
when a loss does occur it is on average 1.41% below the estimated VaR, only slightly higher
than that of the parametric model. Using the Kupiec test we can reject the null hypothesis that

this is the correct model for 8 of the 9 banks at the 1% level.

Table 4 — Summary of Bank 99% 1 Year VaR Historical Models

Observation'Mean VaR Number of Violations % of Volations Mean Violation Kupiec

Bank 1 9782 -3.77% 136 1.39% -1.35% 0.0000
Bank 2 5249 -3.82% 75 1.43% -1.41% 0.0006
Bank 3 9782 -3.88% 130 1.33% -1.81% 0.0003
Bank 4 4903 -3.12% 71 1.45% -0.98% 0.0006
Bank 5 3142 -4.54% 56 1.78% -1.64% 0.0000
Bank 6 8842 -3.77% 136 1.54% -1.13% 0.0000
Bank 7 5741 -3.63% 89 1.55% -1.19% 0.0000
Bank 8 4539 -3.96% 67 1.48% -1.01% 0.0005
Bank 9 3631 -4.78% 46 1.27% -2.18% 0.0177
Awverage 6179 -3.92% 90 1.47% -1.41%

Table 5 provides a comparison of historical VaR models using different lengths of time.
Column 5 again shows that 1 year model has the lowest % of violations and column 6 shows
that the 1 year model also has the lowest mean violation when such an event occurs. This is
consistent with Table 3 and is likely to be influence by the Global Financial Crisis. However,
this table also shows that the lower level of violations is able to be achieved without larger
VaR estimates. This suggests that by adapting more quickly to the economic conditions
lower levels of violations can occur by raising the VaR estimates when conditions are good
and lowering VaR estimates when conditions are poor. Using the Kupiec test we can reject

the null hypothesis that this is the correct model for each of the banks at the 1% level.
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Table 5 — Comparison of Historical Bank VaR Models

Obsenations Mean VaR Number of Violations % of Volations Mean Violation Kupiec
Awerage 1 Yr 6179 -3.92% 90 1.47% -1.41% 0.0002
Awverage 2 Yr 5921 -4.10% 78 1.33% -1.53% 0.0029
Average 3 Yr 5655 -4.19% 78 1.42% -1.58% 0.0016
Average 4 Yr 5386 -4.18% 76 1.50% -1.58% 0.0008
Awerage 5 Yr 5128 -4.19% 72 1.47% -1.55% 0.0016
Average 6 Yr 4868 -4.16% 70 1.51% -1.56% 0.0008
Awerage 7 Yr 4614 -4.17% 67 1.57% -1.61% 0.0011
Average 8 Yr 4355 -4.20% 66 1.69% -1.65% 0.0005
Awerage 9 Yr 4092 -4.23% 65 1.87% -1.62% 0.0002
Average 10 Yr 3824 -4.27% 62 1.97% -1.65% 0.0001

Berkowitz and O’Brien (2002) suggest that high correlations across banks may be a potential

concern to bank supervisors because it raises the spectre of systematic risk, that is, the

simultaneous realisation of large losses at several banks. Table 6 shows the correlations

between the nine Australian bank’s daily share price returns and their VaR estimates, with t-

statistics shown in parentheses. Panel A of Table 6 shows that the correlations between the

bank’s daily share price returns are all positive but generally quite low, ranging from 0.35 to

0.74 with an average of 0.49. The associated t statistics are shown in parenthesis. None of

the correlations are significant at the 10% level. This is consistent with the finding of

Berkowitz and O’Brien (2002) suggesting that this reflects some differences in portfolio

compositions among banks. Panel B of Table 6 shows the correlations for daily VaR across

the nine banks. The correlations are consistently positive and relatively high, ranging from

0.38 to 1.00 with an average of 0.85. All correlations are significant at the 1% level. These

correlations show the similarities in bank VaR’s in Figure 2 and are consistent with the

positive correlations of the daily share price return between the nine banks.
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Table 6 — Correlations of Bank Returns and VaR across Individual Banks

Panel A: Return Correlation Coefficients

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 9
Bank 1 1.00
Bank 2 0.51 1.00
(-48.82)
Bank 3 0.64 0.47 1.00
(-25.06)  (41.00)
Bank 4 0.71 0.47 0.68 1.00
(31.61) (62.43) (49.44)
Bank 5 0.42 0.40 0.43 0.42 1.00
(-38.96) (-11.95) (-27.03) (-43.05)
Bank 6 0.73 0.47 0.70 0.68 0.42 1.00
(-21.26)  (59.94) (16.11) (-47.3) (31.34)
Bank 7 0.45 0.37 0.48 0.46 0.35 0.47 1.00
(-59.67) (7.41) (-31.02) (-73.49) (15.26) (-42.48)
Bank 8 0.42 0.39 0.44 0.45 0.35 0.44 0.44 1.00
(-44.41) (-6.59) (-31.89) (-52.4) (7.54) (-37.11)  (-17.04)
Bank 9 0.48 0.47 0.56 0.49 0.43 0.54 0.41 0.43 1.00
(-55.81) (-45.53) (-56.06) (-60.75) (-10.51) (-62.26) (-36.4) (-26.92)
Panel B: VaR Correlation Coefficients
Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 9
Bank 1 1.00
Bank 2 0.97 1.00
(-0.87)
Bank 3 0.97 0.96 1.00
(-0.96) (0.11)
Bank 4 0.99 0.98 0.99 1.00
(-0.06) (0.82) (0.98)
Bank 5 0.59 0.55 0.53 0.57 1.00
(-1.28) (-0.46) (-0.6) (-1.27)
Bank 6 0.99 0.98 0.99 1.00 0.58 1.00
(-0.13) (0.74) (0.92) (-0.07) (1.18)
Bank 7 0.94 0.96 0.94 0.94 0.42 0.95 1.00
(-0.09) (0.66) (0.66) (-0.05) (1.09) (0.00)
Bank 8 0.82 0.84 0.84 0.82 0.38 0.84 0.90 1.00
(0.04) (0.76) (0.73) (0.08) (1.16) (0.12) (0.12)
Bank 9 0.96 0.96 0.96 0.96 0.52 0.97 0.96 0.90 1.00
(-0.09) (0.58) (0.54) (-0.06) (0.95) (-0.02) (-0.02) (-0.12)

Table 7 demonstrates the VaR estimates produced by the model using Monte Carlo

simulations. Column 5 shows an average percentage of violations that would be expected

under a 99% model at 0.97%. This is lower than both the parametric model and historical

model which had an average percentage violation of 1.78% and 1.47% respectively over the



same period. Column 3 shows that this was at least partly due to a lower VVaR estimate. The
VaR estimate for Monte Carlo simulations was -4.70% compared with -3.68% (-3.92%) for
the parametric (historical) models. Column 5 shows that the Monte Carlo simulation model
has the highest level of violations at -1.63% compared with the parametric (-1.35%) and
historical (-1.41%) models. This demonstrates that even though the Monte Carlo Simulation
model is a more sophisticated method of calculating VaR it does not necessarily provide
better estimates for Australian banks. Using the Kupiec test we cannot reject the null

hypothesis that this is the correct model for 7 of the 9 banks at the 1% level.

Table 7 — Backtests of Monte Carlo Simulation VaR Model

Obsenations Mean VaR Number of Violations % of Volations Mean Violation Kupiec

Bank 1 9522 -4.43% 76 0.80% -1.54% 0.0056
Bank 2 5247 -4.53% 54 1.03% -1.64% 0.0533
Bank 3 9522 -4.44% 91 0.96% -1.80% 0.0381
Bank 4 4902 -3.68% 57 1.16% -1.21% 0.0285
Bank 5 3141 -5.61% 37 1.18% -2.36% 0.0409
Bank 6 8841 -4.48% 79 0.89% -1.38% 0.0267
Bank 7 5731 -4.34% 53 0.92% -1.42% 0.0465
Bank 8 4538 -4.93% 22 0.48% -1.23% 0.0000
Bank 9 3631 -5.85% 48 1.32% -2.08% 0.0103
Average 6119 -4.70% 57 0.97% -1.63%

Table 8 demonstrates the VaR estimates produced by the ARMA GARCH model. Consistent
with the other methodologies tested, column 5 shows an average percentage of violations
higher than would be expected under a 99% model at 1.79%. This is similar to the percentage
of violations by the parametric model at 1.78% over the same period. Column 3 shows that
the higher level of violations occurred even though this model produced a lower VaR
estimate. The VaR estimate for the ARMA GARCH model was -3.59% compared with

-4.70% for the Monte Carlo simulations, -3.68% for the parametric model and -3.92% for the
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historical method. Column 6 shows that the ARMA GARCH model has the lowest level of
violations at -1.15% compared with the parametric (-1.35%), historical (-1.41%) and Monte
Carlo simulation (-1.63%) models. This demonstrates that the sophisticated methodology of
the ARMA GARCH model produces a relatively large number of violations, however the
level of violations are relatively low. This result was achieved through relatively low levels
of VaR. Using the Kupiec test we can reject the null hypothesis that this is the correct model

for each of the banks at the 1% level.

Table 8 — Backtests of ARMA(1,1) + GARCH(1,1) VaR Model

Observations Mean VaR Number of Violations % of Volations Mean Violation Kupiec

Bank 1 9783 -3.35% 164 1.68% -1.11% 0.0000
Bank 2 5249 -3.55% 89 1.70% -1.18% 0.0000
Bank 3 9783 -3.31% 194 1.98% -1.14% 0.0000
Bank 4 4904 -2.84% 88 1.79% -0.78% 0.0000
Bank 5 3143 -4.35% 61 1.94% -1.67% 0.0000
Bank 6 8843 -3.39% 165 1.87% -0.98% 0.0000
Bank 7 5742 -3.31% 99 1.72% -1.09% 0.0000
Bank 8 4540 -3.84% 81 1.78% -0.82% 0.0000
Bank 9 3633 -4.40% 60 1.65% -1.59% 0.0001
Average 6180 -3.59% 111 1.79% -1.15%

Overall, the ARMA GARCH model appears to offer the best results when compared with
parametric, historical and Monte Carlo simulation models. The ARMA GARCH model
demonstrates a relatively low violation level when such an event occurs, which appears to be

achieved without estimating lower levels of VaR.
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6. Conclusion

Eight of the nine commercial Australian banks included in this study experienced a positive
average return since the bank was listed, with a minimum daily return of -35.85% and a
maximum daily return of 37.81%. The highest standard deviation was 2.26% and the lowest
standard deviation was 1.34%. Histograms of the daily share price returns show that the
kurtosis and skewness estimates (relative to the Normal distribution) appear to be quite large.
This is consistent with previous research such as that by (Lucas, 2001 and Cuoco and Liu,

2006).

An analysis of a 99% 1 year VaR parametric model shows that losses are occurring about
1.78 of every 100 days for each these 9 large commercial Australian banks. When a loss
does occur it is on average 1.35% below the estimated VaR. The largest violation of VaR
was by approximately 25% in June 2003. This event clearly influenced the kurtosis and

skewness estimates for the return distribution of this bank.

A comparison of parametric VaR models using different lengths of time to estimate p and o
shows that the 1 year model has the lowest percentage of violations and the lowest mean
violation when such an event occurs. It is likely that the results are influence by events at the
time of the Global Financial Crisis. During this time large and unexpected negative returns
occurred. Models with longer time horizons took longer to incorporate this new information.
However, models with a shorter time horizon were faster to respond to the changing
economic conditions incorporating larger VaR’s. This is consistent with the findings using
historical VaR models. However, the lower level of violations is able to be achieved without
lower overall VVaR estimates. This suggests that by adapting more quickly to the economic
conditions lower levels of violations can occur by raising the VaR estimates when conditions

are good and lowering VaR estimates when conditions are poor.
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Berkowitz and O’Brien (2002) suggest that high correlations across banks may be a potential
concern to bank supervisors because it raises the spectre of systematic risk, that is, the
simultaneous realisation of large losses at several banks. We show that the correlations
between the 9 Australian bank’s daily share price returns are all positive but generally quite
low. The consistently positive and relatively high correlations in bank VaR’s are consistent
with the positive correlations of the daily share price return between the banks. The VaR
estimates produced by the model using Monte Carlo simulations show a very low percentage
of violations but with a higher level of violations that occur. The VaR estimates produced by
the ARMA GARCH model also shows a relatively high percentage of violations, however,

the level of violations is quite low.

Our research findings offer direct statistical evidence on the accuracy of historical,
parametric, Monte Carlo and ARMA GARCH models. The results support the VaR
methodology adopted under the Basel 11 revision and the forthcoming Basel 111 proposal. This
information is relevant in relation to the banking sector for further policy making purpose and

the design of internal models.
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