

This is the Accepted Version of a paper published in the

International Journal of Grid and Utility Computing

Farber, Jess, Myers, Trina, Trevathan, Jarrod, Atkinson, Ian,

and Andersen, Trevor (2015) Riskr: a Web2.0 platform to

monitor and share disaster information. International

Journal of Grid and Utility Computing, 6 (2). pp. 98-112.

http://dx.doi.org/10.1504/IJGUC.2015.068825

ResearchOnline@JCU

Riskr: A Web2.0 platform to monitor and share
disaster information

Jess Farbera, Trina Myersa,b, Jarrod Trevathanc, Ian Atkinsonb, and Trevor Andersena

a School of Business (Information Technology), James Cook University, Townsville, Australia.
b e-Research Centre, James Cook University, Townsville, Queensland, Australia.

c School of Information and Communication Technology, Griffith University, Brisbane, Queensland, Australia
.

Abstract—Disaster management that uses Web-based technology to enhance user collaboration around disasters is an
emergent field. A number of dedicated 'disaster portals' exist but do not integrate large social networks such as
Twitter and Facebook. These social networking sites can facilitate the analysis and sharing of collective intelligence
around disaster information on a far greater scale by increasing accessibility to, and the use of, a disaster portal. This
paper presents the ‘Riskr’ project, which applies a low-technological solution to creating a disaster portal fed by
social networking messages and the strategies used in its development. The system has been implemented using
Twitter and tested by users to determine the feasibility of having interoperability between social networks and
disaster portals. Preliminary results suggest there is benefit in using Twitter as a middleware between users and the
disaster services with 70.5% of the users able to estimate the location of a disaster (e.g., fallen powerlines, fire, etc)
within a certain error margin. Furthermore, 95% of users were able to successfully adapt to using the system. The
results from the Riskr project suggest that the combination of online services and interoperability between disaster
portals and social networks can further enhance disaster management initiatives.

Keywords-Web2.0, disaster management, social networks

I. INTRODUCTION

Communication is paramount in a disaster situation. Basic services and infrastructure such as electricity, food, water and
the Internet, can be put under immense strain, or can even be disabled completely. These services are often taken for granted.
However, in reality, the coordination and management of such services requires significant effort and timely implementation.
Therefore, streamlined synchronisation for effective communication is critical.

The term 'disaster' can encompass a large number of possible events or occurrences. In this paper, the term 'disaster' refers
to a significant hazard (e.g., Fallen powerlines, fire, flood, etc), affecting multiple people in terms of geographical area such as
an entire suburb or district. During a disaster event, affected individuals need to voice concerns, inform others and share
information relevant to their area. Likewise, emergency workers must be able to access pertinent information to prioritise high
urgency situations and keep residents updated about the status of the recovery effort.

Disaster management could benefit from the information available via social networking forums. In 2011 and 2013, the
Australian state of Queensland was impacted by floods and in 2011, a severe tropical cyclone. While there was significant
media coverage, social networks such as Twitter and Facebook, were also inundated with posts related to the floods [3]. A
government social media outlet, '@QPSmedia' was created and utilized for community interaction regarding the disasters. The
creation of this outlet succeeded in nurturing community discussion and involvement and resulted in a greater ability for
emergency services to communicate with the public [4]. There are potential benefits to disaster management in the use of
information harvested from social networks for improved communication and dissemination to the wider community during
and around disaster events.

The propagation of disaster-related information is well suited to a Web2.0 solution, particularly the use of social networks.
The information shared on social networks about a disaster within 24 hours after the event has occurred, in many cases is more
accurate than mainstream media [5, 6]. This phenomenon is due to the ability of social networks to facilitate collaboration
between affected individuals and serve as a central point to correlate disaster information. As a result, rapid dissemination of
first hand disaster-related information is made possible, which can greatly aid disaster management and control.

This paper presents the Riskr project, which provides a disaster portal fed by social networking messages. The purpose of
Riskr is to explore the viability and construction of a portal for reporting and visualising disasters that harvests information
from existing social networks. The Riskr framework was implemented using Twitter to demonstrate the capacity of large-scale

user participation in a dynamic system with little or no administration required. User testing was conducted to evidence the
merit of having interoperability between social networks and disaster portals. . The usability study showed 70.5% of the users
able to estimate the location of a disaster within a certain error margin and 95% of users able to successfully adapt to the
syntax of the system due to the interface design that requires low technological knowledge.

This paper is organised as follows: Section 2 presents an overview of the relevant Web2.0 technologies and the problems
faced in communications during disaster situations. Section 3 discusses related work and the differentiation to this project.
Section 4 describes the Riskr architecture and the technologies used in the development to enhance communication efforts in
disaster situations. Section 4 outlines the results of a user study to determine the feasibility of using a social network's
collective intelligence to learn more about an incident. Section 5 concludes the paper with a discussion on the implications the
Riskr system for disaster management.

II. BACKGROUND - SOCIAL MEDIA

Web2.0 refers to the 'read/write Web' that promotes participation, collaboration and sharing of information among users
online [7]. Social networks provide easy access to the collective intelligence of the community. The collective intelligence is
defined here as the combined knowledge of an entire user base and user participation adds the each social network's collective
knowledge [5, 8]. The recent explosion of social media and networks has seen many web sites such as Facebook, Twitter and
Flickr grow to have millions of users frequently posting information. Some of this information would possibly be valuable to
the management and mitigation of local disasters and crises but how can relevant information only be selected? This section
describes the decisions surrounding the development of the Riskr framework based on a review of the literature and related
work in the context disaster management and popular social networks. The review included analysing and comparing the
available social networks that would be conducive to disaster management, specifically, Twitter and Facebook. Evidence is
provided to support the Twitter social network as more suitable for analysing collective intelligence on a disaster.

A. Analysis of Twitter and Facebook capabilites to support disaster management

Twitter [9] is a popular social network that allows users to post 140 character messages publicly known as 'Tweets'. Tweets
may contain links or photos [10], and have an incredibly diverse range of topics. These tweets may be available to anyone
viewing the page, or show up in the feed of 'followers'. Followers are other users that have subscribed to a particular users'
posts. Sometimes a tweet will have a 'hashtag' which appears as a word, preceded by a hash character '#'. These hashtags often
contain a subject or word relevant to the conversation. For example, while talking about a fire in the fictional suburb "Bar" in
2011, one may post the hashtag "#BarFire2011".

Facebook [8] is another social network where users add 'friends' to subscribe to their posts and photos as opposed to
Twitters 'followers'. Facebook profiles allow people to see all messages sent between subscribed users on an interactive
message board known as the 'wall'. Walls are a method for users to publicly share messages and information. Facebook also
incorporates 'groups' which allow users to converse and share information privately about certain topics. Both Twitter and
Facebook are successful social networks, however for the purpose of this project, only one was chosen for integration with the
disaster management framework presented here.

There is strong evidence that social networking is a good source for disaster information and updates during the first stages
of a disaster [5, 8, 11]. The information found on social networks can often be higher quality than that available via journalism
and other mainstream online media [6]. Information quality is defined as the degree of reliability, accuracy, relevancy and
usefulness of information [6]. A number of studies have shown that during the initial 24 hours of an incident or disaster Twitter
generally has higher information quality than mainstream journalism sources [5, 8, 11, 12].

Twitter and Facebook are currently two of the most popular social networks. A comparison of the relevance of these social
networks to disasters was explored. Heverin et al [5] analysed Twitter responses after the shooting of several police officers in
Seattle in 2009. Similarly, Vieweg et al [8] analysed Facebook responses after the 2007 at Virginia Polytechnic Institute
shooting. 6013 tweets were analysed by Heverin et al [5], there was no documented size of the user base or amount of posts in
the study conducted by Vieweg et al [8]. The results from these studies were compared in order to determine how appropriate
Twitter and Facebook are for disseminating disaster-related information (Table 1).

TABLE I. COMPARISON OF RESPONSE BETWEEN 2007 VIRGINIA TECH SHOOTING ON FACEBOOK [8] AND THE 2009 SEATTLE POLICE SHOOTING ON
TWITTER [5].

Social network Facebook - Virginia Tech 2007 Twitter - Seattle 2009
Organisation Organized through Facebook groups such as "I'm ok

at VT"
Organized through hashtags, such as #washooting and
#lakeshoot

Categorisation of posts No categorisation of user inputs Twitter messages (Tweets) were able to be classified into
four categories: "information related", "opinion related",
"emotion related" and "action related"

Categorisation of users Categorisation of posters not possible Posters were able to be categorised, for example
"unaffiliated individual", "local media", "blog", etc.

Trust network Trust network implied by other user's opinions -
sometimes no solid proof available

No specific trust network defined, however participants
included media and public service organisations

Decentralization Almost complete disassociation from any form of
control - however some users took on more
responsibility in 'information broker' roles

All users were decentralized.

Effectiveness of collaboration Very rapid deduction - the 32 deceased were
accurately identified in less than 38 hours

No deduction mentioned in paper, however reported
information spread quickly

Links to relevant media Any posts including links were simply to other
groups that had deducted something. Most deduction
was from word-of-mouth and not solid evidence

A third of tweets included links, half of which were
directed at local media websites. A large amount of users
also were using URLs to post media (pictures, videos, etc)

Size of user base No indication as to scale of user base 6013 tweets were found

Similarities and differences were identified between Facebook and Twitter from the two studies of social networking
during disaster situations (Table 1). The organisation of Facebook collaborative intelligence can be accomplished through
'groups'. Alternatively, collaborative intelligence can also be organized through 'hashtags' in Twitter. Categorisation of posts
and inputs was not implemented in the study, however Heverin et al [5] were successfully able to group users and tweets
across a meaningful spectrum of categories.

Facebook contained no implemented trust network. A crudely yet effective form of group trust was enforced through
collaboration of user's opinions. Twitter was also found to have no trust network, but did include trustworthy contributions
from members of the media and public service organisations. Although Facebook showed decentralisation, individual users can
self appoint themselves to a higher responsibility in organising and culling information in the Facebook group. Conversely,
Twitter posters were subject to no hierarchical control and all tweets were from individual, sometimes disassociated users.

A comparison of the quality and validity of the posted information showed both Facebook and Twitter were effective at
deducing and reporting correct information at a faster rate than that of the mainstream media. Users of the Facebook group
posted links and information to other groups, but the validity and importance of these links were questionable because many
links were to other groups with similar user bases. Further, most deduction came from a centralized control, which worked on
the assumption that information shared by the users was honest and correct. Comparatively, a third of tweets included links,
half of these were to local media websites, and a considerable number of the remaining tweets were URLs linking to media
such as photos or videos.

Twitter is efficient for providing information that is not found on normal media outlets. It is not recommended for use as a
backbone for a emergency management system that emergency services and civilians must rely on because a third party social
network cannot guarantee the reliability required in an emergency situation [6]. However, Twitter is suitable for civilian use to
find useful information such as local news outlets and relevant disaster information services. Advantages found of Twitter
include the fast and easy user interface, scalability, mobility and diversity of information [6]. Disadvantages included less
reliability than government or media sources due to unfiltered and unaccountable information.

At the time of this study, Facebook did not support GIS functionality but Twitter did; although the capabilities were
somewhat limited. GIS capability allows for a larger amount of information to be derived from short messages. An effective
example is shown by Sakaki et al [11] in their research in real-time event detection by social sensors, where an earthquake’s
epicentre was calculated using user’s geolocation and the time of each post. The application of geolocation is relevant to
disasters as it can provide context to a message with sparse information.

There is strong evidence that social networking is a good source for disaster information and updates, particularly within
the first stages of a disaster occurring [6, 7]. While both Facebook and Twitter were demonstrated as effective tools for
communication during disasters, the support for Twitter as a system to support disasters has been shown as more effective.
Twitter supports geolocation and classification of users and when combined with the decentralized nature of the network
makes it superior as a disaster management and response system. For these reasons, Twitter was chosen as the social network
platform for the implementation of the Riskr framework.

B. Government and organisational use of social networks

As more people use social networks as a medium to report and send information about disasters, government and/or public
service groups would benefit from the available information. Valuable two-way interactions are possible between these
disaster management organisations and the public over these networks. Mills et al [6] identified large relief organisations, local
and municipal governments benefited by the updates and information the public sent to their subscribers on Twitter for relief
operations. In many cases, individual social media users are classified as media outlets and public services due to their
continual newsfeeds and updates [5].

Government services and organisations appear active on Twitter [6, 12], while conversely, Vieweg et al [8] implied that
government and public service involvement in the users' Facebook groups was minimal. The significant observable activity
from government, media and public services on Twitter is most likely due to the ability to use an organisation wide Twitter
account as a social media outlet. The government services activity was not as excessive on Facebook as the collaborative
deduction was based around citizen-organised groups with little to no government input [8].

C. Information reliability

Studies indicate a trend where the most important information posted on social networks of an event is created in the first
stages of the occurrence. The quality of information is defined here as its reliability, accuracy, relevance and usefulness. Mills
et al [12] established that Twitter has a higher degree of quality information than journalism/mainstream online media within
the 24 hour period directly after an incident or disaster. Likewise, Vieweg et al [6] describes a similar duration of 24 hours
from the shooting incident where users accurately reported the number of victims and the circumstances., Heverin et al [8]
adds support to these claims where they found that the tweets sent in the first twelve hours were the ones classed as the highest
information quality. In the first 12 hours, the number of opinion-driven tweets were a low 6.8% (6.8%) but increased to 21.3%
after the 26 hour period s. Opinion-driven posts are those that consist of disagreements, name-calling and personal attacks,
which are irrelevant information for use by a disaster portal. Sakaki et al[5] created a system that relies entirely on users'
immediate response to incidents with a precision of hours, supporting the importance of timely information. This evidence
indicates that any data mining or presentation of disaster social networking must allow and encourage fast transmission and
immediate access to information.

D. Techniques of retrieving useful information from Twitter

During a disaster situation, some data is relevant and others are meaningless so deriving useful information can be
complicated. As of 2011, Twitter reports that there are over 1 billion tweets per week[11] so prioritising and sorting relevant
information is important for a disaster portal. Sorting through continual stream of posts would be highly labour intensive so
automated retrieval of quality information is required for the efficient capture of disaster information[13].

Barbosa et al[14] proposed a novel way to derive sentiments (positive and negative) from tweets, by creating abstract
representations of Twitter messages, and combining several noisy and biased data sources as training sets. They found their
method could accurately determine sentiment with an error rate of approximately 20%. Castillo et al[15] also successfully
classified tweets as credible or not by classifying messages as news or conversation and then analysing the trends and
relationships between the words included in the Tweet. This solution can help in spam detection and identifying trusted
sources.

There is a large amount of research into deriving tweet sentiments [16] from Twitter, however there have also been
successes in categorising tweets in more content-specific means. Benevenuto et al [15, 17] display a novel approach to
classifying spammers on Twitter using classification. Caragea et al [18] have created a system that includes a component that
they have proven to successfully categorise short tweets sent during the Haiti earthquake.

Although not published, Karandikar's thesis [19] provides an interesting alternative to classification, a clustering method to
allow similar topics to be clustered together. While this is a novel approach and can be applied to certain situations, as
discussed earlier a disaster portal must be updated constantly and quickly. The nature of clustering does not allow for quick
placement of tweets into relevant categories. Sankaranarayanan et al [20] have created a system for a similar goal of clustering
topics in Twitterstand, and displaying Twitter as a news feed. In their study, they mention although this is presented as a news
service, there are many other applications for their methods.

Mills et al[21] noted that a possible method of finding location could be managed by transmitting GPS coordinates in
tweets, and Abrol[6] also proposed a system to use Twitter's geo-content to order news search results. Twitterstand[22]
includes a system to geographically locate tweets and group news items through this method.

Starbird et al [9] have put forth the notion of using 'prescriptive syntax' where hashtags mark information such as #city,
#addy, #contact, etc. They predict that information posted in this way would be useful for both emergency services and the
public, and one user's adoption of this method would encourage others to follow the same format. Twitter could be used as a
middleware in a Web application with minimal analysis or data mining work to create, retrieve and group these tweets using
the prescriptive syntax method. For this reason, the use of prescriptive syntax to pass messages through Twitter to the Riskr
web application was chosen, as it would adequately demonstrate whether implementation of a disaster portal using social
networks is feasible.

III. RELATED WORK - CURRENT ONLINE DISASTER SERVICES

Disasters2.0 [21] and the RESCUE disaster portal [2] are two examples of disaster portals that encompass Web 2.0
features. Web2.0 is the new generation of web-based services and communities characterised by participation, collaboration
and sharing of information among users online [1]. Disasters2.0 provides a method for users to report and describe nearby

disasters (Figure 1). However, at the time of writing, this portal did not support the dexterous grouping of collective
intelligence from social networks. Disasters2.0 is a disaster portal for users to post information and view information posted by
government services. In contrast, the RESCUE disaster portal (Figure 2) mentions Internet information monitoring, which is
claimed to result in intelligent detection of relevant news events. Both Disaster 2.0 and RESCUE have mechanisms for user
feedback, where the options given to users to report incidents focus on their individual posts and responses. There is no
mechanism for the conglomeration of the users' submissions to a single conclusion.

The Web application services available in Disasters 2.0 and RESCUE focus on simple interaction with emergency services
to provide information to users. Similar to the social networking sites, Disasters 2.0 provides basic tools for collaboration but it
does not allow collective deduction or news reporting. There is potential to extend these models to produce collaborative
disaster portal frameworks based on an already implemented social network.

A. Extending the portal with the combination of existing technologies

The common components of the disaster portals evaluated and the benefits of extending with social networking resources
include:

 A map interface—the aforementioned disaster portals include a map interface to visualise information
geographically.

Figure 1 - Disasters 2.0 [2]

Figure 2 - RESCUE disaster portal [1]

 A news feed—relevant news must be given to the user. The disaster portals evaluated included a news feed. A
collaborative social disaster portal would also derive useful information from social networks as news
information.

 Ease of collaboration—users' submissions must be employed to generate conclusions or add to evidence of other
information. Notably, users should also be able to post anonymously or log posts through a commonly used
service (e.g., Facebook, Twitter, OpenId)

 A disaster geo-location—the location of a disaster is incredibly important. Disasters 2.0 allows plotting of a
disaster on a map. However, a versatile disaster portal should be able to take distance references and derive valid
locations from a collection of posts from multiple users.

 Accessibility—all current disaster portal implementations are available via a Web browser and some are available
via mobile applications [7, 23]. Access through social networks could allow contributions and retrieval of
information without the installation of an application or visiting the portal's web site.

With these goals in mind, the approach taken by the Riskr project to harvest disaster-related information from social networks
was to have Twitter tweets posted using prescriptive syntax. Prescriptive syntax uses hashtags to mark information in the
following format:

#city, #address, #contact

Twitter was used as a middleware for the passing of the information within the prescriptive syntax. The idea was that one
user's adoption of this method would predicably encourage others to follow the same format [1, 2, 24].

To achieve this, the Twitter platform offers access to the corpus of data via Application Programming Interfaces (API),
which we can compare to the the REpresentational State Transfer (REST) API used in the Disasters 2.0 portal. The Twitter
API enables developers to access some of the core primitives of Twitter including timelines, status updates, and user
information [9]. Accurate geo-locations are a challenge if using Twitter as a middleware. Twitter, by default, only posts geo-
locations refined to city or suburb, which does not allow for a truly accurate location. The location of incidents would be
significantly more precise if users have the ability to post their location as content in the tweet [9, 10]. The precise location of a
disaster can be derived by forming a trilateration from information posted by Twitter users by combining geo-location and
prescriptive syntax. Trilateration determines an absolute or relative location of points by measurement of distances using
geometry.

IV. THE RISKR FRAMEWORK

The development of the Riskr disaster portal incorporated the best practices found in the current portals combined with
features that take advantage of the social network and map-based frameworks. An interface with minimal technical complexity
was required for user accessibility and interactivity, while still offering features geared towards enhancing user collaboration.

The workflow for data from Twitter to and from the Web portal is illustrated in Figure 3. Usually, a server will
communicate directly with its Web portal and mobile application. However, in this case all information is passed through

Figure 3 - Disaster portal framework and technologies.

Twitter. Information posted via a social network instead of just through private channels will open the service up to users of the
Web portal and mobile application and any other users of the social network. The general usage of the service has the potential
to expand from the niche group that uses the application or Web portal to the entire user base of the social network.

The workflow in Figure 3 begins with users posting information related to a disaster via the web portal. Then, the web
portal, mobile application, or any third party application can post to Twitter using prescriptive syntax. Any Twitter user is able
to see these posts, and make similar posts using prescriptive syntax. In the final step, by watching for prescriptive tweets, the
Riskr server, or any other third party server can watch for information to use in disseminating meaningful information.

The complexity of the underlying framework is transparent to the user. A Web server handles the Web service requests
from user interaction via a map interface and from the Twitter feeds. To provide interaction with Twitter, the Web services
must communicate to the Twitter service using the Twitter APIs. In addition, a Twitter news feed was implemented in the
portal's Web interface so users can view and collaborate with others. Finally, in conjunction with the map interface, an incident
location algorithm is used to estimate an accurate location of incidents.

A. The web server

The Riskr Web server provides the interface and performs the transactions with the database. The most support for API
libraries and most Twitter-based documentation is based in Python [12]. The Django [25] Web framework was used to convert
Python easily into a functioning web service. Django allowed easy creation of the Web interface, handling of requests,
database modelling and debugging. The python Twitter API library 'Tweepy' [26] was chosen to support the interaction
between the server and Twitter due to its rich feature set. The feature set includes support for Twitter streaming and Open
authentication (OAuth) [27], which is a method of authentication that allows services to securely and safely send private login
details.

The database stores a large amount of information related to tweets and disasters. This information includes:

 The entire contents of all relevant tweets;

 User information;

 Different disaster types and the possible warnings, messages and keywords that may appear in tweets;

 Regional information with region geospatial location and name for use in naming incidents; and

 A log of each detected incident. Incidents are allocated a name, a hash tag, the size or warning area, a warning
message, and the disaster type.

This information is stored in a PostgreSQL relational database. The PostgreSQL database engine is widely supported by the
Django community. Future work will incorporate a more scalable solution (e.g., NoSQL) to increase speed and flexibility.

B. The map interface

Google maps [28], Yahoo maps [29] and MapQuest [30] APIs all have the JavaScript support required for a Web portal.
They all include functions and techniques for applying intelligent mark-up to the map to provide information. There is very
little difference between the map services, so the choice of Google maps here was an arbitrary decision based on the familiarity
with the technology.

Google maps provide many functions to aid in the creation of the disaster Web portal. Most notably, custom markers,
which are a function that conveys any image and can apply action listeners to each. Infowindows is another important function,
which can be modified to pop up on events and can include Web forms. jQuery [31] was included for asynchronous mark-up
of the JavaScript map. Finally, geocoding and reverse geocoding services, which are processes used to convert addressing
information (e.g., street number, street name, suburb, etc.) into geographic coordinates and vice versa.

C. News feeds

A Twitter news feed displays live data from users posting relevant information. The news feed is capable of
asynchronously changing its search terms, which allows users to narrow the list of tweets to ones directly related to a particular
incident.

The simplest method of displaying a twitter news feed is to use a Twitter widget provided directly from Twitter. An
alternative is to use a custom-created widget that draws information from the database. The Twitter widget was chosen, as the
amount of functionality it affords is sufficient to provide the relevant tweets to an incident. The search terms can be narrowed
down using search terms specific to the prescriptive syntax used to report incidents.

D. Prescriptive syntax and Twitter integration

The user base of the Riskr portal is open to all Twitter users, which is a benefit of enlisting the social network site. Posts
can be pulled from Twitter to the Riskr server, and in turn, the server is capable of making posts to twitter. This way,
information that is posted through the Web portal is placed into a Tweet and sent publicly through a preregistered Twitter
account. In parallel, the server is used to detect relevant messages about incidents based on the hashtags and can add this
information to the database.

The format of prescriptive syntax roughly follows the guidelines described in 'Tweak the Tweet' [32]. This method uses a
hashtag as a variable. The server constantly reads the tweet stream and when a relevant tweet is submitted, it will filter the data
into the database. The prescriptive syntax for the hash tags are shown in Table 2.

To ensure that the service is accessible, all hash tags can be omitted from the tweet by the user to encourage them to
participate. Depending on the tweet content and the details omitted, the tweet may not be useful to the service for calculation of
the incident location. However, participation is important and further information could possibly be derived from non-location
data, such as user sentiment, tweet trends and descriptions of the disaster. A major challenge is to fit as much information as
possible in the 140 character limit. Considering this short nature of tweets, hash tags should not be bound to just one format,
for example instead of '#address', '#addy' could be used to save space.

Currently, the Riskr system requires only these main details from tweet. However, any other information is stored in the
database as tweet contents for possible future analysis. Once the tweet has been loaded into the database, the server derives
information to link a user to other users, regions and incidents. If information about a particular incident, region or user are not
available, the system is capable of dynamically creating a new instance of a disaster occurrence.

E. Dynamic incident creation - the trilateration algorithm

There are studies on the trilateration of incidents through estimation of at least three points and their distance[9]. However,
finding an efficient and effective algorithm suitable for this solution was complicated due to the programming paradigms. An
algorithm was developed for this system to find a central location and error margin from three or more inputs of location and
distance (refer Appendix A). The location and error combination provides an estimate of the incident and a possible size or
warning area.

Trilateration of an incident's location can be devised from the geo-location of the tweet source and the distance indicated in
the tweets. The geo-location of a tweet can be found either from the tweet details, or from an address that the user posts in the
content of the tweet. The more tweets about an incident, the more accurate the representation of the location of a disaster.

A simple algorithm was devised to determine the location of a disaster based on position and distance estimates. A single
position and distance pair define a circle, with a centre at position, and distance as the radius. Three or more such pairs are
required for trilateration. Standard trilateration, based on intersection of circles without precise data cannot be used reliably
(e.g. three or more circles may fail to intersect where all the distances are underestimated). The developed algorithm employs
'hill-climbing' to find the best estimate of the disaster’s location. Given perfect position and distance information, the disaster’s
location would fall on each aforementioned circle. Therefore, the best estimate is the point that minimises the sum of distances
to these circles. The algorithm outputs that point, and the sum of quadratic errors of the distances. The error gives an estimate
of the reliability of the data, and of the disaster’s area of influence.

A user's post will not necessarily relate to a nearby incident or tweet, which must be considered in the trilateration
algorithm of Tweet distances. To ensure that separate incidents can be distinguished an error resistance variable is used, which
still allows users a degree of flexibility. The error resistance variable allows a user’s guess to be incorrect. However, if the
distance is below their guess divided by the resistance (currently set at a constant of three), or above their guess multiplied by
the resistance the system will stop considering a relationship between their tweet and other tweets or incidents. In the current
implementation, users can be incorrect to a factor of three. This constant is appropriate for a proof of concept such as that
described in this paper, a clustering algorithm solution will be explored in future work.

TABLE II. PRESCRIPTIVE TWEET FORMATTING AND HASHTAG DESCRIPTIONS

Information Description Example
Disaster Keyword This variable consists of one hash tag representing the type of disaster "#fire", "#flood", "#riot",
Address This section of the tweet consists of the address tag, followed by an address. "#address 20 Foo st, Bartown, QLD"
Distance The distance away from the disaster in kilometres "#distance 1"
Location The geolocation of the tweet, in Latitude, Longitude "#location -19,146"
Incident The hashtag relevant to a current incident "#BartownFire2011"

Incident hashtags/names are dynamically assigned once the incident has been located, to ensure users can all collaborate on
a similar hashtag. This is achieved by applying the region name, disaster type, month and year as one string. In the event that a
disaster type occurs more than once in the same region in a particular year, the hashtag can be amalgamated into region name,
disaster type, 's' and year as one string. For example, BartownFireNov2011 will become BartownFiresNov2011, and still
maintain its relevance when being used for posts. Incidents will appear separate on the server and on the map but users only
need to refer to the one hashtag on Twitter.

1) Region
The Google maps geocoding service also includes a function called ‘reverse geocoding’, which allows a geolocation to be

transformed into an address. The origination of a region name a particular tweet or incident can be found with this function.
The latitude and longitude bounds of the region can then be found by geocoding the region name again. Then, by adding this
information to the system, it can check if a geolocation is inside a particular region. To reduce API calls, when a tweet or
incident with a geolocation is processed, the program checks to see if the location exists within the latitude and longitude
bounds of any stored region. If the location exists, the system can link the object with the region, if not, the Google API is used
to find the name and bounds of the region for storage in the database.

F. The Riskr interface

The Riskr system supports both a Web (Figure 4) and mobile interface. A universal hashtag was required for easy
identification of the Riskr disaster service to the end-users. The length of the service name was significant as Twitter has a
character limit, so the short name 'Riskr' was chosen. The name is original so a person using the hashtag will be referring to the
correct Web service. The name also has a 'Web2.0' style name, similar to the successful Websites Tumblr [33, 34] or Flickr
[35]. A reference to this service uses the format #Riskr in prescriptive tweets.

A mobile interface was developed for mobile and PDA devices, which is a simplified version of the Web interface. The
mobile interface is easy to read and use on a small screen. Importantly, a mobile environment allows the use of a GPS system
to find a user's geo-location.

G. Database implementation

A postgresql database was developed for the Riskr proof-of-concept to store the information derived from Twitter. The
database schema contains seven entities; DisasterType, DisasterKeyword, Region, IncidentRegion, Incident, User, and Tweet
(Figure 5). DisasterType represents any disaster that would be supported in the service. It contains the name of the disaster,
fields for descriptions, messages and warnings, and a URL of a relevant image representing the disaster. DisasterKeyword
represents keywords that could represent different disaster types, which is particularly useful for using as hashtags. Besides the
disaster keyword, this entity also contains a reference to the disaster type and a Boolean value to indicate the preferred
keyword used for describing a specific disaster. The Region entity stores the region's name, location, state, country, postcode,
any relevant region information, and the geolocation bounds of the region, for use in naming disasters. The Incident table
stores the actual occurrence’s date of reporting, dynamically generated name and hashtag, location, size, warning area and

Figure 4 - Riskr Interface with user tweets for two incidents (a fire and a flood) and the location approximated from the tweet information.

associated messages. The IncidentRegion entity bridges the Incidents and Regions entities. The User entity stores the
username, the type of user (e.g., normal, disaster response, energy service, etc), whether the user is blacklisted, and optionally
the region the user is located. The Tweet entity contains every tweet that is read by the service. It contains the raw content of
the tweet, the date of posting, the location if provided, and the distance from an incident if provided. Tweets will always be
linked to a username. Each tweet may be linked to an incident by the specific hashtag or if provided with a location and
distance, which deems it relevant to a nearby occurrence. Commonly, the tweet will include a keyword hashtag that will link it
through DisasterKeyword to DisasterType.

H. Asynchronous markup

Asynchronous updates to the current Twitter feed was required to allow for live updating of the map, so a periodic update
solution was chosen for this pilot study. An important element to a Web 2.0 portal is live updating. In a scenario where updates
happen constantly, the web site must be able to serve the user with updated information without refreshing the page. A format
for a periodic update extension of jQuery proved[36] successful in loading new information dynamically. The updater loads
information from a URL and checks if the information has been updated since the last checkpoint time. If the information is
not different, the updater doubles its time between updates, up to a maximum amount of 8000ms. If the information has been
updated, the update interval is reset to its minimum of 3000ms. Although the current values make little difference to
performance, in a global implementation, this means that if a particular area has little to no activity, the updater will not be
using as much load on the server.

The Riskr implementation of the periodic update queries the server for new tweets or incidents. With this information,
Riskr uses Google's map to place the relevant icon in the correct position and attaches an Infowindow that contains content of
the tweet and details of the incident. The map is also able to visually link tweets to an incident if they are related, and draws a
circle to indicate the parameter of the incident.

There is no such limit on the amount of incident markers shown on the map, but to minimise clutter and improve
performance, the service has been programmed in such a way to limit the amount of tweets shown at any one time. The Google
maps function 'getBounds' can gauge the current viewing area, which ensures that the user is only downloading markup
relevant to the viewable map. The Twitter sidebar is capable of showing Tweets related to the hashtag '#Riskr' and posts
directed to '@RiskrWeb'.

V. USABILITY, RESULTS AND DISCUSSION

An analysis of useability, accessibility and functionality was conducted after the project was tested and all services were
working adequately. The sample of the population adopted for user testing comprised of a demographic breakdown of Twitter
users. The testing methodology involved a questionnaire and interview for both quantitative and qualitative analyses. Specific
elements of feedback that were important to the goals of the Riskr project were the result of the users' feedback and actions

Figure 5: Entity Relationship Diagram

during the trials. There were two distinct tests, one to determine functionality and usability and the second to observe the
adoption of prescriptive syntax during an event.

A. Analysis of usability and functionality

Table 3 shows the Twitter user age demographics extracted from the 2009 statistics recorded by Sysmosis [37]. Also
available was a statistical breakdown on the gender of Twitter users. These statistics show male users account for 47 percent of
the Twitter user base and female users account for 53 percent. The age and gender figures were used to derive a sample
population for the purpose of this study on usability, as they are indicative of the Twitter user population.

TABLE III. AGE DEMOGRAPHICS OF TWITTER USERS (2009) [38]

Age group Percentage of Twitter users
15-19 31
20-24 35
25-29 15
30+ 19

Table 4 shows the sample size of twenty test users that were divided into groups relative to age and gender. The personal
identifiers recorded for each testing subject were their age group, computer skill, and if they were a Twitter user. Each
individual trial involved a fifteen-minute testing session at one of three locations on the Townsville campus of James Cook
University (Queensland, Australia) (Figure 6). The buildings at each location were within a five hundred meter radius of each
other and were familiar to the test subjects. Two usage trials were conducted, one for the Web interface and one for the mobile
interface.

On arrival at the alpha testing session, participants were given an information sheet on the hashtags. They were then
instructed to tweet a 'fire' incident in a specific place on the map from via the Web interface. Following this task, notes were

TABLE IV. AGE DEMOGRAPHICS OF TEST PARTICIPANTS

Age Group Number of female
test users

Number of male test users

15-19 3 3
20-24 4 4
25-29 1 1
30+ 2 2

Figure 6 - Correct geolocation of the hypothetical 'library fire' using 200m as input. The Riskr interface is overlaid on top of the JCU campus map to
indicate geolocation of rooms.

taken of how easily the user was able to pick up and use the service with no explanation. Details of the inputs the participants
used when reporting the incident were also documented along with all queries or confusion from them on how to use the
service.

The users were given a mobile device for the second trial. The users were instructed to report a 'fire' incident in the James
Cook University library after the mobile had detected their geo-location. If the test user was unsure of the location of the
library, they were shown an approximate location relative to their current location on the mobile map. Notes were taken on the
ease of use of the mobile application. Also, the arbitrary distance from the library the users logged. The users completed a
questionnaire and then interviewed about the experience.

The user testing sessions derived information on usability and accuracy. This information included how the users could
easily recognize and mimic prescriptive syntax, the users' ability to accurately judge distances, and a gauge on the ease of
access and use of the portal's interfaces. The users gave feedback on how useful and accessible they perceived the portal to be.
In addition, the accuracy of the location information was assessed to determine the geo-location of the incident the users
logged was close to the actual geo-location of the library.

The usability of the portal was determined from observations of the users' interactions with the portal and the qualitative
review of their experience. Table 5 describes the most notable observations. Specifically, the twenty users rated themselves
between five and ten on a scale of one to ten on computer capability; the average was seven. 55% of the users already had an
existing Twitter account.

The distance input relies on an arbitrary figure logged by the user, which proved to be problematic. Many users had an
issue with scale because the reporting window only supported kilometre input. Some users specified the units of distance
incorrectly, for example stating 100 metres instead of one kilometre. Other users logged incorrect distances due to lack of
knowledge of the scale (e.g., stating a figure only of 100). Approximately forty-one percent made an error in distance.

The three chosen test locations were all approximately 200 meters away from the James Cook University library (refer to
locations A, B and C in Figure 3). The trilateration algorithm considers an error resistance with a factor of three to judge an
estimate as related to an incident, which for this experiment means an estimate was deemed as ‘close’ if it was between 66.67m
and 600m. Many users made errors due to uncertainty over the units they were reporting, for example attempting to report
200m instead of 0.2km. Out of the users that did estimate a distance from the library, approximately 47.1% were in the ‘close’
range. However, if the aforementioned scale issues are taken into account, and the intended distance is considered, 70.5% of
users were able to estimate the distance in a ‘close’ margin. Due to the inaccuracy of the users’ posts, an accurate trilateration
of the incident was not produced.

Most qualitative feedback was positive (Table 6). In the interview, 100% of users indicated if given the chance, they would
use at least one of the services again. However, 10% of users noted that they would only use the disaster logging service if it
had Facebook integration. Some users indicated dislike of the small text limit on messages.

TABLE V. SIGNIFICANT OBSERVATIONS

Trends Comments
55% of users had a twitter account The users are mixed in their experience with the twitter social network, which allows us to gauge the

effectiveness of the portal on inexperienced users.
41% of users made scale errors (200m
instead of 0.2km)

Many users made errors in scale, using meters instead of km. This indicates that the portal would benefit
from support for different units of measurement.

70.5% of users were close in their estimates
of the incident location

There is indication that there is some merit in using user’s estimates to find disaster locations, however
further work must be considered to bring users’ accuracy up.

After reading text sent in prescriptive
syntax, 95% of users were able to correctly
transpose their own message in prescriptive
syntax

Almost all users were able to read, understand, and write their own prescriptive syntax, in a situation that
would be presented to Twitter users if they were following someone using the Riskr service. This shows
that the additional accessibility using prescriptive syntax in social networks is realistic and important.

TABLE VI. QUALITATIVE RESPONSES

Question Average
Response (1-10)

Comments

I found this service easy to use 9 The users generally indicated that the service was easy to use and
accessible given not much information about it. The information given was sufficient to allow me to

use the service
8.85

This service would be useful during disaster
situations

9.55 Users generally perceived the service to be useful both during and after
disaster situations

This service would be useful after disaster situations 8.85
I would use this service again if it were available 9.05 Most users strongly indicated they would use this service and get more

The respondents indicated that users would be drawn to this kind of service during a disaster. The participant interviews
found mostly positive feedback on the experience with the portal and all users indicated they were interested in using this
service again. This observation indicates that using social networks to transmit information regarding disasters is an important
part of a social networking disaster framework. Further, there are implications that any disaster-related information system
available on the Internet would benefit from greater social network interoperability. A portal for reporting and viewing
disasters using existing social networks can be a successful and viable enhancement to disaster management.

B. The prescriptive syntax case study

The users were given a prescriptive syntax case study, where they play the role of someone who has seen a post with
prescriptive syntax, but do not know details of the service. Users were given the text

#riskr #fire #address 16 Alice St, Townsville, QLD #distance 4

The users were then asked to write down information about another disaster (A flood 2 kilometres away from 24 Oscar St,
Townsville QLD) in the same format. The correct response for this question was:

#riskr #flood #address 24 Oscar St, Townsville QLD #distance 2

95% of users answered this question correctly. The issue with scale (using 2km after #distance instead of 2) was the cause
of the one incorrect response.

The users understanding and application of prescriptive syntax proved positive. Specifically, posts of this nature are
readable by the public, even if they are not Twitter users. The format is easily mimicked, which shows the feasibility of using
Twitter as a middleware to encourage more user participation. The user's ability to reformat the prescriptive syntax indicates
that a social network as a middleware is beneficial for any disaster portal.

VI. CONCLUSION

A citizen’s need for communication and information is important in any disaster situation. The collective knowledge of a
social network can be more beneficial in the initial stages of an emergent event than that of the mainstream media [38]. This
collective knowledge provides an opportunity to harness more information from large populations to facilitate and nurture
collaborative efforts in disaster situations.

The Riskr portal has been implemented to collect and disseminate information relevant to the location of an incident. The
portal's framework consists of the Web server, the map API, the news feed, the prescriptive syntax and the mobile
implementation. Tests on the usage and feasibility of the portal in disaster situations were conducted with positive outcomes.
The users were given the mobile Web service to report the incident and their estimation ability and use of the mobile service
were noted. The user testing found the service easy to use and most indicated they would be drawn to this kind of service
during a disaster. The qualitative case study indicated prescriptive syntax is effectively easy to read. Almost all users were able
to see and understand prescriptive posts and use the format to post their own information.

Research and development of social network based disaster reporting and management is emerging. There are new
opportunities available for citizen collaboration and participation during disaster events. The Riskr disaster portal is one such
initiative. The Riskr prototype and the ensuing user testing support evidence of the potential interoperability with social
networks can have when applied to disaster management. The Riskr portal represents a starting point for the development of a
fully autonomous disaster portal in the context of social networks.

VII. ACKNOWLEDGEMENTS

We wish to thank Professor Ian Atkinson, Tristan Davey, Dylan Mathiesen and Barry Mitchell for their helpful feedback
and support.

VIII. BIBLIOGRAPHY

[1] J. Lickfett, et al., "The RESCUE disaster portal for disasters and emergency response," in Proceedings of the 5th

International ISCRAM Conference, Washington, DC, USA, 2008.
[2] J. Camarero and C. A. Iglesias, "Disasters2.0: application of web 2.0 technologies in emergency situations," International

Journal of Emergency Management, vol. 6, p. 261, 2009.

This service would encourage me to become more
involved in discussion of a disaster or incident

8.7 involved if it was available to them, some would only use it if it was
implemented with their current social network of choice.

This service is not necessary 1.35 Users generally did not find the service unnecessary.

[3] A. Bruns, "Towards distributed citizen participation: lessons from WikiLeaks and the Queensland floods," in CeDEM11:
Proceedings of the International Conference for E-Democracy and Open Government, Danube-University Krems,
Austria, 2011, pp. 35-52.

[4] A. Bruns and J. E. Burgess, "The use of Twitter hashtags in the formation of ad hoc publics," in 6th European Consortium
for Political Research General Conference, University of Iceland, Reykjavik, 2011.

[5] T. Heverin and L. Zach, "Microblogging for Crisis Communication: Examination of Twitter Use in Response to a 2009
Violent Crisis in the Seattle-Tacoma, Washington Area," in 7th International Conference on Information Systems for
Crisis Response and Management, 2010.

[6] A. Mills, et al., "Web 2.0 Emergency Applications: How Useful can Twitter be for Emergency Response," Journal of
Information Privacy & Security, vol. 5, pp. 3-26, 2009.

[7] T. Oreilly, "What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software," Social Science
Research Network Working Paper Series, vol. 1, p. 17, 2007.

[8] S. Vieweg, et al., Collective intelligence in disaster: examination of the phenomenon in the aftermath of the 2007 Virginia
tech shooting, 2008.

[9] K. Starbird and J. Stamberger, "Tweak the Tweet: Leveraging Microblogging Proliferation with a Prescriptive Syntax to
Support Citizen Reporting," in 7th International ISCRAM Conference, Seattle, USA, 2010.

[10] M. Efron, "Hashtag retrieval in a microblogging environment," presented at the Proceeding of the 33rd international ACM
SIGIR conference on Research and development in information retrieval, Geneva, Switzerland, 2010.

[11] T. Sakaki, et al., "Earthquake shakes Twitter users: real-time event detection by social sensors," presented at the
Proceedings of the 19th international conference on World wide web, Raleigh, North Carolina, USA, 2010.

[12] B. D. Longueville, et al., ""OMG, from here, I can see the flames!": a use case of mining location based social networks
to acquire spatio-temporal data on forest fires," in Proceedings of the 2009 International Workshop on Location Based
Social Networks, Seattle, Washington, 2009, pp. 73-80.

[13] C. Penner, (2011). #numbers. Available: http://blog.twitter.com/2011/03/numbers.html
[14] J. N. Sutton, "Twittering Tennessee: Distributed Networks and Collaboration Following a Technological Disaster," in 7th

International Conference on Information Systems for Crisis Response and Management, 2010.
[15] L. Barbosa and J. Feng, "Robust sentiment detection on Twitter from biased and noisy data," presented at the Proceedings

of the 23rd International Conference on Computational Linguistics: Posters, Beijing, China, 2010.
[16] C. Castillo, et al., "Information credibility on twitter," presented at the Proceedings of the 20th international conference on

World wide web, Hyderabad, India, 2011.
[17] A. Go, et al., "Twitter sentiment classification using distant supervision," CS224N Project Report, Stanford, 2009.
[18] F. Benevenuto, et al., "Detecting spammers on twitter," 2010.
[19] C. Caragea, et al., "Classifying Text Messages for the Haiti Earthquake," 2011.
[20] A. Karandikar, "Clustering short status messages: A topic model based approach," University of Maryland, 2010.
[21] J. Sankaranarayanan, et al., "TwitterStand: news in tweets," presented at the Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, Seattle, Washington, 2009.
[22] S. Abrol and L. Khan, "TWinner: understanding news queries with geo-content using Twitter," presented at the

Proceedings of the 6th Workshop on Geographic Information Retrieval, Zurich, Switzerland, 2010.
[23] T. O'Reilly, "Web 2.0 Compact Definition: Trying Again," Read, 2006.
[24] T. Onorati, et al., "Interaction Design for Web Emergency Management Information Systems," in 7th International

Conference on Information Systems for Crisis Response and Management, 2010.
[25] M. A. Russell, 21 Recipes for Mining Twitter: Oreilly & Associates Inc, 2011.
[26] Django Software Foundation, (2011). Django | The web framework for perfectionists with deadlines. Available:

https://www.djangoproject.com/
[27] Tweepy, (2011). Tweepy --- A pythonist's interface to twitter. Available: http://tweepy.github.com/
[28] Twitter, (2010). OAuth FAQ | Twitter Developers. Available: https://dev.twitter.com/docs/auth/oauth/faq
[29] Google, (2011). Google Maps JavaScript API V3. Available: http://code.google.com/apis/maps/documentation/javascript/
[30] Yahoo, (2011). Yahoo! Maps Web Services - YDN. Available: http://developer.yahoo.com/maps/
[31] Mapquest, (2011). MapQuest Open Data APIs and Web Services. Available:

http://developer.mapquest.com/web/products/open
[32] The jQuery Foundation, (2010). jQuery: The write less, Do more, JavaScript Library. Available: http://jquery.com/
[33] Z. Yang and Y. Liu, "Quality of Trilateration: Confidence-Based Iterative Localization," IEEE Transactions on Parallel

and Distributed Systems, vol. 21, pp. 631-640, 2010.
[34] M. Moradi Zaniani, et al., "Trilateration target estimation improvement using new Error Correction Algorithm," Isfahan,

Iran, 2010, pp. 489-494.
[35] Tumblr, (2011). Sign up | Tumblr. Available: https://www.tumblr.com/

[36] Flickr, (2011). Welcome to Flickr - Photo Sharing. Available: http://www.flickr.com/
[37] (2009). PeriodicalUpdater for jQuery. Available: http://www.360innovate.co.uk/blog/2009/03/periodicalupdater-for-

jquery/
[38] A. Cheng, et al., (2009). An In-Depth Look Inside the Twitter World Available: http://www.sysomos.com/insidetwitter/

IX. APPENDICES

A. Trilateration Code – ‘trilat.py'
from Tkinter import *
import random

#Code written by Trevor Andersen from JCU
#Modified slightly for application on google maps

def tupleSum(a, b):
 return tuple(a[i] + b[i] for i in xrange(min(len(a), len(b))))

def midpoint(a, b):
 return tuple(x / 2. for x in tupleSum(a, b))

def eucDistance((x, y), (a, b)):
 return ((a ‐ x)**2 + (b ‐ y)**2) ** .5

def quadraticError(circle, (x, y)):
 return circle.distanceToPoint((x, y)) ** 2

class Circle:
 def __init__(self, (x, y), radius, distance=eucDistance):
 self.x = x
 self.y = y
 self.radius = radius
 self.distance = distance

 def setxy(self, x, y):
 self.x = x
 self.y = y
 return

 def getx(self):
 return self.x

 def gety(self):
 return self.y

 def distanceToPoint(self, (x, y)):
 return abs(self.radius ‐ self.distance((self.x, self.y), (x, y)))

 def __str__(self):
 return "Circle((%d, %d), %d)" % (self.x, self.y, self.radius)

def gridSearch(circles, errorFn, deltaX, deltaY, left, right, top, bottom):
 """
 Searches for the point (x, y) that minimises \Sigma errorFn(circle, (x, y))
 over all circles. Each point to the resolution of deltaX and deltaY
 (i.e. if (x, y) is checked, then (x + deltaX, y) is checked etc.)
 within the box defined by left, right, top and bottom is tested.

 Returns the best point and the sum of errors
 """
 best = (left, bottom)
 leastErrorSum = 1e+300

 x = left
 while x <= right:
 y = top
 while y <= bottom:
 errorSum = sum(errorFn(c, (x, y)) for c in circles)

 if errorSum < leastErrorSum:
 best = (x, y)
 leastErrorSum = errorSum

 y += deltaY
 x += deltaX

 return best, leastErrorSum

def hillClimbSearch(circles, errorFn, resolution, left=None, right=None, top=None, bottom=None):
 """
 Searches for the point (x, y) that minimises \Sigma errorFn(circle, (x, y))
 over all circles. The search concludes when no better point can be found
 outside of the range defined by resolution (i.e. x, y +/‐ resolution).

 Returns the best point found and the sum of errors
 """
 CURRENT = (0, 0)
 FORMER = (‐1, ‐1)
 NORTH = (0, ‐1)
 SOUTH = (0, 1)
 EAST = (‐1, 0)
 WEST = (1, 0)

 # establish bounds
 if left != None:
 left = min(c.x ‐ c.radius for c in circles)
 right = max(c.x + c.radius for c in circles)
 top = min(c.y ‐ c.radius for c in circles)
 bottom = max(c.y + c.radius for c in circles)

 posMap = {}
 posMap[CURRENT] = ((left + right) / 2., (top + bottom) / 2.)
 searchResolution = min((right ‐ left) / 4., (bottom ‐ top) / 4.)

 posMap[NORTH] = tupleSum(posMap[CURRENT], (0, ‐searchResolution))
 posMap[SOUTH] = tupleSum(posMap[CURRENT], (0, searchResolution))
 posMap[EAST] = tupleSum(posMap[CURRENT], (‐searchResolution, 0))
 posMap[WEST] = tupleSum(posMap[CURRENT], (searchResolution, 0))

 leastError = 1e+300
 best = CURRENT

 for p in (CURRENT, NORTH, SOUTH, EAST, WEST):
 error = sum(errorFn(c, posMap[p]) for c in circles)
 if error < leastError:
 leastError = error
 best = p

 posMap[FORMER] = posMap[CURRENT]
 posMap[CURRENT] = posMap[best]

 directionToFormer = (‐best[0], ‐best[1])

 #done = False
 while True:
 if best == CURRENT:
 searchResolution /= 2.
 if searchResolution < resolution:
 break

 #print posMap[CURRENT], leastError

 posMap[NORTH] = tupleSum(posMap[CURRENT], (0, ‐searchResolution))
 posMap[SOUTH] = tupleSum(posMap[CURRENT], (0, searchResolution))
 posMap[EAST] = tupleSum(posMap[CURRENT], (‐searchResolution, 0))
 posMap[WEST] = tupleSum(posMap[CURRENT], (searchResolution, 0))

 posMap[directionToFormer] = midpoint(posMap[CURRENT], posMap[directionToFormer])

 leastError = 1e+300
 best = CURRENT

 for p in (CURRENT, NORTH, SOUTH, EAST, WEST):
 error = sum(errorFn(c, posMap[p]) for c in circles)
 if error < leastError:
 best = p
 leastError = error

 posMap[FORMER] = posMap[CURRENT]

 posMap[CURRENT] = posMap[best]

 directionToFormer = (‐best[0], ‐best[1])

 return posMap[CURRENT], leastError

def multiHillClimber(circles, errorFn, resolution, gridSize):
 left = min(c.x ‐ c.radius for c in circles)
 right = max(c.x + c.radius for c in circles)
 top = min(c.y ‐ c.radius for c in circles)
 bottom = max(c.y + c.radius for c in circles)

 deltaX = (right ‐ left) / float(gridSize)
 deltaY = (bottom ‐ top) / float(gridSize)

 leastError = 1e+300
 bestPoint = (0, 0)

 for x in (left + (i + 0.5) * deltaX for i in xrange(gridSize)):
 for y in (top + (j + 0.5) * deltaY for j in xrange(gridSize)):
 point, error = hillClimbSearch(circles, errorFn, resolution, x ‐ deltaX / 2.,
 x + deltaX / 2., y ‐ deltaY / 2., y + deltaY / 2.)
 if error < leastError:
 leastError = error
 bestPoint = point

 return bestPoint, leastError

def testTownsville(circles):
 MIN_X, MAX_X = ‐19, ‐20
 MIN_Y, MAX_Y = 146, 147

 MIN_X *= 1000
 MAX_X *= 1000
 MIN_Y *= 1000
 MAX_Y *= 1000

 point = (abs(MAX_X‐MIN_X) / 2, abs(MAX_Y‐MIN_Y) / 2)

 errorFn = quadraticError

 #change circles origin point
 for c in circles:
 print c.x, c.y
 c.setxy(abs((c.getx()*1000‐MIN_X)), abs((c.gety()*1000‐MIN_Y)))
 c.radius *= 1000
 print "mod"
 print c.x, c.y

 bruteForcePoint = (0, 0)

 hillClimbPoint, hillClimbError = multiHillClimber(circles, errorFn, 0.2, 10)
 #bruteForcePoint, bruteForceError = gridSearch(circles, errorFn, 4., 4., MIN_X, MAX_X, MIN_Y, MAX_Y)

 plot(abs(MAX_X‐MIN_X), abs(MAX_Y‐MIN_Y), circles, point, hillClimbPoint, bruteForcePoint)

def normalTrilat(circles):
 errorFn = quadraticError
 return multiHillClimber(circles, errorFn, 0.2, 10)

def degTrilat(circles):

 #find lowest, highest x and y

 min_x, max_x = circles[0].x, circles[0].x
 min_y, max_y = circles[0].y, circles[0].y

 for c in circles:
 if c.x < min_x:
 min_x = c.x
 if c.y < min_y:
 min_y = c.y

 """
 if c.x > max_x:
 max_x = c.x
 if c.y > max_y:
 max_y = c.y
 """

 min_x ‐= 1
 min_y ‐= 1
 """
 max_x += 1
 max_y += 1
 """

 errorFn = quadraticError

 #change circles origin point
 for c in circles:
 print (c.x, c.y)
 c.setxy((c.x‐min_x), (c.y‐min_y))

 hillClimbPoint, hillClimbError = multiHillClimber(circles, errorFn, 0.2, 10)

 hillClimbPointNormal = (hillClimbPoint[0] + min_x, hillClimbPoint[1] + min_y)

 print hillClimbPointNormal

 return hillClimbPointNormal, hillClimbError

def test():
 MIN_X, MAX_X = 0, 800
 MIN_Y, MAX_Y = 0, 800
 MIN_RAD, MAX_RAD = 1, 30
 CIRCLES = 10

 point = (MAX_X / 2, MAX_Y / 2)

 circles = []
 for c in xrange(CIRCLES):
 x = random.randint(MIN_X + MAX_RAD, MAX_X ‐ MAX_RAD)
 y = random.randint(MIN_Y + MAX_RAD, MAX_Y ‐ MAX_RAD)
 if random.choice((True, False)):
 radius = eucDistance((x, y), point) * (0.5 + 0.5 * random.random())
 else:
 radius = eucDistance((x, y), point) * (1 + 1 * random.random())

 circles.append(Circle((x, y), radius))

 errorFn = quadraticError

 bruteForcePoint = (0, 0)

 hillClimbPoint, hillClimbError = multiHillClimber(circles, errorFn, 0.2, 10)
 #bruteForcePoint, bruteForceError = gridSearch(circles, errorFn, 4., 4., MIN_X, MAX_X, MIN_Y, MAX_Y)

 plot(MAX_X, MAX_Y, circles, point, hillClimbPoint, bruteForcePoint)

def plot(width, height, circles, point, hillClimbPoint, bruteForcePoint):
 tk = Tk()

 canvas = Canvas(tk, width=width, height=height)

 for circle in circles:
 canvas.create_oval(circle.x ‐ circle.radius,
 circle.y ‐ circle.radius,
 circle.x + circle.radius,
 circle.y + circle.radius)

 canvas.create_line(hillClimbPoint[0], hillClimbPoint[1] ‐ 4,
 hillClimbPoint[0], hillClimbPoint[1] + 5, fill='blue')
 canvas.create_line(hillClimbPoint[0] ‐ 4, hillClimbPoint[1],
 hillClimbPoint[0] + 5, hillClimbPoint[1], fill='blue')

 canvas.create_line(bruteForcePoint[0], bruteForcePoint[1] ‐ 4,
 bruteForcePoint[0], bruteForcePoint[1] + 5, fill='green')
 canvas.create_line(bruteForcePoint[0] ‐ 4, bruteForcePoint[1],
 bruteForcePoint[0] + 5, bruteForcePoint[1], fill='green')

 canvas.create_line(point[0] ‐ 2, point[1],
 point[0] + 3, point[1], fill='red')
 canvas.create_line(point[0], point[1] ‐ 2,
 point[0], point[1] + 3, fill='red')

 canvas.pack()
 tk.mainloop()

