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Abstract 

In this study, an attempt was made to improve the packing density of calcium 

phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for 

enhanced degradation resistance of the alloy for implant applications. An organic 

solvent, ethanol, was added to the coating solution to decrease the conductivity of the 

coating solution so that hydrogen bubble formation/bursting reduces during the CaP 

coating process.  Experimental results confirmed that ethanol addition to the coating 

solution reduces the conductivity of the solution and also decreases the hydrogen 

evolution/bubble bursting. In vitro electrochemical experiments i.e. electrochemical 

impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP 

coating produced in 30 % (v/v) ethanol containing coating solution (3E) exhibits 

significantly higher degradation resistance (i.e., ~50% higher polarisation resistance and 

~60% lower corrosion current) than the aqueous solution coating. Scanning electron 

microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was 

denser than that of aqueous coating, which can be attributed to the lower hydrogen 

evolution in the former than in the latter.  Further increase in the ethanol content in the 

coating solution was not beneficial; in fact the coating produced in 70% (v/v) ethanol 
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containing solution (7E) showed degradation resistance much inferior to that of the 

aqueous coating, which is due to low thickness of 7E coating.  
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INTRODUCTION 

In recent years, magnesium and its alloys have been researched extensively for 

biodegradable implant applications.1-5 However, the extremely high degradation rate of 

magnesium in body fluid is a major issue.1,2 Alloying has only improved the 

degradation resistance of magnesium to a small degree,3-6 due to the poor passivation 

behaviour of magnesium in chloride-containing environment.7   

Calcium phosphates (CaP) have been widely researched for implant applications 

because of their analogy to the inorganic component of natural bones.8 Implant 

materials such as stainless steels and titanium alloys have been coated with CaP for 

their high biocompatibility and good bio-affinity.9-11 The osteoconductivity of CaP and 

the slow replacement by the host bone after implantation 12,13 make them very attractive 

for coating on magnesium and its alloys.  A number of high temperature coating 

methods e.g. plasma-spraying and sputtering processes,14 are available for CaP coating 

on metallic substrates, but the decomposition of the coating material at high temperature 

can be an issue.  Electrochemical coating methods are more attractive for this purpose 

because these methods are generally operated at room temperature and can practically 

coat complex structures such as screw implants. Recently, two electrochemical methods 

i.e. galvanostatic (constant-current) and potentiostatic (constant-potential), have been 

used for coating CaP on magnesium alloys.15-17 Generally, these conventional 

electrochemical methods create imperfections in the coating due to hydrogen evolution, 



which is a predominant cathodic reaction for magnesium and its alloys, during the 

coating process. The hydrogen gas bubbles can adhere to the metal and inhibit 

nucleation and deposition of the coating material and lead to non-uniform coating.  In 

addition, hydrogen bubbles bursting could also damage the already formed coating. 

Hence, there is potential to further improve the coating performance i.e. by reducing 

hydrogen evolution during the coating process.  

Potentiostatic method is a better method for coating CaP on magnesium and its 

alloys than galvanostatic method because in the latter method the electrochemical 

potential decreases with time and as a consequence the hydrogen evolution also 

increases. The electrochemical mechanism of CaP formation is given in the below 

equations 1-4:18  

H2PO4
-                   HPO4 +  H+        (1) 

2H2O + 2e-                  H2 +2OH-      (2) 

OH- + H2PO4
-                  H2O + HPO4

2-    (3) 

Ca2+ + HPO4
2- + 2H2O                  CaHPO4.2H2O    (4) 

 

It can be seen from the above equations that hydrogen evolution reaction is an 

essential reaction for precipitation of CaP. However, increase in the hydrogen evolution 

reaction will form large hydrogen bubbles on the metal surface which obviously affect 

the coating process.  Hence, it is critical to control the hydrogen evolution during the 

coating process to form a uniform coating on the metal substrate. The hypothesis made 

here is that by decreasing the conductivity of the coating solution the hydrogen 

evolution can be controlled.  The decrease in the conductivity of the coating solution 



would obviously slow down the coating process but more importantly it could reduce 

hydrogen bubble formation.  

In this study, an organic solvent, ethanol, was added to the coating solution to 

decrease hydrogen evolution during the coating process to produce a highly dense CaP 

coating for improved degradation resistance.  

 
MATERIALS AND METHODS 

 
A magnesium alloy, AZ91, was used as the base material in this study. The 

chemical composition of the alloy is given in Table I.  Electrochemical coating of CaP 

on AZ91 magnesium alloy was carried out using constant-potential method. A typical 

three electrode system i.e. the sample as the working electrode, graphite as the counter 

electrode and Ag/AgCl as the reference electrode, was used for coating purpose. CaP 

was coated on flat samples (3.5  2  0.5 cm). Prior to coating, the samples were ground 

with SiC papers up to 2500 grit and then polished using alumina powder paste (6 m), 

followed by ultrasonic cleaning in acetone and then in ethanol. The coating solution was 

0.1 M Ca(NO3)2 and 0.06 M of NH4H2PO4, the coating produced from this solution is 

hereafter mentioned as aqueous coating.  An organic solvent, ethanol, was added to the 

coating solution in different proportions  i.e.10%, 30%, 50% and 70% (v/v), and the 

coatings produced from these solutions are hereafter mentioned as 1E, 3E, 5E and 7E, 

respectively. The CaP coating was performed at a constant-potential of -3 VAg/AgCl 

(based on previous study)17 for 30 mins. The conductivity of the coating solutions was 

measured using a conductivity meter (EcoSense EC300). The surface morphology of 

the coating was examined using scanning electron microscope (SEM). The coating 

thickness was measured using Dual Scope® coating thickness gauge. The chemical 



structure and composition of coatings were analyzed using Fourier Transform Infrared 

(FTIR) Spectroscopy (PerkinElmer) and X-ray diffraction (XRD). 

In vitro degradation tests were carried out in simulated body fluid (SBF) 

maintained at a physiological pH value of 7.4 and temperature of 37±0.5oC. The 

chemical composition of the SBF is shown in Table II.19 The SBF was buffered with 

tris(hydroxylmethyl)aminomethane (TRIS) to maintain a physiological pH of 7.4.  

Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization 

techniques were used to study the degradation behaviour of the bare metal and the CaP 

coated samples. A potentiostat and a frequency response analyser (Model VersaSTAT3) 

driven by VersaStudio, and a typical three-electrode electrochemical cell were used for 

the electrochemical experiments. The EIS experiments were performed at open circuit 

potential with an AC amplitude of 5 mV over the frequency range 105 Hz to 10-2 Hz.  

Potentiodynamic polarisation experiments were carried out at a scan rate of 0.5 mV/sec. 

Prior to the beginning of the electrochemical experiments, the samples were kept 

immersed in the SBF for one hour to establish a relatively stable potential. Following 

the polarisation tests, the samples were cleaned with distilled water and examined using 

SEM to identify the mode of degradation. 

 
 

RESULTS AND DISCUSSION 
 
 
                Figure 1 shows the conductivity of the coating solution with addition of 

ethanol. As expected, addition of ethanol decreased the conductivity of the coating 

solution. The conductivity of the coating solution decreased from 23mS to 16mS when 

the ethanol content was 10%.  Increase in the ethanol content in the coating solution 

further decreased its conductivity i.e. 30%: 11mS ; 50%: 8mS; and 70%: 5mS.     



              The current density vs time plots of CaP coating in the different coating 

solutions are shown in Figure 2. It can be noted that the current density decreased with 

increase in the addition of ethanol to the coating solution. As a consequence, the 

thickness of the coating also decreased with increase in ethanol addition (Figure 3). The 

coating thickness decreased from 12μm to 6μm when the ethanol content was 30%.  

Increase in the ethanol content to 70% decreased the coating thickness to 2.5μm.     

  
            In order to confirm that the hydrogen evolution also decreased with increase in 

the ethanol addition to the coating solution, cathodic polarisation experiment was 

carried out on the bare metal in distilled water and ethanol-distilled water mixtures. The 

cathodic polarisation curves showed that the cathodic current density decreased when 

the ethanol was added (Figure 4). The decrease in the current density was significantly 

high when the ethanol content reached 70%.  This behaviour clearly indicates that the 

hydrogen evolution reduced with ethanol addition to the coating solution, since 

hydrogen evolution reaction is the predominant cathodic reaction for magnesium and its 

alloys.    

The Nyquist plots of the bare metal and the CaP coated alloy in SBF are shown 

in Figure 5. The bare metal exhibited a high frequency capacitive loop (corresponds to 

charge transfer resistance) as well as a second mid frequency capacitive loop 

(corresponds to relaxation of mass transport through the corrosion product layer),20,21 

which suggest that the bare metal was only partially protected in SBF.  The polarisation 

resistance calculated from the capacitive loops was 700 Ω.cm2. At a low frequency 

range, the bare metal revealed an inductive loop which suggests that the alloy is prone 

to pitting corrosion.22,23  In contrast, the CaP coated alloy in aqueous coating solution 

showed only one capacitive loop. The polarisation resistance of the coated alloy was 



more than an order of magnitude higher than that of the bare metal. The coated alloy 

exhibited a polarisation resistance of 7.8 x 103 Ω.cm2.  A small addition of ethanol 

(10%) to the coating solution produced a coating (1E) which performed better than the 

aqueous coating i.e., the polarisation resistance of the 1E coating was 1.2 x 104 Ω.cm2.  

The polarisation resistance further increased to 1.5 x 104 Ω.cm2 when 30% of ethanol 

was added to the coating solution. However, when the addition of ethanol to the coating 

solution was increased to 50%, the polarisation resistance decreased to 1.2 x 104 Ω.cm2. 

Further increase in the amount of ethanol (70%) decreased the polarisation resistance 

drastically i.e. 7E coating showed a polarisation resistance of only 2.8 x 102 Ω.cm2.  

               The polarisation curves of the bare metal and the CaP coated alloy in SBF are 

shown in Fig 6. The corrosion current density (icorr)
 calculated based on the cathodic 

curves indicated that the coating enhanced the degradation resistance of the alloy 

significantly.  The bare metal showed a corrosion current density of 60 µA/cm2, 

whereas the coated alloy exhibited a current density of only 6 µA/cm2.  Similar to the 

EIS results, when a small content of ethanol was added to the coating solution, the 

degradation resistance of the resulted coating increased. The 1E and 3E coatings 

showed a corrosion current density of 4µA/cm2 and 2.5µA/cm2, respectively. But, 

further addition of ethanol decreased the degradation resistance i.e., the corrosion 

current density of the 5E and 7E coatings was 4µA/cm2 and 18µA/cm2, respectively. A 

comparison of the corrosion current density of the coatings produced in different 

coating solutions suggests that the 3E coating performed better than the aqueous coating 

and also the 1E, 5E and 7E coatings. 

In order to see whether the better performance of the 3E coating as compared 

that of the aqueous coating was due to the chemical structure change, FTIR  analysis 



was carried out on those coated samples. Both the coatings showed identical peaks, 

suggesting that the chemical structure of the coatings was similar (Figure 7). The 

spectrum showed characteristic phosphate peaks at 1122, 1052 and 984 cm-1 and 

calcium hydroxide peaks at 871 and 784 cm-1. The strong peaks at 1122, 1052 and 984 

cm-1 corresponds to phosphate.24 XRD analysis confirmed that the coating mainly 

composed of dicalcium phosphorous dihydrate (CaHPO4·2H2O) as shown in Figure 8. 

The SEM micrographs of the coatings produced in aqueous solution and 30% 

ethanol containing solution are shown in Figure 9.  A few large clusters of particles can 

be seen in the aqueous coating. A higher magnification of the aqueous coating reveals 

flower-like morphology of the particles. The packing of the particles is not dense; gaps 

between the particles are evident. However, the 3E coating showed a different 

morphology. The large clustering observed in the aqueous coating was less apparent in 

the 3E coating. The coating particles were neatly stacked and as a result the packing was 

denser for the 3E coating than that of the aqueous coating.  

      Figure 10 shows the SEM micrographs of post-degraded CaP coated samples. The 

aqueous coating showed significant corrosion attack suggesting that the SBF has seeped 

through the gaps between the particles and corroded the bare metal. However, the 3E 

coating showed lesser attack as compared to the aqueous coating. The denser packing of 

the 3E coating has significantly restricted the permeation of SBF through the coating 

and hence resulted in a better performance.   

A closer look at the current-time plots of the coating (Figure 2) shows that there 

is a repetitive pattern in the current density i.e., a sharp increase followed by a slow 

decrease, during the coating process in aqueous solution.  It is suggested that the sharp 

increase in the current density occurs when hydrogen bubble bursting removes the 



already formed coating and exposes the bare metal. In other words, when the bare metal 

is exposed due to hydrogen bubble bursting, the electrochemical reaction (equation 2) 

occurs immediately and as a result the current increases sharply, thereafter the current 

decreases slowly where the coating grows. The repetitive pattern suggests that there was 

a competition between the CaP deposition and hydrogen bubble bursting during the 

coating process and hence the coating was not uniform and showed poor performance. 

However, this repetitive pattern in the current is less prominent in the coating process in 

ethanol containing solution.  The intensity of the current pattern decreased with increase 

in the addition of ethanol to the coating solution. This indicates that the hydrogen 

bubble bursting was less intense in the coating process in ethanol containing coating 

solution.  Hence one could expect a denser packing of coating particles in ethanol 

containing solution as compared to that in aqueous solution. Accordingly, 3E coating 

exhibited denser packing than that of aqueous coating.  However, it should also be 

noted from Figure 2 that if the ethanol content was very high e.g. 70%, then the current 

density was too low and as a result the coating thickness was also low.  Hence, the 

performance of 7E coating was inferior to that of aqueous coating.  

 
 

CONCLUSIONS 

  The study showed that by reducing the conductivity of the CaP coating solution 

i.e. by ethanol addition, hydrogen bubble bursting decreased significantly during the 

coating process and consequently produced denser packing of CaP coating as compared 

to aqueous coating. In vitro electrochemical experiments and post-degradation analysis 

suggest that CaP coating produced in 30% ethanol containing solution possessed 

significantly higher degradation resistance than that of the aqueous coating. Further 



increase in ethanol content (e.g. 70%) in the coating solution produced thin coating and 

as a result exhibited poor degradation resistance.  
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TABLES 

 

TABLE I  

Chemical composition of AZ91 alloy 

 

 

 

 

 

TABLE II  

Composition of simulated body fluid [19] 

Reagent Amount

NaCl (g/L) 8.036 

NaHCO3 (g/L) 0.352 

KCl (g/L) 0.225 

K2HPO43H2O (g/L) 0.230 

MgCl26H2O (g/L) 0.311 

1.0 M HCl (mL/L) 40 

CaCl2 (g/L) 0.293 

Na2SO4 (g/L) 0.072 

TRIS buffera (g/L) 6.063 

 

 a TRIS buffer = tris(hydroxylmethyl)aminomethane  

 

  

Al Zn Mn Si Fe Mg 

9.18 0.78 0.20 0.01 0.002 Bal. 



 

 

 

 

 

Figure 1.  Conductivity of the coating solution with addition of ethanol.    

  



 

 

Figure 2.  Current density vs time plots of AZ91 magnesium alloy coated at -3V in 

different coating solutions.  

  



 

 

Figure 3. Coating thickness on AZ91 magnesium alloy with addition of ethanol to the 

coating solution.  

  



 

Figure 4.  Cathodic polarization curves of AZ91 magnesium alloy in distilled water 

(DW) and in DW/Ethanol mixtures.  

  



 

  

 

Figure 5.  Nyquist plots of (a) bare metal and (b) CaP coated samples (in different 

coating solutions) in simulated body fluid at 37°C.    

  



 

Figure 6.  Potentiodynamic polarisation curves of bare metal and CaP coated samples 

(in different coating solutions) in simulated body fluid at 37°C 

  



 

 

Figure 7. FTIR spectra of aqueous solution and 30% ethanol containing solution 

coatings.   

  



 

 

 

 

Figure 8.  XRD spectra of aqueous solution coating.  

  



 

Figure 9. SEM micrographs of aqueous solution and 30% ethanol containing solution 

coatings. 



 

 

 

 

 

Figure 10. SEM micrographs of aqueous solution and 30% ethanol containing solution 

coatings after degradation in simulated body fluid at 37°C. 


