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Abstract

Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in
the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal
toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral
activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that
spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we
show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for
per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the
Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm
Helicoverpa armigera was 104.260.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom
peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The
three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an
inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably
contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin
(Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt.
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Introduction

Despite intensive control measures, insect pests reduce world

crop yields by 10–14% annually [1], damage 9–20% of stored

products [2], and vector a wide variety of diseases of human and

veterinary importance [3]. Despite the introduction of biological

control methods such as transgenic crops, chemical insecticides

remain the dominant method of controlling these insect pests.

Every dollar invested in chemical insecticides returns approxi-

mately $4 in protection from crop pests, representing an annual

saving of ,$40 billion annually in the United States alone [4].

Contrary to the one-dimensional view of pesticides as broad-

spectrum and persistent, recently developed insecticides are highly

selective for insect pests [5]. However, because extant chemical

insecticides act on a very small number of molecular targets, more

than 500 species of arthropods, including most key disease vectors,

have become resistant to one or more classes of insecticide [6].

The widespread development of insecticide resistance, together

with the de-registration of key insecticides due to perceived

ecological and human health risks [7], has created an urgent

demand for new insecticidal compounds with novel mechanisms of

action.

Over the past decade, there has been increasing interest in the

potential of insecticidal proteins as bioinsecticides because of their

potentially high phyletic selectivity, low production cost, and the

possibility of incorporating transgenes encoding these proteins into

plants [8,9] and entomopathogens [10]. In particular, Cry proteins

(d-endotoxins) isolated from the bacterium Bacillus thuriengiensis

have had a major worldwide impact on insecticide use. Cry

proteins act by forming pores in the insect midgut membrane that

eventuate in osmotic shock and cell death [11]. Transgenes

encoding Cry proteins have been incorporated into a variety of

crops, including cotton, corn, and potato, and in many cases this

has substantially improved yields and reduced chemical insecticide

use [12]. However, the Cry proteins used in transgenic plants have

a relatively narrow host range, being primarily useful against

lepidopteran pests, and resistance has been reported in some key

pest species [13,14]. Thus, there is significant interest in the

isolation of novel insecticidal proteins with unique modes of action

and wider phyletic selectivity.

Spider venoms are arguably the greatest natural reservoir of

insecticidal toxins. Spiders are the most speciose venomous animal

and, along with predatory beetles, they are the most abundant

terrestrial predators [15]. Individual spider venoms can contain

more than a thousand peptide toxins [16], and most of these are
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likely to have insecticidal activity. Indeed, numerous insecticidal

peptide toxins have been isolated from spider venoms with activity

against a wide range of insect orders [6,15,17]. However, since

spiders inject their venoms into prey using a hypodermic needle-

like fang, there is no evolutionary selection pressure on these toxins

to possess oral activity. Very few insecticidal toxins from spider

venom have been tested for per os activity, which has led to general

acceptance of the dogma that they are unlikely to be orally active.

However, it has been demonstrated that at least some spider-

venom peptides can be orally active [18], which encouraged us in

the present study to develop a direct screen for isolating orally

active insecticidal peptide toxins from spider venom.

We recently showed that the venom of the Australian tarantula

Selenotypus plumipes Pocock (Araneae: Theraphosidae) is potently

insecticidal [19]. By screening this venom for per os activity, we

isolated an orally active insecticidal peptide (OAIP-1) that is highly

lethal to termites, mealworms, and the cotton bollworm. On a

molar basis, OAIP-1 is equipotent with synthetic pyrethroids and

it acts synergistically with neonicotinoid insecticides. The 3D

structure of this 34-residue peptide, which we determined using

NMR spectroscopy, revealed the presence of a cystine knot motif

that typically confers extreme chemical and thermal stability as

well as resistance to proteases [20]. Consistent with this finding, we

show that OAIP-1 remains completely intact for at least one week

at temperatures up to 30uC and is stable for hours in insect

hemolymph.

The current study indicates that it is possible to isolate

insecticidal peptides with high levels of oral activity from the

venom of spiders and most likely other venomous animals that

prey on insects (e.g., centipedes and scorpions). These orally active

peptides might have potential as standalone bioinsecticides or

alternatively transgenes encoding the peptides could be used to

engineer insect-resistant transgenic plants or enhance the efficacy

of entomopathogens.

Materials and Methods

Venom fractionation and peptide sequencing
Venom was collected from S. plumipes spiders and lyophilized as

previously described [19]. Toxins were isolated by fractionating

500 mL of a 10-fold dilution of the crude venom using a Vydac C18

analytical reverse-phase high pressure liquid chromatography (RP-

HPLC) column (5 mm, 4.66250 mm; Grace Davison, Deerfield,

IL). Solvent A was 0.1% trifluoroacetic acid (TFA) in water and

Solvent B was 0.1% TFA in acetonitrile. Toxins were eluted at a

flow rate of 1.0 mL/min using a linear gradient of 5% Solvent B

for 5 min, 5–25% Solvent B over 20 min, then 25–50% Solvent B

over 48 min. Individual fractions were lyophilized, resuspended in

100 mL of water, and further purified using cation exchange

chromatography on a MonoS HR5/5 column (506100 mm; GE

Healthcare, Piscataway, NJ). Buffer A was 0.1 M NaCl (pH 5.5)

and Buffer B was 2 M NaCl (pH 5.5); the gradient used was 5%

Buffer B for 15 min followed by 5–45% Buffer B over 40 min.

Toxins were desalted using RP-HPLC then lyophilized and stored

at 220uC.

Mass spectrometry was performed on an Applied Biosystems

4700 MALDI TOF-TOF Proteomics Analyzer (Carlsbad, CA)

using 2 mL of an RP-HPLC fraction and 0.8 mL of 10 mg/mL a-

cyano-4-hydroxycinnamic acid (CHCA) matrix (dissolved in 50%

acetonitrile/50% water/0.1% TFA) to verify peptide masses.

Individual toxins were reduced and alkylated with 4-vinylpyr-

idine (4VP) using a modified protocol [21]. Purified toxins (20–

30 mg) were dissolved in 100 mL of Milli-Q water then an equal

volume of 4VP buffer (0.25 M Tris, 2 mM EDTA, 10 mM

dithiothreitol (DTT), pH 8.0) was added. The solution was

incubated at 65uC for 20 min to reduce all disulfide bonds. After

20 min, 5 mL 4VP and 20 mL acetonitrile were added. The

alkylation reaction was allowed to proceed in the dark at ambient

temperature for 60 min. Alkylated toxins (45–450 pmol per

sample) were sent to the Australian Proteome Analysis Facility

(APAF, Sydney, NSW, Australia) and the Adelaide Proteomics

Centre (APC, Adelaide, Victoria, Australia) for N-terminal

sequencing.

Determination of insecticidal activity
In order to determine which venom fractions were orally active

in termites, lyophilized RP-HPLC fractions were fed to termites

(Coptotermes acinaciformis (Froggatt), Isoptera: Rhinotermitidae)

collected from colonies maintained by the Department of Primary

Industries and Fisheries (Long Pocket, Indooroopilly, QLD,

Australia). Termites were fed a 20% a-cellulose matrix (Sigma-

Aldrich, St. Louis, MO) mixed with water; the toxin was dissolved

in water, and 20 mL was added to the cellulose matrix to a final

concentration of 350 nmol/g, and then pipetted into Petri dishes.

After the cellulose matrix had dried (to prevent termites from

drowning in wet bait), nine worker termites and one soldier termite

were added to each dish; each toxin dose was replicated three

times. As a comparison, toxins were also injected into mealworms

at a concentration of 350 nmol/g in three replicates of 10 insects.

Mealworms were purchased from Pisces Enterprises (Kenmore,

QLD, Australia). Insects between 3rd and 4th instar (,180 mg/

individual) were used. For each mealworm, 2.6 mL of toxin diluted

in ultrapure water was injected into the metathoracic pleurite.

Injections were performed using a 29.5 gauge insulin syringe (B–D

Ultra-Fine, Terumo Medical Corporation, Elkton, MD). Three

replicates of 10 insects were used for each toxin concentration, and

the same number of control insects were injected with ultrapure

water and maintained under the same conditions.

Chicken feed was provided ad libitum for mealworm food. A

Whatman filter paper saturated with distilled water was used to

maintain humidity in all mealworm experiments except feeding

assays, which used the synthetic orally active insecticidal peptide 1

(sOAIP-1) in the agar diet described below. The agar diet allowed

a homogenous mixture of toxin and diet to be prepared so

preferential feeding on untreated diet would not be possible [22].

All insects were maintained at 24.5uC in the dark at ambient

humidity in sterile Petri dishes.

For feeding assays, an agar-based insect diet was created based

on literature information (Table S1). Instead of using a separate

preparation as a vitamin supplement, the commercially available

children’s vitamin Pentavite (Bayer, Leverkusen, Germany) was

added after the agar had cooled below 65uC. Mealworms were fed

100 mL of the agar diet, with or without 20 mL toxin (or water for

untreated controls). For the choice test, the same size Petri dish

was divided in half and 50 mL of either toxin-treated or untreated

agar was pipetted onto each half and mortality was recorded after

48 h. Cotton bollworms (Helicoverpa armigera, Lepidoptera: Noctui-

dae) were fed 5 mL toxin (or water for untreated controls) in 20 mL

of agar diet, and maintained in 12-well tissue culture dishes. For

assays of synergism using 100 pmol imidacloprid (Sigma-Aldrich)

and 100 pmol sOAIP-1, 20 mL of one toxin or 10 mL of each toxin

was incorporated into the agar diet for H. armigera. After all the

treated diet was consumed, untreated diet was supplied ad libitum.

In all experiments, the mortality of untreated insects was used to

correct the data for mortality due to injection of toxin or

incorporation in the diet. The correction was made using Abbott’s

formula [23], Corrected% Mortality = (12Tn/TC)6100, where

Orally Active Insecticidal Toxin from Spider Venom
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Tn is the percent mortality in the treated group and TC is the

percent mortality in the untreated control group.

Mealworms injected with sOAIP-1 were observed at 5, 30, and

60 min intervals to record behavioral changes. A numeric score

was assigned to each state and averaged to provide an indication of

the effect of the toxin (adjusted for the effects of the injection via

the insects injected with water). The criteria used to score the

response of injected insects to the toxin are summarized in Table

S2.

Transcriptome assembly
Four venom glands from two S. plumipes spiders were prepared

and total RNA was immediately extracted using TRIzol (Invitro-

gen, Carlsbad, CA). The concentration of total RNA was

measured using a Nanodrop (ND-1000, ThermoScientific,

Wilmington, DE) and the quality confirmed using a Bioanalyzer

2100 (Agilent Technologies, Santa Clara, CA). An Oligotex Direct

mRNA Mini Kit (Qiagen, Hilden, Germany) was used to isolate

poly A+ mRNA from the total RNA. Elution was performed first

in 5 mM Tris-HCl (pH 7.5), and subsequently samples were

precipitated with RNAse-free glycogen, sodium acetate, and

ethanol. Samples were resuspended again in RNAse-free water,

and the RNA concentration and quality were measured using the

Nanodrop and Bioanalyzer. The mRNA (227 ng) was submitted

for pyrosequencing using the Roche 454 GS-FLX platform

(Roche, Basel, Switzerland) at the Australian Genome Research

Facility (Brisbane Node, The University of Queensland, St. Lucia,

QLD, Australia).

Raw 454 reads were assembled using SeqMan NGen (v2,

DNAStar, Madison, WI). After assembly, the sequences obtained

from N-terminal sequencing of OAIP-1 were BLASTed against

the raw 454 data. Sequence hits were then matched to contigs

assembled using SeqMan NGen. The complete OAIP-1 transcript,

which included the signal sequence and propeptide region, was

then isolated from the assembled data using Geneious software, v.

5.1.

Solid-phase peptide synthesis
Synthetic OAIP-1 (sOAIP-1) was produced via Fmoc solid-

phase peptide synthesis. Fmoc–protected L-amino acids Arg(Tos),

Asn(Trt), Asp(OtBu), Ala, Cys(Trt), Gln(Trt), Glu, Gly, His(Trt),

Ile, Leu, Lys(Boc), Met, Phe, Pro, Ser(tBu), Thr, Tyr(tBu), Trp and

Val were purchased from Novabiochem (Merck, Darmstadt,

Germany). Amino acid-loaded Fmoc Wang resins were obtained

from the Peptide Institute (Osaka, Japan). N,N-dimethylformamide

(DMF), TFA, N,N-diisopropylethylamine (DIEA) and piperidine

were obtained from Auspep (Tullamarine, VIC, Australia).

Triisopropylsilane (TIPS) and diethylether (Sigma-Aldrich), and

acetonitrile (Merck) were obtained from commercial suppliers.

sOAIP-1 was synthesized on Wang polystyrene resin preloaded

with the first C-terminal amino acid residue (0.2 mmol/g). Chain

assembly was performed following a previously established in situ

neutralization protocol [24]. The process was carried out using a

Symphony Automatic Peptide Synthesizer (Protein Technologies,

Inc., Tucson, AZ). sOAIP-1 was then de-protected and cleaved

from the solid resin with a solution of TFA:TIPS:water at 90:5:5

ratio for 3 h and evaporated under a stream of N2. The desired

product was precipitated in cold diethylether and filtered. The

retained crude peptide product was dissolved in an aqueous

acetonitrile solution (50% acetonitrile, 0.1% TFA). Crude peptide

solutions were lyophilized.

sOAIP-1 was then purified via RP-HPLC using a linear

acetonitrile gradient (15–40% Solvent B over 25 min); the toxin

eluted at ,28% Solvent B. Mass spectrometry was performed as

described above to confirm that a peptide of the correct mass had

been produced. The toxin (0.1 mg/mL) was folded overnight at

room temperature in an ammonium bicarbonate redox buffer

(0.1 M NH4HCO3, pH 8.0, 5 mM reduced glutathione, 0.5 mM

oxidized glutathione). A linear acetonitrile gradient (15–30% over

40 min) was used in a final RP-HPLC step to purify the folded

peptide to .98% homogeneity.

Structure determination
Lyophilized sOAIP-1 was resuspended in phosphate buffer

(10 mM H2KPO4, pH 5.8 in either 95% H2O:5% D2O or 100%

D2O) at a final concentration of 700 mM. Samples (300 mL) were

filtered using a 0.22 mM Ultrafree-MC centrifugal filter (Millipore,

Billerica, MA) and added to a susceptibility-matched 5 mm outer-

diameter microtube (Shigemi, Osaka, Japan). A high-resolution

1D NMR spectrum and 2D 1H-1H TOCSY, 1H-1H NOESY,
1H-1H DQF-COSY, 1H-15N HSQC, and 1H-13C HSQC spectra

were acquired at 298 K using a 900 MHz AVANCE NMR

spectrometer (Bruker, Karlsruhe, Germany) equipped with a

cryogenically cooled probe. All spectra were recorded with an

interscan delay of 1 s. NOESY spectra were acquired with mixing

times of either 200 ms (D2O sample) or 130 ms (H2O sample).

TOCSY spectra were acquired with isotropic mixing periods of

either 90 ms (H2O) or 70 ms (D2O). Standard Bruker pulse

sequences were used with a WATERGATE pulse sequence for

solvent suppression. NMR data were processed using nmrPipe and

the Rowland NMR Toolkit.

TALOS+ was used to predict protein backbone torsion angles

from the NMR chemical shifts [25,26]. The 2D NOESY spectrum

was automatically assigned and an ensemble of structures

calculated without manual intervention using the program

CYANA [27]. Torsion-angle restraints from TALOS+ were used

in the structure calculations. The disulfide bond connectivities

were unambiguously determined to be Cys2–20, Cys9–25, and

Cys19–30 based on preliminary structure calculations. Distance

restraints for the disulfide bonds were used in subsequent rounds of

structure calculation as described previously [28]. PROCHECK

was used to analyze the stereochemical quality of the final

structures [29], which were visualized using PyMol software

(http://www.pymol.org).

In vitro stability assessment
Fourth-instar H. armigera larvae were decapitated and the gut

was removed using forceps. The carcasses were spun in a benchtop

centrifuge (14,000 g for 10 min) to separate the hemolymph from

exoskeleton. For each time point, 200 mL of undiluted hemolymph

was mixed with 30 mg of sOAIP-1. The hemolymph/sOAIP-1

solution was maintained in the dark at room temperature, and

immediately before RP-HPLC analysis the hemolymph/sOAIP-1

solution was again spun in a benchtop centrifuge (14,000 g for

10 min). After centrifugation, 30 mg of a control peptide, v-

HXTX-Hv1a [30], was added to aid quantification and the

sample was filtered using a 0.45 mM filter. The toxins were

separated by RP-HPLC using a linear acetonitrile gradient (5–

40% over 40 min), and the identity of each toxin was confirmed

using mass spectrometry. The percentage of intact sOAIP-1

present at each time point was determined by comparing the area

of the sOAIP-1 peak to that at zero time, both measured relative to

the area of the v-HXTX-Hv1a peak.

Thermal and chemical stability of OAIP-1
The stability of OAIP-1 was determined over a range of

temperatures and pH conditions. The pH range was 3–8, and

samples were prepared by adding 100 ng of OAIP-1 dissolved in

Orally Active Insecticidal Toxin from Spider Venom
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water to an equivalent volume of pH buffer. The pH buffers

comprised 20 mM sodium citrate (pH 3 and 4), 20 mM sodium

acetate (pH 5), 20 mM 2-ethanesulfonic acid (MES, pH 6),

20 mM sodium phosphate (pH 7), or 20 mM Tris (pH 8). pH

stability was examined over seven days at ambient temperature

(22uC). The temperature range examined was 220 to 50uC;

samples were dissolved in water and held in the dark in a

monitored freezer (220uC), at ambient temperature (22uC), in a

temperature-controlled incubator (30 and 37uC), or on a hotplate

(50uC). Each pH and temperature condition was sampled at 0, 1,

2, 5, 24, 48, 72, 120, and 168 h, (n = 2).

pH samples were analyzed by LC-MS using a Nexera UHPLC

system (Shimadzu, Japan) coupled to a TripleTOF 5600 mass

spectrometer (AB SCIEX, USA). Samples (12 ml) were injected

onto a Zorbax C18 column (2.1 mm6100 mm, particle size

1.8 mm; Agilent Technologies, USA) and peptides were eluted at a

flow rate of 250 mL/min using a linear gradient of 5–40% Solvent

B over 10 min. Solvent A was 0.1% formic acid while Solvent B

was 90% water/10% acetonitrile/0.1% formic acid. Mass spectral

data were acquired over the m/z range 850–1350 and processed

using Analyst TF 1.6 software (AB SCIEX). Intact OAIP-1 was

identified by its UHPLC retention time (4.6 min) and from the

major isotope peaks of the +4 protonated species (m/z 930.36–

930.60).

Samples from the temperature stability experiments were

analyzed via MALDI TOF-TOF mass spectrometry using a

4700 Proteomics Analyzer (Applied Biosystems, USA) in order to

identify intact OAIP-1. Samples (2 mL) were mixed with 0.8 mL of

a-cyano-4-hydroxycinnamic acid (CHCA) matrix (10 mg/mL

dissolved in 50% acetonitrile/50% water/0.1% TFA) for mass

spectral analysis.

Results

Identification and purification of active toxins
Fractionation of S. plumipes venom using RP-HPLC yielded ,50

peaks that eluted before 60% Solvent B. The RP-HPLC fraction

marked with an asterisk (*) in Fig. 1A was shown to have activity

when fed to termites, indicating that this fraction must contain

orally-active insecticidal components.

The RP-HPLC fraction with oral activity was further fraction-

ated using an orthogonal cation exchange chromatography step

(Fig. 1B) in order to isolate the active peptide, which was then

desalted using RP-HPLC. The active peptide was given the trivial

name orally active insecticidal peptide 1 (OAIP-1); its rational

name based on the nomenclature for spider toxins [31] that is used

in both UniProt [32] and ArachnoServer [33] is U1-TRTX-Sp1a.

After confirming oral activity in termite feeding assays, the active

OAIP-1 peptide was reduced and the resulting free cysteines were

alkylated using 4VP in order to facilitate N-terminal sequencing by

Edman degradation. Since a single vinyl-pyridine moiety is

covalently attached to each cysteine residue during this process,

the increase in peptide mass following the alkylation procedure

provides a measure of the number of cysteines (and hence the

number of disulfide bonds) in each OAIP. Based on these peptide-

mass analyses, it was determined that OAIP-1 contains six cysteine

residues (i.e., three disulfide bonds).

Preliminary oral insecticidal activity
OAIP-1 was fed to termites (mean individual weight

3.6160.3 mg) at an approximate dose of 350 nmol/g and injected

into mealworms (mean individual weight 244.065.0 mg) at an

approximate dose of 3 pmol/g. At these doses, the purified OAIP-

1 produced mortality above 70% in both insect species (Fig. 1C).

OAIP sequence determination
Partial and complete sequences of native OAIP-1 were obtained

from samples submitted to APC and APAF, respectively (Fig. 2C).

These sequences were BLASTed against the 329,028 raw

sequences obtained from a transcriptome prepared from the

venom glands of S. plumipes. Once the BLAST algorithm identified

a match to a raw 454 read, the partial sequence was traced to an

assembled contig and the complete sequence of the toxin-encoding

transcript was obtained.

Analysis of the OAIP-1 transcript revealed that it is initially

produced as a 94-residue prepropeptide that is posttranslationally

processed to produce the 34-residue mature toxin (Fig. 2A). The

SignalP 4.0 Server [34] was used to predict the signal peptide

cleavage site, while the propeptide cleavage site could be

determined unequivocally from the N-terminal sequence infor-

mation obtained for the fully processed toxin. The cDNA

sequence of the complete transcript is shown in Fig. 2A, and the

translated protein sequence is shown separately in Fig. 2B. The

‘‘GR’’ at the C-terminus of OAIP-1 is a signal for C-terminal

amidation, and mass spectrometric analysis of the purified mature

toxin is consistent with an amidated C-terminal residue. The

OAIP-1 sequence obtained from in silico translation of the

precursor mRNA is in complete agreement with the N-terminal

protein sequence obtained from Edman degradation, as shown in

the sequence alignment in Fig. 2C.

Figure 1. Isolation of an orally active insect toxin from spider venom. (A) RP-HPLC chromatogram showing fractionation of crude venom
from the Australian tarantula Selentypus plumipes. An asterisk highlights the fraction that displayed oral termiticidal activity. (B) Chromatogram from
cation exchange fractionation of the active RP-HPLC fraction shown in (A). An asterisk highlights the fraction with oral termiticidal activity. (C).
Insecticidal assay of native OAIP-1. The peptide was injected into larvae of the mealworm beetle (Tenebrio molitor) at a dose of 3 pmol/g or fed to
termites (Coptotermes acinaciformis) at a dose of 350 nmol/g. Each column represents the mean 6SD of three replicates of 10 insects.
doi:10.1371/journal.pone.0073136.g001
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Search for OAIP homologs
ArachnoServer is a manually curated database that provides

information on the sequence, structure, and function of all known

protein toxins from spiders [33,35]. A BLAST search of the

ArachnoServer database (www.arachnosever.org) using both

mature OAIP-1 toxin as well as the complete OAIP-1 transcript

revealed two close sequence matches (Fig. 2D). The closest match,

with 91% identity, was U27-TRTX-Cj1a, a toxin with unknown

function and molecular target identified in a cDNA library

prepared from the venom glands of the Chinese tarantula

Chilobrachys jingzhao [36]. The next best match with 62% identity

was U1-TRTX-Pc1a, a toxin from the Trinidad chevron tarantula

Psalmopoeus cambridgei that was reported to inhibit intra-erythrocyte

development of the malaria parasite Plasmodium falciparum [37].

Like OAIP-1, U1-TRTX-Pc1a is C-terminally amidated, and the

transcript encoding U27-TRTX-Cj1a also contains a C-terminal

amidation signal. Since all three toxins were isolated from

theraphosid spiders (tarantulas), they are likely to be orthologous.

Insecticidal assays
The injected and per os activity of sOAIP-1 was initially

determined using mealworms because of their previously estab-

lished sensitivity to spider toxins [19]. Dose-response curves,

adjusted for the mortality of untreated controls, were used to

calculate LD50 values, which were 1.8460.8 nmol/g for injected

toxin and 170.560.2 nmol/g for oral administration (i.e., the

Figure 2. Primary structure of OAIP-1. (A) Sequence of transcript encoding the OAIP-1 prepropeptide precursor isolated from an S. plumipes
venom-gland cDNA library. The 39 and 59 untranslated region (UTR), signal sequence, propeptide region, and mature toxin are labeled. The ‘‘GR’’
dipeptide sequence at the end of the mature toxin sequence is labeled AS (amidation signal) as it is a signal for C-terminal amidation. (B) Amino acid
sequence of OAIP-1 prepropeptide precursor obtained from in silico translation of the cDNA sequence shown in panel (A). (C) Comparison of the
amino acid sequence of the mature OAIP-1 toxin obtained from in silico translation of the venom-gland prepropeptide transcript with the N-terminal
sequences obtained from Edman degradation of the native toxin at the APAF and APC protein sequencing facilities. (D) Alignment of OAIP-1 primary
structure with the two closest hits obtained from a BLAST search against the ArachnoServer database. Identical residues are highlighted by white
letters on a black background, while residues that are identical in two of the three sequences are shown on a gray background.
doi:10.1371/journal.pone.0073136.g002
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toxin was ,90-fold less potent when delivered per os) (Fig. 3A).

Remarkably, and somewhat surprisingly, sOAIP-1 was much

more potent against the cotton bollworm H. armigera, a pernicious

crop pest, with a per os LD50 of 104.5 pmol/g (Fig. 3B).

We compared the mortality obtained when H. armigera were fed

either 100 pmol of the widely used neonicotinoid insecticide

imidacloprid (the approximate LD50 value calculated for these

Lepidoptera at their instar and weight) or 100 pmol sOAIP-1, or a

50% mixture of each (i.e., 50 pmol of each insecticide, Fig. 3D).

The 50:50 mixture yielded mortality higher than either insecticide

individually (7265%, compared to 3163% for imidacloprid and

463% for sOAIP-1). The two insecticides are clearly synergistic,

indicating that they likely act on different molecular targets, with

the combination exhibiting a greater than two-fold increase in

activity over imidacloprid alone.

Feeding choice test with OAIP-1
In addition to toxicity assays, a choice test was conducted to

determine whether sOAIP-1 is repellent. This involved exposing a

group of mealworms to both toxin-treated and untreated agar

(Fig. 4); if both agars were fed on equally, it would suggest that

sOAIP-1 is not repellent. Conversely, if the toxin-treated agar was

preferentially consumed, it might indicate that sOAIP-1 acts as an

attractant.

According to Dunnett’s Multiple Comparison Test [38], the

mortality at 48 h was significantly elevated (P,0.01) above that of

the control for all doses except at the lowest two doses (10 and

1 pmol toxin). At 1 pmol toxin, there was no mortality. This

indicates that mealworms fed voluntarily on toxin-treated agar,

even though untreated agar was available to them. The data

concur with what was observed when mealworms were offered

only treated agar (Fig. 3A); the mortality observed in the choice

test (where 50% untreated and 50% treated agar was offered) was

approximately half that seen in the non-choice test (where only

toxin-treated agar was available). This suggests that sOAIP-1 is

neither a repellent that repels insects nor an attractant that is

preferentially consumed by insects.

Phenotypic response to OAIP-1
A scored response test was used to quantify the phenotypic

response to OAIP-1 by comparing the response of the insects

injected with toxin to that of insects injected with water.

Phenotypic responses were observed in mealworms 5, 30, and

60 min following injection of sOAIP-1 (Fig. 5); these were the

Figure 3. Insecticidal activity of synthetic OAIP-1. (A) Dose-response curves resulting from administration of sOAIP-1 to mealworms (larval T.
molitor) via injection (&) or feeding (%). (B) Dose-response curve resulting from feeding sOAIP-1 to cotton bollworms (larval H. armigera) (N). The
calculated LD50 values are shown. (C) Mortality observed at 48 h after feeding 100 pmol imidacloprid, 100 pmol sOAIP-1, or a 50:50 mixture of these
compounds into H. armigera. Each data point is the mean 6SEM of three replicates of 10 individuals.
doi:10.1371/journal.pone.0073136.g003

Figure 4. Choice test with OAIP-1. Mortality of T. molitor larvae (mealworms) determined at 48 h after insects were simultaneously offered toxin-
treated and untreated agar. The toxin concentration in the treated agar ranged from 1 mmol to 1 pmol, and the data represent the mean and SEM of
three replicates of 10 individuals for each dose. The data correlate well with the oral toxicity of sOAIP-1 in a non-choice test (Fig. 3A); the mortality at
the same dose in the choice test is approximately the same as that observed in the non-choice test. Mortality at all but the lowest two doses (10 and
1 pmol) was significantly greater than the untreated agar control (P,0.01). Columns represent the mean 6SD for three replicates of 10 insects for
each dose.
doi:10.1371/journal.pone.0073136.g004
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same insects used to construct the dose-response curve. A score

close to zero represents dead or moribund insects; a score of 2

indicates insects that exhibit an excitatory response but are not

paralyzed and can still move independently. Insects scored at 1

exhibited excitatory paralysis, which is categorized as an

overstimulation of the nervous system that included constant

shaking, rapid leg movements, and uncontrollable spasms resulting

in an inability of the insect to move independently (e.g., to right

itself when turned upside down).

Many arachnid toxins inhibit presynaptic voltage-gated ion

channels [7], and this typically induces a depressant response as

synaptic transmission is inhibited [39]; these toxins would receive a

negative score in the phenotypic response assay. OAIP-1, with

scores of 0.5–2 depending on dose and duration (Fig. 5), clearly

does not have this mode of action. Rather, the excitatory

phenotype induced by sOAIP-1 suggests that it might be an

activator of presynaptic voltage-gated ion channels (e.g., it may be

an agonist or a gating modifier that slows down channel

inactivation) or an agonist of a postsynaptic receptor (the mode

of action of neonicotinoid insecticides such as imidacloprid).

Stability of OAIP-1
OAIP-1 remained completely intact over a period of 7 days at

temperatures ranging from 220uC to 30uC (Fig. 6A). Slow

degradation occurred after 2 days at 37uC but the peptide was

nevertheless 60% intact after 7 days at this temperature (Fig. 6A).

Thus, it is likely that OAIP-1 can be stored for long periods of time

at temperatures below 37uC. Degradation was rapid at 50uC, a

temperature well above the most extreme conditions that OAIP-

1would likely experience in the field, with no intact peptide evident

after 5 days at this temperature (Fig. 6A).

At 22uC, OAIP-1 was completely stable over 7 days at pH 7

and very little degradation was evident at pH 3 and 6 (Fig. 6B).

Surprisingly, the peptide was less stable at the intermediate acidic

pH values of 4 and 5, with about 60% degradation over 7 days

(Fig. 6B). OAIP-1 was least stable under alkaline conditions, with

only ,15% remaining intact after 7 days at pH 8 (Fig. 6B). This

was expected as the pKa of free cysteine is ,8.3 and consequently

disulfide-rich peptides generally become more susceptible to

disulfide opening and shuffling at pH values approaching or

exceeding this value.

We also determined the stability of sOAIP-1 ex vivo in insect

hemolymph at ambient temperature (23uC), which has more direct

relevance to its application as a bioinsecticide. Immediately prior

to RP-HPLC analysis of each hemolymph sample, 30 mg of the

37-residue insecticidal peptide v-HXTX-Hv1a was added to aid

quantitation of the sOAIP-1 level. RP-HPLC analysis of the

hemolymph samples (Fig. 6C) revealed that approximately 40% of

sOAIP-1 remained intact after 24 h exposure to hemolymph

proteases, while 90% of the peptide was degraded after 72 h and

none remained intact after a one-week incubation in undiluted

hemolymph (Fig. 6C).

Determination of the 3D structure of OAIP-1
NMR spectroscopy was used to determine the 3D structure of

sOAIP-1. 2D homonuclear TOCSY, NOESY, and COSY spectra

as well as natural abundance 1H-15N and 1H-13C HSQC spectra

were acquired at 298 K using a 900 MHz Bruker spectrometer.

Sequence-specific resonance assignments were made using

TOCSY and NOESY spectra; the natural abundance HSQC

spectra were primarily used to obtain 15N, 13Ca, and 13Cb
chemical shifts for prediction of backbone dihedral angles using

TALOS+ [25]. The analysis program CCPN [40] was used to

visualize NMR spectra.

NOESY crosspeaks were peak-picked and integrated manually,

then the NOESY peaks were assigned and an ensemble of

structures was calculated automatically using CYANA [27]; the

tolerances used for assigning NOESY crosspeaks were 0.025 and

0.020 ppm in the F1 and F2 dimensions, respectively. 1Ha, 13Ca,
13Cb, and 15N chemical shifts were used in TALOS+ to obtain

predictions for the backbone w and y dihedral angles; these were

converted to dihedral-angle restraints for use in CYANA using an

error range corresponding to twice the standard deviation

estimated by TALOS+. Five hydrogen bonds were clearly

identified in preliminary rounds of structure calculation, and the

corresponding backbone amide protons were found to exchange

slowly with solvent water based on a series of 2D TOCSY and 1D

NMR spectra collected after dissolution of lyophilized peptide in

D2O. Thus, hydrogen bond restraints of 1.7–2.2 Å and 2.7–3.2 Å

were used for the HN-O and N-O distances, respectively, in

subsequent rounds of structure calculations [28].

Figure 5. Phenotypic response of insects to OAIP-1. T. molitor larvae (mealworms) were monitored 5, 30, and 60 min following injection of
sOAIP-1 (horizontally striped, grey, and black bars, respectively). The response was scored relative to the control as excitatory (prolonged muscle
spasms), excitation to the point of paralysis (spasms so severe the insect was unable to move independently), or death/moribund (dead or, if alive,
the insect was unable to right itself when turned on its back). See Table S2 for details for the scoring matrix. No dose produced a depressed state at
any of the time points. Columns represent the mean 6SEM of three replicates of 10 insects for each dose.
doi:10.1371/journal.pone.0073136.g005
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In the final round of structure calculations, 100 structures were

calculated from random starting conformations, then the 20

conformers with the lowest CYANA target function values were

used to represent the solution structure of sOAIP-1. CYANA

assigned 87% (1098 out of 1262) of the NOESY crosspeaks during

the automated structure calculations. The structural ensemble

(Fig. 7A) has very high stereochemical quality, with very few steric

clashes (as indicated by the low clashscore), no Ramachandran

outliers, and a low percentage of unfavorable sidechain rotamers

(Table 1). The highest-ranked member of the sOAIP-1 ensemble

received a MolProbity score [41] of 1.69, placing it in the 89th

percentile relative to all other structures. Atomic coordinates for

sOAIP-1 have been deposited in the Protein Data Bank (PDB)

with accession number 2LL1.

Fig. 7B shows a ribbon representation of the ensemble of 20

sOAIP-1 structures. The structure comprises three disulfide bonds

that form a classic inhibitor cystine knot (ICK) motif [42] in which

the Cys2–20 and Cys9–25 disulfide bonds and the intervening

sections of polypeptide backbone form a 14-residue ring that is

bisected by the Cys19–Cys30 disulfide bond. A b-hairpin, which

often houses the functionally important residues in ICK toxins

[20], projects from the disulfide-rich core of the toxin; the two

b-strands are formed by residues 23–26 and 29–32.

Structural homologues of OAIP-1
The closest sequence match to OAIP-1 is U1-TRTX-Pc1a (62%

identity), for which a 3D structure was previously determined [37].

The two structures overlay well with a backbone RMSD of 1.07 Å

over 174 atoms (Fig. 7C). The major structural difference is an a-

helix spanning residues 12–16 in U1-TRTX-Pc1a. An additional

conformational difference is the presence of two tyrosine residues

(Tyr11 and Tyr26) in U1-TRTX-Pc1a that interact and bring

intercystine loops 2 and 4 close together (Fig. 7D). The

corresponding residues in OAIP-1 (Pro10 and Tyr27) do not

interact, and hence the corresponding backbone regions are well

separated (Fig. 7D). However, the absence of this interaction does

not appear to significantly change the overall conformation of the

toxin. U1-TRTX-Pc1a was reported to have in vitro activity against

the intra-erythrocyte stage of the malaria parasite Plasmodium

falciparum [37] but its molecular target is not known. Thus, the

sequence and structural homology with U1-TRTX-Pc1a unfortu-

nately provides no insight into the likely molecular target of OAIP-1.

A broader search for structural homologues of OAIP-1 using

the Dali server [43] produced 47 structural matches with a

statistically significant Z score $2, almost all of which were toxins

from spiders or venomous marine cone snails. However, the best

six matches were all with ICK toxins from spider venoms; an

alignment of sOAIP-1 with each of these toxins is shown in Fig. 8.

Three of the six closest structural homologues of OAIP-1 block

either insect or vertebrate voltage-gated sodium (NaV) channels.

Superficially, this might appear to provide a clue as to the

molecular target of OAIP-1. However, a block of NaV channels

would not induce the excitatory phenotype noted in insects

following injection of OAIP-1, and hence this is unlikely to be its

mechanism of action. The closest structural homolog of OAIP-1

according to Dali is p-TRTX-Pc1a (Fig. 8A), which is the most

potent blocker known of acid-sensing ion channels (ASICs)

[44,45]. However, ASICs are restricted to chordates, so this

channel cannot be the target of OAIP-1. Another structural

homolog of OAIP-1, purotoxin (Fig. 8E), is a potent modifier of

vertebrate P2X3 receptors, causing a concentration-dependent

prolongation of channel desensitization [46]. However, as for

ASICs, P2X3 receptors are not found in insects [47], so these

receptors cannot be the invertebrate target of OAIP-1.

The only structural homologue that might provide some insight

into the target of OAIP-1 is the insecticidal toxin k-HXTX-Hv1c

from the Australian funnel-web spider Hadronyche versuta. Like

OAIP-1, this toxin induces an excitatory phenotype when injected

into insects [48] or when the toxin is expressed in Drosophila

melanogaster [49]. The target of k-HXTX-Hv1c has proved

enigmatic, but it is known to be a potent blocker of insect

calcium-activated potassium (KCa) channels [50]. OAIP-1 and k-

HXTX-Hv1c have low sequence identity (39%), but the two

structures overlay closely with an RMSD of 0.98 Å (Fig. 8C).

However, with one exception, the functionally important residues

in k-HXTX-Hv1c [51] are not conserved in OAIP-1. Thus,

despite their similar 3D structures and the fact that they both

induce an excitatory phenotype in insects, it is entirely conceivable

that k-HXTX-Hv1c and OAIP-1 have completely different modes

of action. This is not entirely surprising since, as noted previously,

the ICK scaffold is relatively insensitive to changes in intercystine

residues [52], which has enabled spiders to develop diverse

pharmacologies based on this single protein fold; as a result,

structural homology between ICK toxins often provide little

insight into toxin function [17].

Figure 6. Stability of OAIP-1. (A) Thermal stability of sOAIP-1 over 7 days. Note that the data obtained at 220uC, 22uC, and 30uC overlap
completely since OAIP-1 is 100% intact at these temperatures at all time points. OAIP-1 only degrades at temperatures of 37uC and higher. (B)
Stability of sOAIP-1 over a range of different pH conditions. The toxin is least stable at alkaline pH. (C) A series of RP-HPLC chromatograms showing
fractionation of undiluted hemolymph from H. armigera larvae (cotton bollworms) at various times following addition of 30 mg sOAIP-1 (highlighted
in the solid box). Immediately before RP-HPLC fractionation, 30 mg of v-HXTX-Hv1a (dashed box) was added to each sample for the purposes of
quantification. In all experiments shown in panels A–C, intact OAIP-1 was identified using mass spectrometry.
doi:10.1371/journal.pone.0073136.g006
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Discussion

Functional activity of sOAIP-1
Development of a termiticidal assay enabled isolation of an

orally active insecticidal peptide (OAIP-1) from the venom of

Selenotypus plumipes, a large tarantula (theraphosid) native to arid-

zone grassland regions of Australia. Although S. plumipes is one of

Australia’s largest spiders, with mature specimens having a legspan

in excess of 16 cm, it is not harmful to humans. As far as we are

aware, this is the first time an insecticidal venom peptide has been

isolated using an assay based on oral activity.

Synthetic OAIP-1 was successfully produced via chemical

synthesis. Exposure to acetonitrile, TFA, repeated lyophilization,

low pH, or temperatures up to 30uC for one week did not affect

the activity or RP-HPLC profile of the toxin, indicating that it is

highly stable. Thus, chemical synthesis is a plausible route for

large-scale production. The activity of synthetic OAIP-1 was

confirmed in vivo against several taxonomically divergent insect

pests, including cotton bollworms, mealworms, and termites, but

there were significant phlyum-specific differences in activity. In

particular, the oral insecticidal activity of the toxin against cotton

bollworms, a pernicious pest of cotton and other crops, was 1644-

fold higher than against mealworms, a stored grain pest (LD50

values of 104 pmol/g and 171 nmol/g, respectively). Although we

did not measure the LD50 for oral administration of OAIP-1 to

termites, it is expected to be similar to that for mealworms given

that a single dose of 350 nmol/g caused ,70% mortality (Fig. 1C).

For nuisance pests like cockroaches, filth flies, and blood-feeding

mosquitoes, a repellent insecticide can be useful. However, in the

case of insecticides used to target pest social insects (termites, ants,

wasps), a non-repellent insecticide that can be horizontally

transferred is more desirable. Based on the results of the choice

test, it appears that OAIP-1 is not repellent. Experiments using

lipophilic tracking dyes could be used to determine whether the

insecticide could be horizontally transferred, an important feature

for commercially-viable termiticides [53].

Structural characterization of sOAIP-1
OAIP-1 is a member of a large class of disulfide-constrained

peptides known as knottins [54]. Despite being structurally similar

to several other spider toxins, these structural homologies provide

few clues about the molecular target of OAIP-1. Perhaps the most

intriguing structural homology is with another excitatory insecti-

cidal neurotoxin, k-HXTX-Hv1c. However, the pharmacophore

residues previously elucidated for k-HXTX-Hv1c [51] are not

conserved in OAIP-1 and there are significant differences between

the two structures despite the overall similarity in their backbone

conformations. For example, the five-residue b-hairpin loop that

houses several of the pharmacophore residues in k-HXTX-Hv1c

is much shorter in OAIP-1, comprising only two residues (Fig. 8C).

The other structurally homologous arachnid toxins have activity

in vertebrates, but their insecticidal activity has often not been

considered or determined. Of the non-arachnid structural

homologs, several less close matches provide an interesting context

for the potential evolution of sOAIP-1 as a venom component.

VHv1.1 from the venom of the parasitic wasp Campoletis sonorensis

(Hymenoptera: Ichneumonidae) was the ninth closest structural

homolog of sOAIP-1 [55]. This toxin induces sublethal effects

when fed to pestiferous larvae of the noctuid moths Heliothis

virescens and Spodoptera exigua [56]. Matches 20, 22, and 30 were to

antimicrobial tachystatins isolated from horseshoe crab hemo-

lymph, a component of the crustacean’s immune response [57].

Figure 7. Structure of OAIP-1. (A) Stereoview of the ensemble of 20 OAIP-1 structures. The three disulfide bonds and the N- and C-termini are
labeled. (B) Schematic (Richardson) representation of OAIP-1. b-strands are colored blue and disulfide bonds are shown as red tubes. The four
intercystine loops (loops 1–4) are labeled. (C) Overlay of OAIP-1 (blue) and the orthologous toxin U1-TRTX-Pc1a (orange). The intercystine loops and
termini are labeled. (D) Overlay of OAIP-1 (blue) and the orthologous toxin U1-TRTX-Pc1a (orange). Residues Y11 and Y26 in U1-TRTX-Pc1a (red tubes)
interact in such a way that loops 2 and 4 are brought into close proximity. The equivalent residues in OAIP-1, P10 and Y27 (light blue tubes), do not
interact and consequently loops 2 and 4 are further apart.
doi:10.1371/journal.pone.0073136.g007
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Thus, OAIP-1 might have been recruited into spider venom by

duplication of an ancestral tachystatin-like gene. Interestingly,

tachystatins bind chitin, which, in addition to being the major

component of the insect exoskeleton, is also found in the

peritrophic matrix, a sac-like structure that surrounds the gut

lumen of most insects. It should be interesting to examine whether

chitin binding plays a role in the ability of OAIP-1 to traverse the

insect gut epithelium in order to reach its presumed nervous

system target.

Application of OAIP-1 to insect pest control
Table 2 compares the oral toxicity of OAIP-1 against H. armigera

with that of several commercially available pyrethroid insecticides.

Remarkably, on a molar basis, OAIP-1 is more potent than any of

these chemical insecticides. The oral potency of OAIP-1, its rapid

insecticidal action (i.e., death within 24–48 h), and its facile

production via chemical or recombinant methods makes this

peptide a good candidate for deployment as a foliar spray against

lepidopterans and possibly other pest insect species. Moreover, the

toxin should degrade in the environment to innocuous breakdown

products.

Since OAIP-1 is a genetically encoded peptide toxin it should

also be possible to engineer transgenes encoding OAIP-1 into

plants. Transgenes encoding insecticidal spider-venom peptides

have already been used as an insect-resistance trait in cotton [58],

poplar [9], and tobacco [8,59]. While the introduction of crops

expressing insecticidal d-endotoxins (also known as Cry toxins or

simply Bt) from the bacterium B. thuringiensis has revolutionized

global crop production, there are concerns that constitutive

expression of Bt in transgenic plants will ultimately expedite

resistance development. An OAIP-1 transgene might be good

candidate for trait stacking with Bt since: (i) it has a completely

Table 1. Structural statistics for the ensemble of OAIP-1
structures1.

Experimental restraints2

Interproton distance restraints

Intraresidue 135

Sequential 202

Medium range (i–j,5) 103

Long range (i–j$5) 173

Hydrogen-bond restraints3 10

Disulfide-bond restraints 9

Dihedral-angle restraints (w,Y, x1) 49

Total number of restraints per residue 20.0

R.m.s. deviation from mean coordinate structure (Å)

Backbone atoms (residues 1–33) 0.1460.02

All heavy atoms (residues 1–33) 0.6260.07

Stereochemical quality4

Residues in most favored Ramachandran region (%) 93.460.7

Ramachandran outliers (%) 060

Unfavorable sidechain rotamers (%) 13.462.9

Clashscore, all atoms5 0.160.5

Overall MolProbity score 1.860.1

1All statistics are given as mean 6S.D.
2Only structurally relevant restraints, as defined by CYANA, are included.
3Two restraints were used per hydrogen bond.
4According to MolProbity (http://molprobity.biochem.duke.edu).
5Defined as the number of steric overlaps .0.4 Å per thousand atoms.
doi:10.1371/journal.pone.0073136.t001

Figure 8. Structural homologues of OAIP-1. Alignment of the structure of OAIP-1 (orange) with the top six structural homologues (all shown in
green) as ranked by the Dali server [43]. The activity of each structural homologue is indicated, as is the Z score and RMSD of the alignment. Disulfide
bonds are shown as solid tubes and the N- and C-termini are labeled.
doi:10.1371/journal.pone.0073136.g008
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different mechanism of action; (ii) OAIP-1 activity is likely to be

synergized by Bt, which causes lysis of midgut epithelial cells [11]

and therefore should facilitate OAIP-1 movement into the

hemocoel; (iii) whereas Bt toxins are specific for the insect orders

Lepidoptera, Coleoptera, Hymenoptera and Diptera, OAIP-1 is

likely to have a broader range of insecticidal activity.

An OAIP-1 transgene could also be used to enhance the efficacy

of insect pathogens. A wide range of bacterial, viral, protozoan,

and fungal pathogens can infect insects. Many of these have

potential as bioinsecticides, and some fungal entomopathogens are

already used commercially [60]. However, a major disadvantage

of many of these entomopathogens is their slow kill time (typically

.7 days). It was recently demonstrated [10] that the potency and

speed of kill of the entomopathogenic fungus Metarhizium anisopliae

against mosquitoes and locusts could be substantially improved by

engineering it to express AaIT, an insecticidal peptide derived

from scorpion venom. Engineering this fungus to express OAIP-1

might confer a similar enhancement of potency and kill time.

In summary, we have isolated an orally active insecticidal

peptide from spider venom that is more potent against cotton

bollworms, an extremely important agricultural pest, than many

chemical insecticides. This peptide could potentially be deployed

as a foliar spray or a transgene encoding the peptide could be used

as an insect resistance trait in crop plants or be used to enhance

the efficacy of insect pathogens.
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