Shade tolerance of tropical forage legumes for use in agroforestry systems

Thesis submitted by Heath James Addison B.Agr.Sc(Hons), University of Tasmania (1998) June 2003

For the degree of Doctor of Philosophy in Tropical Plant Sciences School of Tropical Biology James Cook University

STATEMENT OF ASCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and by microfilm or other means, allow access to users in other approved libraries

All users consulting this thesis will have to sign the following statement:

In consulting this thesis, I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

Signature

Date

Abstract

The benefits of raising livestock in conjunction with tree plantations include the better use of land resources, an increased and diversified income, soil stabilisation and the potential for higher plantation yields through better weed control, nutrient cycling and nitrogen accretion. However, the significant acceptance of tree-pasture (silvopastoral) systems has been impeded by the belief that productive pasture cannot be maintained under tree canopies.

The aims of this project were to identify forage legume species suitable for use in silvopastoral systems in order to improve pasture quality under differing rainfall regimes in the tropics. A total of 35 species and cultivars of tropical pasture legumes were tested for shade tolerance beneath four levels of shade under shadehouse conditions, with a range of agronomic and ecophysiological parameters measured, including biomass production, root:shoot ratio, root nodulation, foliar nutrient content, time to flowering, seed production and light response curves.

Production of both above and below-ground biomass was strongly depressed by shading, although the extent of this varied between species. Many of the most promising species yielded well under both the control and the shaded treatments, indicating that they may be suitable for use in both younger, less shaded plantations and older, heavily shaded plantations. Concentrations of leaf N were affected by shading with increased N found under shade treatments compared to the control. There were no similar effects on leaf P concentrations. Root nodulation was strongly affected by shading and was greatly reduced or entirely absent under shaded treatments, suggesting that fixation of atmospheric nitrogen may be lower under shade than in the open. Shading prolonged the vegetative growth in many species, delaying flowering and greatly reducing seed production, although the size of individual seeds was maintained at the expense of seed numbers. An increase in the fraction of readily germinable seed and a decrease in the fraction of hard seed were found in several species when the seed was produced under shade under shade. Light curves were not always correlated, with the production of dry matter with several species that appear shade-tolerant from dry matter production producing light response curves suggesting otherwise.

ii

Field trials were conducted in both the wet and seasonally dry tropics to examine the growth of selected legume species under timber plantations that were already established for a number of years, and under a relatively young Nelder wheel plantation of African Mahogany (Khaya senegalensis). Field trials, particularly the Nelder wheel trial, demonstrated the dynamic nature of pasture growth, particularly in the seasonally dry tropics, and the need for continuous monitoring of such trials to form a more complete picture. Arachis pintoi was clearly the best performing species unde a fiveyear-old mixed rainforest species/Eucalyptus pellita plantation in the wet tropics. In the seasonally dry tropics *Clitoria ternatea* and *Centrosema brasilianum* proved to be the best performing cultivars beneath both a conventional, 12-year-old African Mahogany stand and the Nelder wheel, with pasture production depressed by increasing tree densities. Pasture production was found to decrease exponentially with increasing tree density in the Nelder wheel plantation. Both Clitoria ternatea and Centrosema brasilianum were observed to climb trees during the trial, indicating the potential of vigorous climbing species to smother young or small trees. Soil moisture content was also found to decrease as tree density increased, suggesting that in the seasonally dry tropics light may not always be the limiting factor for growth.

Sixteen species were identified which are potentially useful, shade tolerant or shade adapted, pasture species for use beneath tree plantations in both the wet and the seasonally dry tropics. The most promising species suited to the wet tropics were *Arachis pintoi, Centrosema acutifolium, C. macrocarpum, C. pubescens, Calopogonium mucunoides, Desmodium intortum, D. ovalifolium, D. canum, D. heterophyllum, D. uncinatum* and *Pueraria phaseoloides*. The most promising species suited to the seasonally dry tropics were *Arachis stenosperma, Centrosema brasilianum, Clitoria ternatea, Macroptilium atropurpureum* and *M. lathyroides*.

Many of the species identified as being shade tolerant, or relatively productive under shade have a climbing habit which can cause concern due to the potential smothering of young or small trees. When climbing species are removed the remaining species suited to the wet tropics are *A. pintoi*, *D. canum*, *D. heterophyllum*, *D. intortum* and *D. ovalifolium*, and those to the seasonally dry tropics are *A. stenosperma* and *M. lathyroides*. However climbing species may still be of use beneath older plantations or

iii

where a higher level of pasture management is acceptable to prevent the smothering of trees through a greater control of the intensity and frequency of grazing or cutting.

Additional research is required to examine the long-term persistence and performance of the species identified in this study as plantations age and shade levels increase. The compatibility of suitable legume species with shade tolerant grasses is an important aspect, which will affect the production and persistence of the legume species, that has seen relatively little research in the past.

Acknowledgements

There are many people who have contributed in many ways to this thesis, some directly and many in less tangible ways. I will endeavour to name you all but if I forget anyone please forgive me!

Over and above all others I would like to thank my supervisor, Dr. Bob Congdon, for all his help and advice. From my first enquiries from Vancouver Island, to his and Cheryl's hospitality during my first few days and nights in Townsville, to the proof reading of the finished product, he has been a great help and gone over and above the call of duty during my time at JCU.

I would also like to thank those others who contributed to the project through their advice and help. Foremost among these is Cherie Stafford, from her help in the lab to battling march flies in the field, I could not have done without her help. I'm sorry but I couldn't get your name in golden ink as promised!

My thanks are also due to Dr. Joe Holtum for his assistance with that machine I love to hate, the Li-Cor 6400, and his assistance with the ecophysiological aspects of the project. I also thank Adjunct Professor Peter Brownell for his help and the many interesting talks, Mr. Chris Gardiner for his help with many aspects of the project from finding the elusive rats nest in the shade house to his help in the field and Professor Ross Coventry for his help with all things to do with soil.

For their advice on forestry in north Queensland thanks are due to Rod Collins and Gary Sexton, as is to Dr. Bruce Cook, Dr. Arthur Cameron, Dr. Harry Bishop and the Genetic Resources Centre for the supply of seed. I'm also indebted to Dr. Jeff Corfield for his advice on pasture sampling techniques and to Dr. David Ratkowsky for his statistical advice, particularly for not trying to handball me when confronted with the Nelder Wheel!

For allowing the use of his land and the many interesting discussions and debates (of which I don't think I came out on top in a single one), I thank the unforgettable Errol Wiles, one of the most interesting people I have ever met. For also allowing the use of their land I extend my thanks to the Burdekin Agricultural College.

For supporting the project financially, through the donation of African Mahogany seedlings and making their land available for use assisting the project I extend my thanks to the Rural Industries Research and Development Corporation (RIRDC), the Community Rainforest Reforestation Program (CRRP) and last but not least James Cook University.

For keeping life interesting at home for three years I wish to thank my housemates Joe, Corrine and Andre. From the 17 Florey St. circus, (united against the Wizard) to the 4 Pilea Crt. zoo (awash with testosterone), life at home was never so interesting. Rest assured guys I may have left Townsville but Mr. Furious is alive and well with plenty of F5's to come!

Although you will probably never read this I thank you, Rosie, for your all to brief company and our chats over the years.

Finally thanks are due to my family, Mum, Dad and Ely for all being a bit strange in their own way and for their support during my time in Townsville.

Table of Contents

1 - Introduction	1
1.1 Pre-amble	1
1.2 Potential advantages and disadvantages of silvo-pastoral systems	1
1.3 Effects of trees on the below canopy environment	
1.3.1 Light	
1.3.2 Soil moisture	
1.3.3 Nutrients	
1.3.4 Pasture production beneath tree plantations	
1.3.5 Pasture quality	
1.3.6 Relative humidity	
1.3.7 Temperature	
1.4 Legume genotypes studied	
1.5 Conclusions	
Chapter 2 – Effects of shade on the comparative performance of forage legumes grown	
under glasshouse conditions- agronomic properties	
2.1 Introduction	
2.2 Materials and methods	
2.2.1 Trial Establishment	
2.2.2 Measurement of Agronomic Properties	
2.3 Results	
2.3.1 Above-ground Biomass	
2.3.2 Root Biomass	
2.3.3 Total Plant Biomass	
2.3.4 Root Nodulation	
2.3.5 Nitrogen content of leaf material	
2.3.6 Phosphorus content of leaf material	
2.3.7 Days to first flower	.127
2.3.8 Production of seed	.136
2.3.9 Seed size	.139
2.3.10 Seed germination	.143
2.3.11 Shoot:root ratio	.158
2.4 Discussion	.167
2.4.1 Species adapted to wet tropical areas	.167
2.4.2 Species adapted to wet/dry tropical areas	.176
2.4.3 Other parameters	.184
2.5 Conclusions	
Chapter 3 - Light response curves and physiological measurements	.192
3.1 Introduction	
3.2 Materials and methods	
3.2.1 Plant production and growing conditions	
3.2.2 Gas exchange measurements	
3.3 Results	
3.4 Discussion	
3.5 Conclusions	

Chapter 4 - Performance of selected legumes beneath established tree plantations 4.1 Introduction	
4.2 Production, ground cover and persistence of six forage legume accessions benea	
a 5-year-old Eucalyptus pellita and mixed rainforest species plantation	
4.2.1 Materials and methods	
4.2.2 Results	
4.2.3 Discussion	
4.2.4 Conclusions	
4.3 Performance of seven species of tropical forage legume beneath a 12-year-old	230
African mahogany (Khaya senegalensis) plantation.	221
4.3.1 Materials and methods	
4.3.2 Results	
4.3.2 Results	
4.3.4 Conclusions	248
4.9.4 Conclusions	230
	0
four accessions of Arachis under open conditions and beneath two densities of Khay senegalensis.	
4.4.1 Materials and methods	
4.4.1 Materials and methods	
4.4.3 Discussion	
4.4.4 Conclusions	
4.5 General conclusions and summary	203
(Khaya senegalensis) Nelder Wheel sown with four commercially available pasture	
legumes	
5.1 Introduction	267
5.1 Introduction5.2 Materials and methods	267 268
5.1 Introduction5.2 Materials and methods5.2.1 Trial site	267 268 268
 5.1 Introduction 5.2 Materials and methods	267 268 268 268
 5.1 Introduction	267 268 268 268 268 270
 5.1 Introduction	267 268 268 268 270 270
 5.1 Introduction	267 268 268 268 270 270 270 272
 5.1 Introduction. 5.2 Materials and methods	267 268 268 268 270 270 270 272 272
 5.1 Introduction	267 268 268 268 270 270 270 272 272 272
 5.1 Introduction	267 268 268 268 270 270 270 272 272 272 273
 5.1 Introduction. 5.2 Materials and methods. 5.2.1 Trial site	267 268 268 268 270 270 270 272 272 272 273 282
 5.1 Introduction 5.2 Materials and methods	267 268 268 270 270 270 272 272 272 273 282 282
 5.1 Introduction. 5.2 Materials and methods. 5.2.1 Trial site	267 268 268 268 270 270 270 272 272 272 273 282 282 283
 5.1 Introduction	267 268 268 268 270 270 272 272 272 273 282 282 283 284
 5.1 Introduction 5.2 Materials and methods	267 268 268 268 270 270 272 272 272 273 282 282 283 284 285
 5.1 Introduction. 5.2 Materials and methods. 5.2.1 Trial site	267 268 268 268 270 270 272 272 272 273 282 282 283 284 285 287
 5.1 Introduction. 5.2 Materials and methods	267 268 268 268 270 270 272 272 272 273 282 283 283 284 285 287 287
 5.1 Introduction. 5.2 Materials and methods. 5.2.1 Trial site	267 268 268 268 270 270 272 272 272 273 282 283 283 284 285 287 287
 5.1 Introduction 5.2 Materials and methods 5.2.1 Trial site 5.2.2 Trial establishment 5.2.3 Measurement of the light levels and soil moisture content 5.4 Pasture Sampling 5.3 Results 5.3.1 Shade levels 5.3.2 Soil moisture content 5.3.3 Pasture production and composition 5.4 Discussion 5.4.1 Shade levels 5.4.2 Soil moisture content 5.4.3 Total dry matter yield 5.4.5 Grass yield 5.4.5 Weed yield 5.5 Conclusions 	267 268 268 268 270 270 272 272 272 273 282 283 283 284 285 287 287 287 290
 5.1 Introduction 5.2 Materials and methods 5.2.1 Trial site 5.2.2 Trial establishment 5.2.3 Measurement of the light levels and soil moisture content 5.4 Pasture Sampling 5.3 Results 5.3.1 Shade levels 5.3.2 Soil moisture content 5.3.3 Pasture production and composition 5.4 Discussion 5.4.1 Shade levels 5.4.2 Soil moisture content 5.4.3 Total dry matter yield 5.4.5 Grass yield 5.4.5 Weed yield 5.5 Conclusions 	267 268 268 268 270 270 272 272 272 273 282 283 284 285 287 287 287 290
 5.1 Introduction	267 268 268 268 270 270 272 272 272 273 282 282 283 284 285 287 287 290 292 292
 5.1 Introduction 5.2 Materials and methods 5.2.1 Trial site 5.2.2 Trial establishment 5.2.3 Measurement of the light levels and soil moisture content 5.4 Pasture Sampling 5.3 Results 5.3.1 Shade levels 5.3.2 Soil moisture content 5.3.3 Pasture production and composition 5.4 Discussion 5.4.1 Shade levels 5.4.2 Soil moisture content 5.4.3 Total dry matter yield 5.4.5 Grass yield 5.4.5 Weed yield 5.5 Conclusions 	267 268 268 268 270 270 272 272 272 273 282 283 283 284 285 287 287 287 290 292 292 294

References

List of Illustrations and Diagrams

Figure 1.1 Photosynthetic photon flux densities (PPFD) levels in the open and beneath 2282 stems/ha of <i>Khaya</i>
senegalensis
Figure 2.1 Maximum, minimum and mean air temperatures during trial period and long term average weather data
Figure 2.2 Regressions of overall production of above-ground biomass means, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.3 Plants from each shade treatment on the day of harvest74 – 79
Figure 2.4 Regressions of overall production of root biomass means, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.5 Regressions of overall production of total biomass means, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.6 Regressions of root nodulation level means, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.7 Regressions of leaf nitrogen content, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.8 Regressions of leaf phosphorus content, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.9 Regressions of days to first flower, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade
levels

Figure 2.10 Regressions of seed production, with standard errors, of 14 species of wet/dry tropical forage legume grown beneath four shade levels, 119 days after planting
Figure 2.11. Regressions of seed production, with standard errors, of 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 2.12 Changes over time in mean germination rates and standard errors of seed produced under control (0%shade), 63%, 76% and 84% shade
Figure 2.13 Regressions of log root:shoot ratios, with standard errors, by 7 and 14 species of wet tropical and 14 species of wet/dry tropical forage legume grown beneath four shade levels
Figure 3.1 Example of a light response curve and critical points
Figure 3.2 Light response curves (CO ₂ assimilation vs. light intensity) and line of best fit of the initial linear section of the curve of 19 species of tropical forage legume adapted to the wet tropics
Figure 3.3 Light response curves (CO ₂ assimilation vs. light intensity) and line of best fit of the initial linear section of the curve of 13 species of tropical forage legume
adapted to the wet/dry
adapted to the wet/dry tropics

Figure 4.6 Location of species relative to one another	2
Figure 5.1 Rainfall (mm) recorded at James Cook Universities Townsville campus from January 1999 to August	n
2002	0
Figure 5.2 Average total dry matter production of forage beneath eight densities of <i>Khaya senegalensis</i> on three	
dates	9

List of Tables

Table 1.1 General differences between leaves of plants adapted to high and low light	
intensities7	/
Table 2.1 Species of legumes tested for shade tolerance – species suited to the wet	
tropics tested in (a) January to May 2000, (b) tested in February to May 2001, and (c)	
the seasonal wet/dry tropics tested in June to October 2001	54
Table 2.2 Major nutrients in the fine earth fraction (<2mm) of the soil used in shade	
house pot trials	56
Table 2.3. Total number of seeds used for each species, under each shade treatment in	
the germination test	60
Table 2.4 Statistical summary of three shade house trials examining effects of shade on	
a range of properties in 35 accessions of tropical forage legume	63
Table 2.5 Summary of regression analysis of three shade house trials examining effects	
of shade on a range of properties in 35 accessions of tropical forage legume	64
Table 2.6 Means, standard errors and LSD groupings of above-ground biomass (g per	
plant, oven dried at 70°c) production by (a) 7, (b) 14 and (c) 14 legume species grown	
under 4 shade levels	66
Table 2.7 Means, standard errors and LSD groupings of above-ground biomass (g per	
plant, oven dried at 70°c) produced by 7 forage legume species grown under 0 (control),	
63, 76 and 82%	71
Table 2.8 Means, standard errors and LSD groupings of above-ground biomass (g per	
plant, oven dried at 70°c) produced by 14 forage legume species grown under 0	
(control), 63, 76 and 84%.	72
Table 2.9 Means, standard errors and LSD groupings of above-ground biomass (g per	
plant, oven dried at 70°c) produced by 14 forage legume species grown under 0	
(control), 63, 76 and 82% shade ($n = 4$), harvested 119 days after planting. Means in a	
column followed by the same lower case letter and means in a row followed by the	
same upper case letter do not differ significantly	73
Table 2.10 Means, standard errors and LSD groupings of root biomass (g per plant,	
oven dried at 70°c) production by (a) 7, (b) 14 and (c) 14 legume species grown under 4	
shade levels,	82

Table 2.11 Means, standard errors and LSD groupings of root biomass (g per plant,
oven dried at 70°c) produced by 7 forage legume species grown under 0 (control), 63,
76 and 84% shade
Table 2.12 Means, standard errors and LSD groupings of root biomass (g per plant,
oven dried at 70°c) produced by 14 forage legume species grown under 0 (control), 63,
76 and 84% shade
Table 2.13 Means, standard errors and LSD groupings of root biomass (g per plant,
oven dried at 70°c) produced by 14 forage legume species grown under 0 (control), 63,
76 and 82% shade
Table 2.14 Means, standard errors and LSD groupings of total plant biomass (g per
plant, oven dried at 70°c) production by (a) 7, (b) 14 and (c) 14 legume species grown
under 4 shade levels
Table 2.15 Means, standard errors and LSD groupings of total plant biomass produced
by seven wet tropical forage legume species grown under four different shade levels96
Table 2.16 Means, standard errors and LSD groupings of total plant biomass production
(g per plant, oven dried at 70°c) by 14 wet tropical forage legume species grown under
0 (control), 63, 76 and 84% shade97
Table 2.17 Means, standard errors and LSD groupings of total plant biomass (g per
plant, oven dried at 70°c) produced by 14 forage legume species grown under 0
(control), 63, 76 and 82% shade
Table 2.18 Means, standard errors and LSD groupings of mean root nodulation score (0
= none, 5 = most) production by (a) 7, (b) 14 and (c) 14 legume species grown under 4
shade levels
Table 2.19 Means, standard errors and LSD groupings of mean root nodulation score (0
= none, $5 = most$) of seven wet tropical forage legume species grown under four
different shade levels
Table 2.20 Means, standard errors and LSD groupings of mean root nodulation score (0
= none, $5 = most$) of 14 wet tropical forage legume species grown under 0 (control), 63,
76 and 84% shade
Table 2.21 Means, standard errors and LSD groupings of mean root nodulation score (0
= none, 5 = most) of 14 forage legume species grown under 0 (control), 63, 76 and 82%
shade

Table 2.22 Means, standard errors and LSD groupings of nitrogen concentration (%) of	
leaf material (a) 7, (b) 14 and (c) 14 legume species grown under 4 shade levels	110
Table 2.23 Means, standard errors and LSD groupings of leaf nitrogen concentration	
(%), on a 70°c oven dry basis of 7 forage legume species grown under 0 (control), 63,	
76 and 82% shade	114
Table 2.24 Means, standard errors and LSD groupings of leaf nitrogen concentration	
(%), on a 70°c oven dry basis of 14 forage legume species grown under 0 (control), 63,	
76 and 84% shade	116
Table 2.25 Means, standard errors and LSD groupings of leaf nitrogen concentration	
(%), on a 70°c oven dry basis of 14 forage legume species grown under 0 (control), 63,	
76 and 82% shade	117
Table 2.26 Means, standard errors and LSD groupings of P concentrations (%) of leaf	
material (a) 7, (b) 14 and (c) 14 legume species grown under 4 shade levels	120
Table 2.27 Means, standard errors and LSD groupings of leaf phosphorus	
concentrations (%), on a 70°c oven dry basis of 7 forage legume species grown under 0	
(control), 63, 76 and 82% shade.	124
Table 2.28 Means, standard errors and LSD groupings of leaf phosphorus	
concentrations (%), on a 70°c oven dry basis of 14 forage legume species grown under 0)
(control), 63, 76 and 84% shade	125
Table 2.29 Means, standard errors and LSD groupings of leaf phosphorus	
concentrations (%), on a 70°c oven dry basis, of 14 forage legume species grown under	
0 (control), 63, 76 and 82% shade.	126
Table 2.30 Means, standard errors and LSD groupings of days to first flower by (a) 7,	
(b) 14 and (c) 14 legume species grown under 4 shade levels	129
Table 2.31 Means and standard errors of the time to first flower of 7 forage legume	
species (trial 1) grown under 0 (control), 63, 76 and 82% shade	133
Table 2.32 Means, standard errors and LSD groupings of the time to first flower of 14	
forage legume species (trial 2) grown under 0 (control), 63, 76 and 82% shade	134
Table 2.33 Means, standard errors and LSD groupings of the time to first flower of 14	
forage (wet/dry tropical) legume species grown under 0 (control), 63, 76 and 82%	
shade	135
Table 2.34 Means, standard errors and LSD groupings of seed production of 14 forage	
legume species grown under 0 (control), 63, 76 and 82% shade	137

Table 2.35 Means, standard errors and LSD groupings of seed production (g per plant)
produced by 14 forage legume species grown under 0 (control), 63, 76 and 82% shade138
Table 2.36 Means, standard errors and LSD groupings of average seed weight of 14
forage legume species grown under 0 (control), 63, 76 and 82% shade
Table 2.37 Means, standard errors and LSD groupings of average seed weight (g)
produced by 14 forage legume species grown under 0 (control), 63, 76 and 82% shade142
Table 2.38 Statistical summary of germination trial of seeds produced by legumes
under 4 levels of shade
Table 2.39 Means, standard errors and LSD groupings of time to 50% germination
(days), % readily germinable seed, % hard seed and % non-viable seed of 8 forage
legume species grown under 0 (control), 63, 76 and 82% shade144
Table 2.40 Means, standard errors and LSD groupings of time to 50% germination
(days), % readily germinable seed, % hard seed and % non-viable seed of 8 forage
legume species grown under 0 (control), 63, 76 and 82% shade146
Table 2.41 Means, standard errors and LSD groupings of percent readily germinable
seed of 8 forage legume species grown under 0 (control), 63, 76 and 82% shade152
Table 2.42 Means, standard errors and LSD groupings of percent hard seed of 8 forage
legume species grown under 0 (control), 63, 76 and 82% shade153
Table 2.43 Means, standard errors and LSD groupings of percent non-viable seed of 8
forage legume species grown under 0 (control), 63, 76 and 82% shade154
Table 2.44 Means, standard errors and LSD groupings of estimated time to 50%
germination (days) of seed produced by 8 forage legume species grown under 0
(control), 63, 76 and 82% shade155
Table 2.45 Means, standard errors and LSD groupings of the log of shoot:root ratio of
(a) 7, (b) 14 and (c) 14 legume species grown under 4 shade levels160
Table 2.46 Means, standard errors and LSD groupings of the log of shoot:root ratio of 7
forage legume species grown under 0 (control), 63, 76 and 82% shade164
Table 2.47 Means, standard errors and LSD groupings of the log of shoot:root ratio of
14 forage legume species grown under 0 (control), 63, 76 and 84% shade165
Table 2.48 Means, standard errors and LSD groupings of the log of shoot:root ratio of
14 forage legume species grown under 0 (control), 63, 76 and 82% shade166
Table 2.49 Production of above-ground dry matter by 35 species of legume, under four
shade levels expressed as a percentage of that produced under full sun (control)

Table 2.49 Production of above-ground dry matter by 35 species of legume, under four	
shade levels expressed as a percentage of that produced under full sun (control)	.183
Table 3.1 Equations of lines of best fit and R^2 values for linear parts of light response	
curves	.210
Table 3.2 Apparent quantum efficiencies, light compensation points, light saturation	
points and light saturation rates of photosynthesis	.212
Table 4.1 Major nutrients in the fine earth fraction (<2mm) of the soil Bingil series	
krasnozem	.221
Table 4.2 Summary of statistical results	.223
Table 4.3 Mean, standard error and LSD groupings of percent ground cover of six	
tropical forage legumes planted beneath a 5-year-old (at trial establishment) E. pellita	
and mixed rainforest species timber plantation.	.226
Table 4.4 Mean, standard error and LSD groupings of dry matter production (t/ha) of	
six tropical forage legumes planted beneath a 5-year-old (at trial establishment) E.	
pellita and mixed rainforest species timber plantation	.227
Table 4.5 Mean, standard error and LSD groupings of mean plant weight (g) of six	
tropical forage legumes planted beneath a 5-year-old (at trial establishment) E. pellita	
and mixed rainforest species timber plantation.	.228
Table 4.6 Mean, standard error and LSD groupings of the number of plants per metrer	
for six tropical forage legumes planted beneath a 5-year-old (at trial establishment) <i>E</i> .	
pellita and mixed rainforest species timber plantation	.228
Table 4.7 Major nutrients in the fine earth fraction (<2mm) of the topsoil (0 - 10 cm) of	f
the trial site	.231
Table 4.8 Summary of statistical results for growth of 7 species of tropical forage	
legume beneath a 12-year-old African mahogany (Khaya senegalensis) plantation at	
Clare	.236
Table 4.9 Means, standard errors and LSD groupings of percent ground cover under	
canopied, inter-canopied and clear (control)	.236
Table 4.10 Mean, standard error and LSD groupings of ground covered by seven	
species of tropical forage legume grown beneath a 12-year-old Khaya senegalensis	
plantation.	.237
Table 4.11 Means, standard errors and LSD groupings of percent ground cover of sever	n
species of tropical forage legume under canopied, inter-canopied and clear (control)	
areas	.239

Table 4.12 Means, standard errors and LSD groupings of dry matter production (kg per
ha) of seven species of tropical forage legume under canopied, inter-canopied and clear
(control) areas
Table 4.13 Means, standard errors and LSD groupings dry matter production (kg per
ha) of seven species of tropical forage legume under canopied, inter-canopied and clear
(control) areas
Table 4.14 Means, standard errors and LSD groupings of dry matter production (kg per
ha) of seven species of tropical forage legume under canopied, inter-canopied and clear
(control) areas
Table 4.15 Means, standard errors and LSD groupings of the mean number of plants
per metre of seven species of tropical forage legume under canopied, inter-canopied and
clear (control) areas
Table 4.16 Mean, standard error and LSD groupings of the mean number of plants per
metre of ground sown of tropical forage legumes grown beneath a 12-year-old Khaya
senegalensis plantation
Table 4.17 Means, standard errors and LSD groupings mean number of plants per metre
of seven species of tropical forage legume under canopied, inter-canopied and clear
(control) areas beneath a 12-year-old <i>Khaya senegalensis</i> plantation
Table 4.18 Major nutrients in the fine earth fraction (<2mm) of the trial site soil
Table 4.19 Shade levels (percentage of full sun in the open) in the open and at 2
different locations in two densities of Khaya senegalensis on three harvesting dates253
Table 4.20 Statistical summary of results 257
Table 4.21 Dry matter production (grams) by six accessions of legume under open
conditions and beneath two densities of <i>Khaya senegalensis</i>
Table 4.22 Ground cover (%) by six accessions of legume under open conditions and
beneath two densities of <i>Khaya senegalensis</i>
Table 4.23 Ground cover of six accessions of legume under open conditions and
beneath two densities of <i>Khaya senegalensis</i>
Table 4.24 Number of plants of six accessions of legume under open conditions and
beneath two densities of <i>Khaya senegalensis</i>
Table 4.25 Number of plants of six accessions of legume under open conditions and
beneath two densities of <i>Khaya senegalensis</i>

Table 5.1 Shade levels at the mid point between trees of eight densities of Khaya
senegalensis, grown in Townsville in a Nelder wheel arrangement at ages of 24, 27 and
30 months
Table 5.2 Moisture content (% based upon weight, mean \pm SE) of soil from 0-10, 20-
30 and 40-50 cm beneath eight densities of Khaya senegalensis
Table 5.3 Means and standard errors of total, legume, grass and weed dry matter yields
(kg/ha) for the August 2001 sampling
Table 5.4 Means and standard errors of total, legume, grass and weed dry matter yields
(kg/ha) for the November 2001 sampling
Table 5.5 Means and standard errors of total, legume, grass and weed dry matter yields
(kg/ha) for the February 2002 sampling
Table 5.6 R-squared values of the line of best fit on three sampling dates for actual
yield vs. estimated yield of legume, grass and weed components of the pasture
Table 5.7 R squared values of linear and exponential lines of best fit, applied to total
dry matter production
Table 6.1 Summary of assessment of each species tested across all trials

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Singature

Date

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date