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Abstract

Selecting and configuring control charts can be a difficult task. Literature has not provided
evidence as to which type of composite control chart is best among composite moving average
(CMA), composite exponentially weighted moving average (CEWMA) and composite cumulative
sum (CCUSUM). Optimising three-component composite control charts was considered very
difficult, if not impossible, to achieve. Additionally, a traditional method for comparing control
charts across a domain of step shift sizes called the average ratio of average time to signal
(ARATS), can lead to inconsistent conclusions. Thus, there have been insufficient methods and

data published for an informed selection from composite control chart types and configurations.

This study is the first to optimise and compare two and three-component composite control charts.
Distribution parameters were assumed to be unknown and were estimated from 200 observations.
Software was created to automatically configure composite control charts to achieve specifications
for the in-control average time to signal (ICATS) and the contribution of each of the components
to false alarms, or loadings. Detection time profiles were simulated for full factorial experiments

of control chart parameters using averages of at least 1,000,000 chart runs per simulation.

New performance and comparison measure were invented to complete the research. A new
performance measure Mean Relative Loss (MRL) was defined and used for optimising control
chart configurations. MRL compares the average time to signal (ATS) profile across a step shift
domain to the profile of a reference CUSUM control chart. Average Difference Relative to the

Average (ADRA) was defined to overcome the problem noted with ARATS.

Three-component CCUSUM bettered three-component CEWMA (ADRA = 5.0%) which in turn
performed better than three-component CMA. Three-component CEWMA performed better than
two-component CEWMA (ADRA = 5.2%). Thus it can be seen that the type of component and

the number of components selected has a significant effect on performance.

This study shows how much the statistical performance of various types of optimised composite
control charts can differ. Results from this study will better inform statistical quality control
professionals when selecting a control chart type. The methods developed here have the further
advantage of being adaptable to different assumptions and parameters. A final implication of the
study is that composite control charts may now be optimised and thus fairly compared against

other categories of control charts which are typically optimised in literature.

v
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Chapter 1 — Introduction

Chapter 1

Introduction

Statistical process control is a field primarily researched from the perspective of
two different schools: industrial engineering and business. Control charts, the
subject of this thesis, are a subset of statistical process control tools used for
monitoring for deviation from a stochastic model over time. Potential
applications for control charts are monitoring indicators of asset utilisation,
agriculture, environment, macro-economics, community health and welfare, but
control charts are most commonly applied in process and laboratory quality

control within the manufacturing industry.

A major consideration for choosing the type of control chart to use for an

application is detection performance. Many different control chart types have

been defined since 1924 including: univariate and multivariate; individual, X,
simple moving average (MA), exponentially weighted moving average (EWMA),
cumulative sum (CUSUM) and run rules (Montgomery, ). Control chart selection
and design may present a daunting set of considerations for a person wishing to
implement an optimised system of control charts. Composite control charts,
which offer good performance for a range of location shifts (Sparks, 2000), have
insufficient comparisons available in literature to aid an informed selection. More
detection power is still needed in some applications, particularly where costly off-
line analysis is concerned. Methods for limiting false alarms are also required in

data rich environments. This thesis makes a contribution to both of these areas.

Schemes comprising of multiple cooperating control charts monitoring a single
variable are sometimes called composite control charts. Alternatively they may
be called composite monitoring schemes. Composite control charts based on MA,
EWMA, and CUSUM control charts have been noted (Lucas and Saccucci, 1990;
Sparks, 2000, 2003; Klein, 1996, 1997) to offer good performance over a range of

location shift sizes. In this thesis, composite schemes are denoted by adding “C”
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as a prefix to the abbreviation of the basic statistic, eg. CMA is the abbreviation
for composite moving average. The primary aim of this thesis was to compare the
statistical performance of CMA, CEWMA, and CCUSUM control charts for the
first time over a range of location shift sizes to provide sufficient insight for
informed selection from control chart options. The features of composite control
charts which may facilitate use within a management structure were also

explored.

1.1 Control Charts in Manufacturing

1.1.1 Australian Manufacturing Context and Motivation

In 2002, manufacturing activity represented a contribution of 13.3% to Australia’s
gross domestic product and a similar percentage of employment within Australia;
whilst the contribution to export earnings was 47.3% (see Figure 1-1). Cost of
production typically decreases as technology develops through innovations.
Innovations are arguably driven by competition. Sustaining the level of
Australian exports income, clearly important to maintaining the gross domestic
product, requires Australians to innovate.  Innovations in statistical process
control may make a small contribution to the competitiveness of manufacturing
and other industries in the years to come. Benefits could include increased energy
efficiency via stabilised process plant operation and improved product quality.
Some shortcomings in control chart technology, as noted in Section 1.2, have

provided opportunities for novel and innovative works in this thesis.
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HServices
OManufacturing
OMining

O Agriculture

Figure 1-1. Pie chart of contribution by industry to gross domestic product in
Australia, 2002. Source: Queensland state government web page

https://www.qld.gov.au.

Please note that cement and mineral processing businesses, interest areas of the
author, are grouped within the category of Manufacturing by the Australian
Bureau of Statistics. Cement industry data are used as an example later in this

thesis.

1.1.2 Trends and Opportunities for Statistical Process Control

Monitoring algorithms needed to be simple for the most part of the twentieth
century because updating calculations and plotting of a control chart was labour
intensive. Technology currently used in industry is considerably more advanced
than that which was available upon the invention of the Shewhart chart in 1924
(Shewhart, 1931). Measurement, analysis and charting of process variables are
mostly automated in recently commissioned continuous-process plants.
Distributed control system (DCS) software is used to manage many modern
process plant operations where streams of individual measurements are collected.
Premium level process information management system (PIMS) software
includes Matrikon’s ProcessMonitor™, ProcessDoctor™ (Matricon Pty. Ltd.,

2004), and Honeywell’s Experion PKS (Honeywell Pty. Ltd., 2004). PIMS
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software are designed to access databases written by the DCS software. Features
of modern PIMS software now include advanced statistical process control
algorithms including multivariate projection methods such as partial least squares
and principle component analysis. This advancement provides an opportunity for

adoption of more complex statistical process control algorithms.

1.1.3 Purpose and Architecture of Control Charts

Control charts are used to detect changes in the distribution of a variable over
time, effectively by performing serial statistical inference tests. Therefore, control
charts have statistical properties conditioned to specified assumptions. Control
charts differ from classical data analysis in which experimental data are analysed
at the end of each screening stage. When collecting data from a continuous
process plant, one may wish to detect a change in the mean of a variable as fast as
possible. An inference test is needed upon every instance that a new item of data

becomes available.

Constructing an individuals control chart (X-Chart) involves plotting a line-chart
of the variable and marking the position of the assumed mean of the data (see
Figure 1-2). Control limits are then plotted. A control limit is a boundary at
which an alarm is signalled indicating a change in the local mean of the variable.
For normally distributed variables the upper control limit (UCL) and lower
control limit (LCL) are symmetrical about the assumed mean of the data. A
simple design approach requires specifying the in-control average run length
(ICARL) and then determining the required offset for the control limits from the
mean to achieve that ICARL. The default design value for the margin for the
control limits about the mean was historically three standard deviations
(Shewhart, 1931; Nelson, 1982) giving an ICARL of 370.4. When an assay falls
outside of the range between the control limits, investigation into the cause of the
deviation should then commence. More elaborate control chart configurations and

design procedures are discussed later.
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Figure 1-2. Appearance of a simple control chart. Normal curve added to

demonstrate the distribution of the data. Adapted from image supplied by Six-Sigma First
(2007).

1.1.4 Control Chart Use

Having knowledge of a shift in process values is useful because it provides the
operator with a flag to search for, and to correct, the cause of the process shift.
Removing the cause of the process disturbance may remove any corresponding
threats to equipment longevity, plant productivity and product quality that were
introduced by the process disturbance. Control charts are usually configured in a
way that they alarm upon: detection of a shift in the local mean (location) of a
variable; an increase in the variance, and Type I inference errors. This thesis
focuses on measuring and optimising the performance of control charts for

detection of shifts in the location of a variable’s mean.

A Type I inference error occurs when it is concluded that a new sample is not
from the population being considered when it actually is from that population
(Walpole and Myres, 1989). Control charts are intended to alarm for actual
changes in the distribution of a variable related to “assignable” causes. Incidental
alarms related to Type I errors are not desired, but are inevitable nevertheless.
Some control charts also exist for detecting a reduction in variance (MacGregor

and Harris, 1993; Braun, 2003).

Alarms related to Type I inference error may be considered, in practical terms, as

an event where an unlikely combination of “common causes” coincide. For a
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more detailed explanation, please refer to Montgomery and Woodall (1997).
Frequently called “false alarms”, breaches of the control limits related to Type I
errors often return to a non-alarm state within a few observations. ~Common
cause variation is accepted as part of an in-control process. Interacting with
product specifications, common cause variation affects the process “capability”
(Wang et al, 2000; Veevers, 1998), and may include considerable random
sampling error. Common causes are usually addressed through continuous
improvement programs, which may require capital investment or development of
new technologies. Assignable causes are related to discrete failures that may be
addressed immediately in a narrow project scope. False alarms should be
minimised so that one’s confidence in the control chart, hence one’s alertness to
assignable causes, is maintained. Reducing common cause variation requires
improvement of the process and may require significant capital to purchase newer
technologies. Alternatively, significant operating expenditure may be required to
change of a number of operating procedures, changes which are typically based
on much data and managed in a planned and non-reactive manner. Another
reason that excessive false alarms are not desired is because of the over-

adjustment phenomenon (see Nelson, 2003).

A control chart may not instantly alarm the effect of an assignable cause after
onset. The design of a control chart can minimize detection times with

consideration to an acceptable false alarm rate.

In a small fraction of cases, assignable causes may be quickly rectified by virtue
of a feedback mechanism, or even by accident. Assignable causes that disappear
after one observation have been called isolated special causes (Hawkins et al,
2003).  Conversely, there are sustained assignable causes for which an
investigation must be carried out to identify the cause of the location shift and the
most appropriate way to rectify the situation. Figure 1-3 is a simplified
description of the cycle of activities in which control charts play part with the

intention of keeping a process predominantly in-control.
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Monitor An alarm
the is
process signalled
Remove Find the
cause of
the cause
the alarm

Figure 1-3. The cycle of process monitoring and correction

Plant operators and engineers may be required, by a company’s quality policy, to
act upon alarms generated by control charts. In reacting to an alarm, it is best to
firstly diagnose the cause of the location shift using experience and operating
records. Once a diagnosis is arrived at, a decision may be made to initiate
restoration activities immediately. Alternatively, it may be decided to wait a
period of time for a suitable maintenance window before correcting the apparent
process problem. Upon restoration of the apparent cause, it might be discovered
that the diagnosis was incorrect, and so the process of fault finding and restoration
must be repeated. It can been seen that the total amount of time in which the
process is not performing as intended is from the onset of the location shift until
removal of the process shift. There are many components of time that make up
this period of off-target production. Given below is a hypothetical quality control
example based on 6 hourly off-line analysis. An expanded list of the sequential
activities, and corresponding time intervals that occur after a serious quality

problem becomes evident, may include:
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e Location shift in variable. Interval between this event and sampling may be
some part of 6 hours, say 3 hours.

e Sample transfer laboratory or offline analyser ~ 10 minutes

® Analysis of sample ~ 15 minutes

e Data transfer/entry into the control chart ~ 10 seconds

e (Control chart Time to Signal (TS): from first location shifted data entry to
detection ~ some multiple of 6hours, eg, 0, 6, 12, ...hours

e Alarm signal to be noted by an Operator and commencement of action ~ 10
seconds to 20 minutes depending on other priorities

e Root cause analysis ~ 10 minutes to 2 weeks

¢ Management involvement and waiting time until maintenance opportunity ~ 0
seconds to 6 months.

¢ Engineering and operations activities to rectify the problem ~ 1 hour to 10

days.

Selection of a control chart design typically falls under the accountability of a
quality manager. The basis of the control chart selection by a quality manager
may consider set-up and operational cost, the efficiency in detecting excursions in

quality, presentation and user friendliness.

1.1.5 Introducing Cement Quality Variables

Cement is a synthetic ingredient that is used in concrete and other building
materials and is made from ground clinker, limestone and gypsum; used
extensively in housing, civil structures and increasingly in roads. One measure of
cement quality is the compressive strength it develops in a mortar form, a mixture
of cement, sand and water. The International Organization for Standards (1989)
provides a procedure for testing mortar compressive strength.  Mortar
compressive strength displays high variance between homogenous “control
samples”, having a standard deviation between 0.6 MPa and 1 MPa depending on

the laboratory. Other important performance measures of mortar include the
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Blaine (cmZ/gram), false set (mm), initial set (hr), final set (hr), normal

consistency (mm), and 3, 7 and 28 day concrete strengths (MPa).

Typical factors affecting the mortar compressive strength include the chemical
and mineral composition of the raw materials, the ratio to which they are mixed,

and the particle size distribution of the ground product.

Cement Australia Pty Ltd (CAPL) provided data for use in this thesis. Figure 1-4
shows some compressive mortar strength (“ISO” as it is often referred to
informally) history depicting a positive step or ramp shift at Observation 64.
Compressive mortar strength sometimes increases due to increasing recirculating
load in closed-circuit milling process. Control charts are applied to these data in a

later chapter.

62 1

60 -

58 -

Compressive Mortar Strength (MPa)

56 1

54

52

10 20 30 40 50 60 70

Observation

Figure 1-4. Compressive mortar strength history courtesy of Cement Australia

Ltd (un-named production site and manufacturing period).
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In 2003, Cement Australia’s quality assurance approach was monitoring
individual data using fixed width control limits arranged in warning and action

Z0ones.

1.2 Rationale for the Study

From literature, it is unclear what type of composite control chart offers the best
statistical performance for a distribution of step shifts. The rationale behind this
thesis relates to weaknesses in existing control chart performance measures,
opportunities for optimisation of composite schemes, and developments required
for making control charts designs scalable for use on a large number of variables.
Listed in point form, the research is intended to cover the following knowledge

base gaps:

Some traditional assumptions in control chart studies are not representative of

a typical manufacturing application.

e Few publications have used a scalar statistical measure to describe the
performance of a control chart over a number of location shifts scenarios.

e Existing scalar statistical measures for control chart performance, over a
number of location shifts, do not give values that are readily cross referenced
between publications.

e (Composite schemes have not previously been statistically optimised and
compared. The effects of the type of composite scheme selected, and the
number of components in a composite scheme, are not known.

® No method has been described which facilitates scaling of control chart

designs according to the number of variables to be monitored by each level of

company management.

Factors which made the timing of the thesis favourable include:
® Advances in computational processing rates

¢ Proliferation of SPC complementary software in industry

The points of rationale are expanded in the following subsections.

10
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1.2.1 Existing Performance Measures and Comparison Techniques

A description of control chart performance over a breadth of location shifts has
mostly relied on verbal descriptions and graphs (eg. Jones, Champ and Rigdon,
2001) as opposed to use of a scalar statistical measure (eg. Sparks, 2003). Often
performance is described by stating the ARL for one specific location shift, for
example, the ARL for a one standard deviation shift in the mean. In reality,
assignable causes occur with a distribution of location shifts sizes. A standardised
measure of chart performance over a distribution of location shifts is needed so
that users can make a well informed design selection. To optimise control charts
for a distribution of location shifts, a scalar value is required to represent the
expected long-term performance. Sparks (2003) developed a performance
comparison measure for a domain of step and ramp location shifts which he called
relative loss efficiency (RLE). Whilst this is an important advance for control
chart studies, RLE is not very suitable for use in an optimisation routine. A new
statistical performance measure is required to succinctly compare control charts
over a domain of step shift sizes, having a value which is readily transportable for
making comparisons between publications, and which can be used for

optimisation.

1.2.2 Optimised Composite Scheme Comparison

There is a gap in the knowledge base of optimum CMA, CEWMA and CCUSUM
scheme performance: none of these schemes have been statistically optimised.
See, for example: Sparks, 2003, on CMA; Klein, 1996, on CEWMA; Sparks,
2000, on CCUSUM; Sparks (2004) on Group of Weighted Moving Averages. In
each of the publications above, a few seemingly ad-hoc designs are compared.
Therefore, it is not known how much these schemes differ in performance when

optimised.

Sparks (2003) compared a number of CMA schemes against EWMA and
CUSUM schemes and found that the CMA scheme demonstrated fast detection

for a range of location shifts. It cannot be expected that these apparently ad hoc

11
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(or semi-optimised) design results will necessarily be optimum for the domain of
location shift considered. He noted that CMA schemes were favourable from the
point of view that the MA statistic may be simpler to understand for less
statistically trained SPC users than the CUSUM statistic. Due to the lack of local
or global optimisation, further consideration of CMA schemes is warranted.

Hence CMA schemes have been included in comparisons of this thesis.

CEWMA schemes with two components have been investigated by Albin, Kang
and Shea (1997) who noted that CEWMA charts can detect increases in variance
with favourable ICARL values. They showed the reduction in ICARL was less for

an X -EWMA composite than for the X and Moving Range ( X -MR)
composite, but detection of large (factors greater than 2) step shifts in the standard
deviation were detected similarly as fast. Therefore, optimised CEWMA schemes

could potentially make range charts redundant.

Roberts (1959) suggested that, given any MA control chart, an EWMA control
chart can be constructed with roughly equivalent properties. Therefore, it might
also be expected that CMA and CEWMA control charts will also perform
similarly when optimised. Sparks (2003) claimed that he trialled unspecified
three-component CEWMA schemes which reportedly did not perform as well as
CMA designs. He recommended further development of CEWMA schemes as
the initial attempts were unlikely to produce an optimal design. EWMA control
charts have been found to perform well in detecting ramped location shifts
(Sparks 2003). CEWMA schemes, which are based on several EWMA
components, may also retain this strength and similarly be efficient at trend
detection. CEWMA schemes may have strengths other than performance on step
location shifts that have not previously been considered. CEWMA schemes were

included in the thesis to expand the knowledge base on this tool.

Finally, let us consider the potential value of optimising CCUSUM schemes.
Lucas and Saccucci (1990) showed that CUSUM and EWMA schemes perform
similarly, concluding that practical issues be used to decide which scheme to

select. Therefore, it is reasonable to expect that CCUSUM and CEWMA

12
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schemes will also perform similarly. Hence, CCUSUM schemes were also

included in the thesis.

In summary, CMA, CEWMA and CCUSUM, are all expected to perform
similarly based on extrapolation of simpler concepts from literature. Some
features differentiating MA, EWMA and CUSUM techniques, other than
statistical or economic performance measures, have also been noted in literature.
It is acknowledged that consideration of these features may assist in selection of a
control chart. However, to date, no quantitative performance data based on
optimisation and comparison of composite schemes has been published.
Comparison of optimised composite monitoring schemes will remove all
ambiguity related to the statistical performance of various composite schemes
from the selection process. Possessing such information, users will be better
informed on the general properties of composite schemes. This work is not
intended as a substitute for detailed investigations such as economically

optimising total quality cost.

1.2.3 Advances in Computational Processing Rates

Control chart properties can be derived or simulated. Simulation has been
popular over a long period of time and has been used by authors such as Albin
Kang and Shea (1997), Klein (1996, 1997), Jiang, Wu, Tsung, Nair and Tsui
(2002), Sparks (2003), and Reynolds and Stoumbos (2004). Simulation provides
a simple way of determining control chart properties, particularly in the case of
composite schemes which can be complex to derive analytically. Simulation,
however, does not lead to exact determination of control chart properties. The
properties are estimated from a sample; therefore, a confidence region exists
about each estimate. Advances in computer processing rates have permitted
increased simulation sample sizes for a given processing time. Large sample size
simulations were used in this thesis to distinguish control charts which have

similar performance.

13
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Decreased simulation costs has also meant that full factorial experimental designs
have become feasible for investigating optimum composite designs. The
advantage of optimising via full factorial designs, over advanced methods like
genetic algorithms, is the option to create educational surface area plots for
inclusion in the research results. One can also investigate interactions between the

design parameters.

Composite control charts researched in this thesis required up to four times as
many computations than do single component control charts. Advances in
computer processing rates have increased the feasibility of research into control
charts which are computationally demanding to research. Not only can affordable
modern personal computers be used to research composite schemes, they are
capable of updating and plotting the increased number of signals in a
manufacturing plant which may have thousands of raw variables (being a mixture

of on-line and off-line measurements).

1.2.4 Proliferation of SPC Complementary Software

Process information management system (PIMS) databases and performance
management software are standard inclusions in new processing plants and a
significant fraction of older plants have implemented such systems. Performance
management software (see examples in Section 1.2.2) makes it easy to build
control charts and the real-time computations are automatic. It is estimated that it
would be economically feasible to create control charts for all controlled variables
within a manufacturing company where previously only key quality variables

were typically monitored in this way.

Adoption of published control chart technology by industry has been poor
(Woodall and Montgomery, 1999). Poor adoption suggests that there are
outstanding issues for implementation and operation of complex control charts, or
lack of awareness of the availability of these techniques. There have been many
innovations in the control chart field, particularly since 1980, with some very
complex, and powerful tools developed. Public debate over the reasons for poor

adoption, and what might be done to increase adoption, arises periodically in the

14
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Journal of Quality Technology (for example Woodall and Montgomery, 1999;
Montgomery and Woodall, 1997). Suggested reasons for poor adoption include
the fact that users of control charts have very little statistical training; and some
publications have purely academic merit and were never intended to be directly
used in applications but are valued because they lead to more practical concepts.
One particular design issue that has not been mentioned, is scaling control chart
designs for process plants with vastly differing numbers of variables to be

monitored.

Industry began to centrally collect data at a high frequency for a large number of
variables with the adoption of DCSs from around the early 1990s. Each control
chart being operated has a certain false alarm rate. An increased number of
monitored control charts incur a proportional increase in the total false alarm rate.
An overload of false alarms could develop if all quality variables are monitored
using control charts. Personnel involved in root cause analyses of assignable
causes may learn that no assignable causes exist for some alarms. Reduced

motivation to rigorously investigate further alarms may then result.

Control charts may be used to generate exception reports. A large number of
control charts present a logistical challenge to monitoring of quality by middle
levels of management. The configuration of composite schemes may provide an
opportunity to address the problem of scaling control chart designs for monitoring
at different levels within a company hierarchy. Such an innovation would be a
contribution to resolving practical issues experienced by industry; an issue which
might otherwise cause resistance to adoption of control charts for plant-wide

implementation.

15
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1.2.5 Traditional Assumptions in Control Chart Studies

A review thesis by Woodall and Montgomery (1999) recommended that future
research includes techniques for data rich and multi-step processing
environments, data reduction methods, economic designs and study of the effect
of estimated parameters, etc. On the subject of the effect of estimated parameters

they said:

“Much more research is needed in this area recognising that Phase Il
control limits are in fact, random variables. Research shows that more
data than has been traditionally recommended is needed to accurately

determine control chart limits.”

The distribution parameters of monitored variables are not known in practice and
must instead be estimated. Comparison of composite control charts by Sparks
(2000, 2003) assumed known parameters, as have many publications. An
assumption of known parameters does not reflect the situation of a typical
company where control charts are applied. Conclusions regarding control chart
alarm profiles for known parameters may not necessarily be consistent with an
assumption of unknown parameters. No research has been published for
composite control charts with estimated parameters, so it is unclear what type of
composite control chart will perform best in real situations. Studies into the
comparative performance of CMA, CEWMA and CCUSUM schemes based on
estimated parameters have not previously been published. Optimising and
comparing composite schemes in simulations where parameters are estimated is

the approach used in this thesis.

16
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1.3 Aims of the Thesis

The basic objective of this thesis was to explore composite control charts so that
manufacturing end users would be sufficiently informed to select a suitable
control chart. The control charts to be explored were CMA, CEWMA, and
CCUSUM. The primary aim was:

Aim 1 - understand which of these composite control charts performed best over a

domain of location shift sizes.

Specifically, the statistical performance was sought based on appropriate
assumptions for typical manufacturing end users. That is to say, distribution

parameters should be estimated rather than assumed to be known.

To achieve the primary aim, the following tasks were essential:

e Develop improved statistical measures and methods so that control chart
performance could be optimised and compared for a domain of step shifts.

® C(Create software to derive control chart properties where existing analytical
methods and software were inadequate for the task.

e Optimise composite control chart configurations (using the newly developed
statistical performance measures and simulation software).

e Compare optimised composite control charts.

Secondary aims to achieve the basic objective include:

Aim 2 — determine the benefit of using three components as opposed to two.

Aim 3 — compare the performance of the control charts for ramped location shifts.
Aim 4 — identify additional opportunities that composite control charts offer over

alternative control chart types.

With such insights, end users might better understand various trade-offs afforded

by composite control charts when selecting a control chart to implement.

17
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1.4 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 presents definitions and
formulae. Step and ramped location shifts are defined mathematically as well as
the EWMA, MA and CUSUM statistics. Chapter 3 defines the performance
measures used to assess and compare control charts. Simulation of run length and
alarm profiles is discussed in Chapter 4 including assumptions and specifications
used, and a description of software created for the research. In Chapter 5, some
insight into the basis of composite schemes is given with charts of the expected

number of alarms over sequential observations from a step shift.

Full optimisation and comparison of three-component CMA, CEWMA and
CCUSUM schemes is detailed in Chapter 6. Distribution parameters of the
monitored variables were assumed to be unknown. Conclusions and
recommended future directions are discussed in the Chapters 7 and 8 respectively.
The appendices contain supporting data and further studies which have been set

aside to streamline the key concepts of the thesis.

18



Chapter 2 — Control Chart Definitions and Background Literature

Chapter 2

Control Chart Definitions and Background
Literature

2.1 Process and Process Disturbance Models

Random-normal independently and identically distributed (iid) processes with
superimposed step and ramp location shift disturbances are the most commonly used
scenarios for scheme performance comparison. The models used in this thesis for
each of the disturbance types are shown below. Samples are taken at instances, i, an
integer variable, and the sample at instance i=7 is the first sample that contains the

shifted mean. The actual shift occurs some time between 7 and 7—1.

Step Shifts in the Mean:

Y =, +¢ fori=12,....,.7—1
Y, =u,+0,0,+¢ fori=7,7+1,...

Ramp/Trend Step Shifts in the Mean (for example Davis and Woodall, 1988):

Y =u,+¢ fori=1,2,...,7-1
Y = u, + kot + € fori=7,7+1,...

For both step and ramp shifts in the mean, it is assumed that the random variation, &€

is distributed as:

e,~N(0.5,%) fori=1,2...
Step Shifts in the Variance:

£,~N(0.5,%) fori=1,2..., 7 -1

e~ N(0,6?) fori=7,7+1,...

19



Chapter 2 — Control Chart Definitions and Background Literature

where

c=0,0,

For ramp shifts in the mean, it is particularly important to be specific about when the
parameter for the mean of the population actually shifts. Occurrence of an assignable
cause is not restricted to uniformly spaced instances but rather occur with a
continuous random distribution between sampling instances. If the disturbance is
assumed to manifest infinitesimally later than 7—1, the magnitude of the ramped shift
at instance 7 has a specific value facilitating comparison with other studies. 7 is the

time index for the ramp model, and is equal to O at 7—1, i.e.:

t,=i—7+1 fori=7,7+1,...

Traditionally, if a control chart alarms on the first sample which occurs at the same
time or after a location shift, the run length is given a value of 1. However, some
publications of an economic control chart nature will express an alarm on the first

sample after a location shift as having a stopping time, TS = 0.

2.2  Formula for Basic Control Charts

EWMA, MA and CUSUM statistics are defined below within formulae which are in a

general form for description of j components within a composite scheme.

2.2.1 The EWMA Statistic and Alarm Criteria

An EWMA statistic j, at iteration i, is a found by EWMA, ; = 1.Y, +(1-A,)EWMA,_, ,
(Roberts, 1959) for some smoothing constant selected such that 0<A<1, j=12,..,v
different components in composite scheme. For i=1, 0 ,=0. EWMA values may

be warmed up for a period after i=1 (see Section 2.3.4). By the central limit theorem,

one could expect EWMA,; to be approximately normally distributed for small
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smoothing coefficients regardless of the distribution of Y. Borror, Montgomery and
Runger (1999) demonstrated that the ARL profile of EWMA control charts was

robust to non-normality in the monitored variable.

When the distribution parameters are known, an alarm is generated in a CEWMA
scheme when any of the EWMA scheme components, j, alarm individually or

together according to the test:

‘ 2-4, '(EWMAM_,UO)% ST (1)

A o,

Here w is the number of components each with a corresponding control limit

coefficient h;.

When the distribution parameters are estimated, the positioning of control limits

must be based on the sample standard deviation 6, , and 7, the sample mean.

Substituting the estimated parameters into (1), one gets:

2-4,) (EwmA,, —1) " o
A s ‘ g

J

where h ; ’, the control limit coefficient for schemes based on estimated parameters, is

a function of the degrees of freedom in estimating the parameters, and the particular
method of estimating the standard deviation. This identification system has been used

for the MA and CUSUM components also.
2.2.2 The MA Statistic and Alarm Criteria

The MA statistic, MA, ;, in a CMA control chart (Chen and Yang 2002, Sparks 2003)

is defined as:
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Here, MA, ; is the moving average characterized by the span n,; for j=12,..v

components in the composite. For known parameters, the control chart alarm test is:

‘\/nj-(l\/i-Aw—ﬂo)th 3)

where 5, is the control limit coefficient for the moving average statistic MA;. For an

MA scheme based on estimated parameters an alarm is raised at occasion i, if for any

J:

‘\/nij-(MAi,j—t)‘>h"
e

“4)

where h," is the control limit coefficient for the moving average statistic MA ;.

Calculations for ¢ and s are shown in Section 2.2.4.

2.2.3 The CUSUM Statistic and Alarm Criteria

Page (1954) developed an SPC technique which cumulates the sum of deviations from
target. A two-sided CUSUM scheme requires one statistic to be calculated (Wu and

Wang, 2007), one each for the control limits above and below the mean.

CUSUM , , = max[u,,CUSUM _, ; - t, +Y, —k 0,1, if CUSUM _, , > pt, or
(CUSUM,_, ;= pt, and Y, > 14,).

or,

CUSUM ,; = min[i,,CUSUM _, , - i, +Y, +k,0,1, if CUSUM_, ; < 4, or

(CUSUM_, , =y, and Y, < 1,) .

J
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and kj is the reference value which causes the statistic to tend back to a central

position of zero the variable it is statistically in-control. Zero becomes a reflective
boundary (Sparks, 2000) due to the use of min and max in the formula. This gives
CUSUM an advantage over MA and EWMA statistics as the more distant “memory”
of random or assignable off-target runs does not cause inertia that could slow

detection of present shifts in the mean to the opposite side of the target.

For known parameters, and control limits which are symmetrical about the mean, the

alarm condition for CUSUM components are:

‘ O,

Where hj is the control limit coefficient for the CUSUM component CUSUM;, when

parameters are known.

For estimated parameters, s is substituted for o, in calculation of the CUSUM

statistics in (5). An alarm condition is true if:

CUSUM, , —1

S

>h, (7)

J

where h;' is the control limit coefficient for the CUSUM component j when

parameters are estimated.

Numerous authors have studied CUSUM schemes including Gan (1992), Koning and
Does (2000), Lu and Reynolds (1999), and Sparks (2000).
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2.2.4 Estimation of Dispersion in the Data

The control limits are positioned as multiples of standard deviation for each of the
control charts. The standard deviation can be calculated using the traditional sample
standard deviation formula, as shown in Equation 8, or via a formula based on the

absolute moving range, Equation 9.

)
where 7 1s the mean of the n,,, observations in the in-control sample.
averageQMR|)
e 9)
1.128

where MR=Y,-Y, | and |MR| is an average of (neyim-1) differenced values. The

1

absolute moving range formula is an inefficient method for estimating the standard

deviation for in-control data, but is perhaps better for data that is not truly in control.
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2.3 Background Literature

A full literature review on control charts for continuous distributions of data would
require several volumes (Woodall and Montgomery, 1997), with recent research
topics covering the effect of parameter estimation (Bischak, 2007), data reduction
(Model et al, 2002) and non-parametric techniques (Jones and Woodall, 1998),
economic designs including variable sampling schemes (Vommi, Murty and Seetala,
2007), techniques for robust performance for a distribution of disturbances (Capizzi
and Masarotto, 2003), time-series (Ridley and Duke, 2007; Pan and Jarrett, 2007) and
change point methods (Zou, Zhang, and Wang, 2006). Discussion of literature, limited
to that which is highly relevant to composite control charts and the objectives of this
thesis, is continued below. The Journal of Quality technology is the most referenced
journal because it is a journal that has a large proportion of papers on control charts

with a theoretical content appropriate for a research degree.

2.3.1 Control Chart Phases

When it is decided to adopt a control chart for monitoring a variable, it is usually
recommended to commence by retrospectively analysing the data to see if the process
is in-control (eg. Bischak and Trietsch, 2007). This is called a Phase I control chart.
Phase I is differentiated from Phase II partly because Phase I is retrospective and
Phase II is prospective, real-time monitoring. Other differentiators are: Phase I is
usually not in-control whilst Phase II is usually in-control, and the estimates for the
distribution parameters are not as accurate as estimates in Phase II. Substantial effort
may be required to improve operations and maintenance systems to bring the process
under control requiring several iterations of data collection and parameter estimation.
Once the process has been kept in-control for a period, Phase II real time monitoring
can commence. Phase II charts should then be using distribution parameters

estimated from data containing only common variation and not assignable causes.
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Control chart schemes designed in this thesis assume estimated parameters based
mostly on 200 observations (using the moving range based formula for estimating the
standard deviation). Clearly, the designs will be very suitable for a scope covering
Phase I to early Phase II when only 200 in-control observations, or there abouts, are
available. However, the application of these designs is not as limited as the scope
described above. There are usually insufficient control variables, hence insufficient
degrees of freedom to be able to adjust all final and intermediate process variables to
a target. As a result, the targets for many variables are determined as a consequence
of decisions about control of other variables. Though, it is argued that many process
plant variables targets, other than those for final product quality, need to be re-
estimated and adjusted periodically. Therefore, the designs from this thesis may be

considered equally applicable to Phase I and Phase II real time monitoring.

2.3.2 Composite and Adaptive Control Charts

A number of thesiss have been written on composite and adaptive control charts with
performance considered in terms of robust detection of assignable causes of varying
disturbance sizes. These are summarised below, commencing with previous studies on

EWMA based techniques, followed by MA, then CUSUM based techniques .

Lucas and Saccucci (1990) monitored a single variable with two EWMA components

concurrently to give the scheme a faster response for large step shifts. They combined
the Shewhart (X ) and EWMA charts in a scheme to take advantage of the ARL

performance of Shewhart schemes on large step location shifts. X -EWMA schemes

constitute a two component CEWMA scheme with one of the smoothing constants
assuming the limiting value of one. They found that the X -EWMA composite

performed similarly to the X -CUSUM composite. It was noted that the control
limits needed to be raised from the level used for single statistic monitoring to

maintain a combined specified ICARL. A recommendation was made that the control
limit coefficients for the X component be raised from approximately 3.5, the value

which gives an ICARL of 500 observations in a stand alone X scheme, to “4.0 or

4.5” so that the composite scheme retained a similar [CARL.
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Albin, Kang and Shea (1997) considered the X -EWMA composite with pu+3c control
limits on each component. Their scope extended to the use of run-rules and moving
range (MR) charts within the X -EWMA composite and recommended that the X -
EWMA be used without run-rules or MR components. The X -EWMA composite
could detect increases in the standard deviation of the data, and resulted in less
reduction on the ICARL than did the MR component. However, it should be noted
that a Shewhart chart alone could detect a 100% increase in variance with a similar
efficiency to the X -EWMA and X -Run Rules composites. When run-rules were
tested, one or two rules were applied. The value of the study was to show the effect on
the ICARL when additional schemes are used to monitor the same variable without
altering the control limit coefficients. Advice of Lucas and Saccucci (1990) on raising
the control limits was not utilised. Use of standard u+3c control limits resulted in
non-specification of the ICARL. This confounded the effect of the components in the
composite and the changing ICARL on ARL performance. However, demonstrating
the effect of adding a component to a composite scheme on both the ICARL and ARL

was useful information.

Klein (1996; 1997) also investigated X -EWMA and X -Run-Rules composites but
with use of two to four run rules. He considered a second criterion when evaluating
scheme performance for a fixed ICARL. In addition to ARL performance on different
step shifts, he examined the percentiles of the in-control run length distribution. In all
cases, the distribution of the X -Run-Rules composite was similar to the comparable
X -EWMA with constant control limits, where fixed limits of ut3c were used for the
X scheme. Use of time-dependent instead of fixed control limits resulted in more
skewing of the in-control distribution (Klein, 1997). Both the time dependent and
fixed X -EWMA schemes displayed smaller ARL values than the X -Run-Rules
composite. The restriction to p*3c control limits for the X component of the
composite may have produced sub-optimal results. Whilst simplicity was historically
considered an important factor in the success of control charts, it is of interest to know
what ARL would be achieved without restricting any of the control limits to a

historical integer value.
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Sparks (2000) investigated CCUSUM and Adaptive CUSUM (ACUSUM) schemes
which were found to perform similarly. Three CUSUM components were
recommended for detection of step shifts in the mean between 0.56 and 4.06 in size.
Apparently heuristic design recommendations (with some theoretical basis) were used
to choose the k values instead of optimisation. The ACUSUM method worked by
adjusting the k value of a CUSUM scheme according to the optimum for the
estimated step shift based on an EWMA forecast of the data. A regression model was

used to find the required control limit coefficient for a given value of J, (via the
relationship between optimal J, and the theoretical optimum value for k, k=4,/2,

Sparks, 2000), the limits being adjusted at each serial observation. To prevent the
monitoring tool becoming excessively powerful for small step shifts, a constraint was
applied to the minimum value of k. CCUSUM was found to perform better than
ACUSUM at large step shifts; however, ACUSUM is sensitive to the choice of A in
the EWMA forecasting equation. Lack of optimisation and lack of a scalar
performance measure for a detection of a distribution of location shifts have resulted
in an incomplete understanding of the performance of CCUSUM and ACUSUM
methods from Sparks’ study. Nevertheless, the thesis serves as an excellent
introduction to these tools demonstrating simple heuristic designs which are easy to

implement.

Sparks (2003) demonstrated construction of CMA schemes and proposed a number of
designs. The performance of CMA schemes in step and ramp location shift scenarios
was compared to EWMA and CUSUM schemes. A comparison was yielded by
measuring the relative loss efficiency (RLE) for step shifts and ramp shifts. It was
found that the CMA design called “Plan 57 (design parameters are detailed in
Appendix F) performed with small relative losses compared to a EWMA scheme with
A equal to 0.15 at step shifts less than that for which the EWMA was optimised, i.e.
<lo. However, the CMA scheme performed better on average over the entire 0.25c
to 40 domain. The performance of CMA schemes compared to EWMA schemes on
ramped location shifts was a different matter. An EWMA scheme with 4 = 0.15
performed better than the CMA on all ramp location shifts from 0.005c/observation
to 0.25c/observation. With this in mind, a CEWMA scheme may also perform well

on ramped shifts if it is based on the EWMA statistic. A recommendation given in
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the thesis by Sparks for future work in research of CEWMA schemes was the original

basis for this thesis.

Another composite control chart scheme described by Sparks (2004) is that of a group
of weighted moving averages. This method applied weightings to past observations
(within each component control chart of composite scheme) using two tuning
parameters. These “dual controls” permitted a configuration equivalent to that of a
composite exponentially weighted moving average scheme, and configurations that
are more complex. A number of composite scheme designs were provided for [CARL
=400 (for known mean and standard deviation) and the performance of these schemes
were compared against a CUSUM and an EWMA control chart. Unfortunately Sparks
(2004) did not enlighten us with a comparison against CCUSUM (Sparks 2000) or
CMA (Sparks 2003) schemes. All of these composite designs were ad hoc but
sufficiently refined to demonstrate the advantage of composite schemes over simple

control charts where efficient detection of a range of location shift sizes is required.

Adaptive EWMA (AEWMA) control charts were investigated by a number of authors
including Wortham, Heinrich and Taylor (1974), Hubele and Chang (1990), Capizzi
and Masarotto (2003). Capizzi and Masarotto described the AEWMA method as a
smooth combination of a Shewhart and an EWMA control chart. Comparisons of
ARL profiles were made between AEWMA, EWMA, CUSUM and two-component
CEWMA schemes. It was concluded that the AEWMA had detection properties
which were robust to varying disturbance size, and were simple in the fact that only
one control chart needed to be monitored. Again, there was no formal optimisation
and lack of a scalar performance measure in their study. Also of concern is the small
number of simulated chart runs (10,000 per design) and lack of error analysis. Hubele
and Chang’s AEWMA was based on a Kalman component. The results of Hubele and
Chang, and Wortham, Heinrich and Taylor, unfortunately, are probably not very
relevant to readers considering ICARL=400 schemes, as insufficient constraints and
specifications were applied in the design. Small and inconsistent ICARL values
between 20 and 30 resulted. Adaptive control charts and run rules have not been
further considered in this thesis as they do not offer a convenient hierarchical

monitoring benefit (see Chapter 6, Section 6.6 for more on Hierarchical Monitoring).
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2.3.3 Estimation of Parameters

In practice, population parameters, including the mean and standard deviation of a
variable, are never truly known so these are estimated from previous in-control data.
Jones, Champ and Rigdon (2001) investigated the effect of estimates on the EWMA
scheme for independently and identically distributed (iid) data; whilst Lu and
Reynolds (1999) did the same for autocorrelated processes. Several authors have also
studied the effect of estimating the in-control mean and variance on ARL performance
of Shewhart-type schemes including Quesenberry (1993) who researched this

explicitly for individual schemes.

Jones, Champ and Rigdon (2001) found that substitution of population parameters by
sample estimates can be highly unfavourable for both the in-control and out-of-
control run lengths. Two-thousand observations (500 subgroups of 4) were required
by EWMA schemes when using a smoothing constant of 2= 0.13, to keep the ICARL
within 8% of the known-parameter based design (with a zero state ICARL = 500).
This means that one needs a very large amount of iid data for estimating the mean and
standard deviation of the population, to be able to use a design made for known
population parameters with negligible deterioration in the ICARL specification. Two-
thousand data points represent approximately six years of daily product-quality
measurements from operation without occurrence of any assignable causes. Six years
is a considerable delay for set up of control charts for a new process, and this data

requirement increases when using even smaller smoothing constant values.

Jones, Champ and Rigdon (2001) found that the false alarm rate of the Shewhart
scheme is less affected than EWMA schemes by estimation of parameters. This fact
suggests that the ICATS of a CEWMA scheme, which has a Shewhart-like
component will be less affected by estimation of parameters. The ICARL increasing
and decreasing effects might cancel each other out to some degree. A list of research
ideas by Woodall and Montgomery (1999) included “more research is needed on the
effect of parameter estimation on control chart performance.” No studies on the effect
of estimation of parameters have been published for composite monitoring plans to

our knowledge.
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Design procedures for control charts have been proposed to manage the effect of
estimating parameters. Jones (2002) suggested that the control limits be widened
according to the uncertainty in the parameter estimates such that the ICARL
specification is maintained. Selection of the smoothing constant should also take this
uncertainty into account because small smoothing constants strongly affect the ARL
performance when parameters are estimated. Parameters may then be re-estimated as
Phase 1 proceeds and more in-control samples became available. Quesenberry ()
proposed a Q chart that was based on individual measurements or X , and which has
an algorithm for calculating and updating the control limits from the third observation
onwards. Another option for users, in light of the effect of estimating parameters, is to
accept inflated or deflated ICARL performance. As more data are accumulated,
parameters may be re-estimated so the most adverse effect occurs only in phase 1
when the sample size is still small. Composite schemes lend themselves to another
alternative in that components may be activated progressively as more data becomes

available, thereby managing any adverse effects of estimation.

Jones, Champ and Rigdon (2001) found that the ICARL of CUSUM charts is larger
when estimated parameters are used compared to known parameters. They also found
that ARL values were higher when estimated parameters were used, that is, the
CUSUM chart became less sensitive to both changes in the mean and variance.
Studies have also been done on the performance of the change-point model with
estimated parameters after the location shift (Hawkins, Qui and Kang, 2003; Zamba

and Hawkins, 2006).
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2.3.4 Transition to Steady-State

EWMA and CUSUM based publications vary in assumptions for the initial conditions
upon simulation of control chart runs with options including steady state, zero state,
and head start. It is important to note the assumed initial condition when reading

thesiss as the derived ARL values are affected by this assumption.

A steady state distribution of the control chart statistic(s) is achieved in simulation by
applying a warm-up where random observations are collected for a period after

initialisation to zero state, that is when Q,=0, until the distribution of the EWMA

statistic Q, stabilises.

Some users of control charts might argue that zero state studies are more relevant than
steady state as off-specification production is more likely after plant stoppages due to
misfitted assemblies and ramping up to typical process conditions. Zero state ARL
values are longer than steady state values for small location shifts; therefore, the chart
performance found in steady state studies may underestimate location shift detection
efficiency immediately after control chart resetting. Lucas and Saccucci (1990)
compared the results from both approaches and found that the difference was only
2.6% between steady state and zero state ICARL performances for EWMA schemes
with A= 2.615, A= 0.05 (for ICARL=500). The relative difference between steady
state and zero state performance was less for large step shifts thus rendering the

choice between methods of little practical significance.

To ensure sensitivity of control charts immediately after initialisation fast initial
response (FIR) modifications to traditional control charts have been developed. Lucas
and Saccucci (1990) developed a FIR scheme by using a 50% head start initialisation
for EWMA schemes, that is, an initial value of the EWMA statistic that was half way
between the target of the control chart and the control limit(s). Klein (1997), Rhoads,
Montgomery and Mastrangelo (1996), and Steiner (1999) demonstrated use of
transient control limits, on EWMA schemes, which reflect the actual variance of an
in-control EWMA statistic over time, to achieve FIR. The transient control limits, in

this style of FIR, are asymptotic to the steady state control limits. Rhoads,

32



Chapter 2 — Control Chart Definitions and Background Literature

Montgomery and Mastrangelo proposed use of 50% head start in addition to transient
control limits and found that this combination raised alarms quicker after scheme
commencement, for out-of-control conditions, than when transient control limits are
used alone. Conversely Steiner actually increased the FIR effect by making the
control limits narrower for the early measurements than the limits used in previous
asymptotic control limit schemes. “Asymptotic control limit FIR schemes” are
simpler to construct on a spreadsheet than dual sided FIR schemes, which have
additive head start terms transforming the raw variables into two different signals for

separate monitoring.

Ideally, ARL values are always as small as possible for practically significant events,
that is, events which are both statistically and economically significant. However, in
our experience it is simply not feasible to respond to any alarms at start-up other than
those which are essential to equipment protection and safety. There are often too
many alarms for an operator to deal with at the time of start up. At such a time,
quality is secondary to production rate ramp-up and equipment protection. EWMA
schemes can have a long memory, and it makes sense to sufficiently adjust the value
for Q;.; after an alarm so that it does not contribute to “alarm overload” upon restart.
For hot processes, it might be argued that 24 hours to 48 hours is a suitable delay prior
to complete activation of all SPC monitoring tools. This may be in the transition to
steady state for EWMA schemes, especially if the sampling period is long such as
once per 12 hour shift. Evaluation of steady state performance is most appropriate
because steady state constitutes the scenario in which alarms are desired and to which
one can feasibly respond. Therefore, a steady state distribution for

averaging/cumulative statistics is assumed in this thesis.

Warm-Up Runs for Steady-State Control Chart Properties

Steady-state simulation based thesiss vary in the sample size used to warm up the
monitoring statistics. Albin, Kang and Shea (1997) for instance used a warm up of 35
observations whilst Sparks (2000) used 25 observations. Robinson (2007) reviewed
methods typically used to decide on a suitable warm-up sample size and classified the
approaches into the following: graphical, heuristic, and statistical methods and

initialisation bias tests. A number of example publications are cited as users of each
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method. Robinson proposed an SPC approach using run rules to determine if the
dispersion of a statistic is static and concluded that no one method (other than
guessing) could be ruled as the superior method. Using too short a warm-up length
will cause biased results. It should be noted at this point that tuning parameters which
weight more heavily to past data will require a longer warm-up than tuning
parameters which draw on less memory. Using too long a warm-up period is merely

computationally wasteful.
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Chapter 3

Performance Measurement and Comparison

3.1 Comparison and Design of Control Charts

Publications vary in the ways control charts are designed and compared. Performance
measures can vary not only in the form of the performance measure calculation, but
also in the location shift type and magnitude that is considered important. As
performance is often optimised in the design of a control chart, performance
measurement and design methods are intertwined subjects. ARL is the most common
measure of control chart performance. Development of new performance measures is

preceded with a detailed review of the ARL measure below.

3.1.1 Average Run Length Reviewed

The monitoring and correction cycle was discussed briefly in Section 1.1.4. In order
to see if the logic of using ARL as a performance measure is sound, let us consider the
elements of this cycle in more detail. The detailed model of process monitoring and
correction is shown in Figure 3-1 with different contributions to off-specification
production augmented. This model was developed to see if the ARL measure

represents control chart performance without contamination from other contributors.

Examining Figure 3-1, “Onset of location shift” can be seen at the top of the figure.
Rotating clockwise from the top dead centre of the cycle, “First sample charted after
location change” is marked next, followed by “An alarm is signalled”. Consider a
hypothetical example involving cement sulphate assays, in relation to the above
model. Cement samples used for off-line sulphate analysis typically have a sampling
period of 2 hours. A fault occurred in the gypsum dosing system, the primary source
of sulphate in cement, at 12:00. The sulphate level trended down over 30 minutes but
was off-target almost immediately. The first sample subsequent to the fault was at
13:00, and the control chart signalled an alarm at 16:00 for the 15:00 sample, having
taken 1 hour to process the sample including data entry into the SPC system.

Production was allowed to continue whilst a technician investigated the cause of the
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alarm. A small pile of gypsum was found on the gypsum weightometer, part of the
automatic control system for gypsum dosing. The problem was corrected at 16:30
and sulphate levels trended back to the target level at the sampling station by 17:00.
The total period of off-target production was 7 hours. The period related to the run
length was from 12:00 to 16:00, or 4 hours. That is, the time related to the run length
(RL = 3), was: (RL-1) x 2 hours = 4 hours.

First sample charted after location change

Diata sampling window __ Evidence Caollection Time
Sampling, analysis, data / (ECT)

Onset of location shift

entry plotting.
tlanitor the An alarm is
process signalled Foot cause
analysis
B Find the
the cause t;i”:;;’;

Figure 3-1. Augmented process monitoring and correction cycle.

If the 1 hour period of delay to assignable cause rectification from 12:00 to 13:00 is
attributed to the sampling window, and the 1 hour period between 13:00 and 14:00 is
attributed to the sample processing time, there is 2 hours yet to be accounted for. It is
asserted here that this 2 hours is the only amount related to control chart performance.
The run length was two: samples at 13:00 and 15:00. A run length of two multiplied
by a 2 hour period, gives a period of 4 hours. The run length measure, hence ARL,
inflates the apparent delay caused by the control chart by a constant of one, a constant

which should instead be attributed to the sampling window and sample processing and
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data entry. An alternative basic performance measure to ARL, ATS, is discussed in

the following subsection.

3.1.2 Performance Measures for Varying Location Shifts

ATS is a useful metric for measuring the performance of a control chart in one
particular disturbance scenario. In this thesis, we are most interested in measuring the
performance over an array of step shift sizes, or a domain of assessment.  This
chapter reviews existing statistical measures which compare the performance of
control charts over a domain of step shifts. New measures are then developed
including Mean Relative Loss (MRL), and Mean Relative Loss to the Optimum
CUSUM Vector (MRLOCV) for measuring the individual performance of a control
chart. Average Difference Relative to the Average (ADRA) is then developed for

comparing the performance two control charts over a domain of step shifts.

3.1.3 Existing Design Methodologies

Design procedures often imply aspects of detection performance that are considered
valuable. A classic paradigm for considering control chart performance, and a design
method was proposed by Woodall (1985). He considered control chart performance
in terms of SSARL performance across three regions including: in-control,
indifference, and out-of-control. The in-control and indifference regions are separated

at step shift magnitude @,, and the indifference and out-of control region is separated

at step shift magnitude 6, (see Figure 3-2).
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ARL

0 In-Control g Regionof @ | Out-of-Control o
Region T ndifference 2 Region

Figure 3-2. Woodall (1985)’s control regions.

Specification of either ICARL (or ICATS), or SSATS (or SSARL) at €, , makes

schemes comparable because they have something in common. Such a specification
prevents the out-of-control performance being confounded with varying in-control
performance. For example, Jones, Champ and Rigdon (2001) set the ICARL to 200
assuming known parameters, in one set of their comparisons. Gan (1993) proposed a

similar procedure but with the median run length as the performance measure.

Woodall (1985)’s proposed design method applied an ARL specification for the

largest in-control step shift &,, and then optimised for the centre of the indifference
region 0, = (6, +6,)/2. Aparisi and Diaz (2007) also considered design in terms of

the three regions described above, this time for EWMA schemes. They posed the

optimisation problem as minimising the ARL at &, subject to constraints at §, =0

and 6, =6,.

3.1.4 Basic Performance Measures for a Simple Disturbance

SSATS and SSARL are basic statistical measures of control chart performance

suitable for a simple disturbance model such as a step shift of 5# =1. Consider which

basic measure is most relevant to optimisation of the statistical performance of control
charts. In this thesis, SSATS is related to contribution of the control chart

performance to the total delay in correction of an out-of-control variable:
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SSATS = (SSARL - 1).T

where T, the sampling period is 1 hour. The random period between the disturbances
and the subsequent sample is not included in our SSATS measure. Authors such as
Reynolds and Stoumbos (2004) considered this random component because it is
important for distinguishing between the effectiveness of different sampling designs.
Whilst this component is of interest in such studies, an aim of this thesis is to derive
improved performance measures to distinguish the properties of different control

charts without any regard to the sampling schedule.

Economic designs model cost in terms as a function of SSATS. Economically
designed control charts have been designed under various assumptions (Duncan,
1956; Ohta and Rahim, 1997; Torng, Cochran and Montgomery, 1995; Das and Jain,
1997; Das, Jain and Gosavi, 1997). Total cost is probably the most relevant
performance measure for any specific application. However, economic models require
a lot of information which can be time consuming, if not impossible to collect
(Marcellus, 2006). As cost performance models are specific to an application,
optimisation results usually cannot be applied directly to other applications.
Publishing research on statistical performance of control charts, however, yields
beneficial general insights to many users. SSATS seems to be the most relevant basic
statistical measure of performance as it is related to total cost of an out-of-control

variable.

3.2 Methodology

The control regions of Woodall (1985) were simplified for this thesis, to the model
shown in Figure 3-3. An in-control region was not used, but rather an in-control
value defined by 0 =0, for which the performance is specified. Whilst an in-control
region makes good sense, specification of an ICARL value is commonly considered
sufficient. For example, Robinson and Ho (1978), Lucas and Saccucci (1990),
Crowder (1989) and Jones (2002) recommend specifying the ICARL which is

considered appropriate for the application.
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The indifference region is defined here as 0 < < J,, and no penalty was applied for

varying performance across the indifference region. The out-of-control lower

boundary ¢, , might be varied to reflect the needs of the application. An upper limit to
the out-of-control region, J,, was applied and the region J, <5 <J, used as a

performance assessment domain. In the examples later in this thesis, 0.5¢ to 4.0c was
predominantly used as the assessment domain, as did Sparks (2003) for some of his

comparisons.

ARL

Fegion of

ut-of-Control 5 5
Indifference

=
Oa Redion

Figure 3-3. Control regions used results for scheme designs in Section 3.3 and

Section 3.4.

3.3 Pair-Wise Comparison Measures for Multiple Disturbance Scenarios

One existing performance comparison measure, ARSSATS, and two new measures

are discussed in this section.
3.3.1 Average Ratio of Steady State Average Time to Signal

Zhang and Wu (2006) and Wu and Wang (2007) used average ratio of steady state
average time to signal (ARSSATS), a measure used for comparing the performance of
two schemes, a and b, for multiple location shift scenarios, where the ratio of steady

state average time to signal (RSSATYS) is defined as:
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RSSATS = SSATS, ; | SSATS, 5

and ARSSATS is defined as:

n

ARSSATS = 2uit S5AT S0 1 SSATS, 5

ns

For example, where SSATS , s is the SSATS for scheme a for some step shift scenario

0 ; ny is the total number of step shift scenarios at which the two schemes are

compared.

ARSSATS is a new measure and has not been available for extensive consideration
by other authors. Wu and Wang applied ARSSATS for comparison of schemes for
joint step shifts in the mean and standard deviation. Let us consider some of the data
presented by Wu and Wang for comparison of schemes called “3-CUSUM” and “I-
CUSUM?” (not described further here). Both monitoring schemes were designed to be

optimum for a step shift in the mean of magnitude 5#0' , or a step shift in the standard
deviation of magnitude 6,0 . Consider the particular schemes optimised for
5# =2.0 and 0, =2.0. The ARSSATS values (Table 4, Wu and Wang 2007) for

joint small step shifts in the mean, and small step shifts in the variance, but not
including pure step shifts in the mean or pure step shifts in the standard deviation, are

reproduced in Table 3-1.
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Table 3-1. Demonstration of ARSSATS calculation for designs by Wu and Wang
(2007).

SSATS RSSATS  RSSATS
3.CUSUM  1-CUSUM

vsl- Vs 3-

8, J, 3.CUSUM 1-CUSUM CUSUM  CUSUM
03 13 265 26.3 1.008 0.992
06 1.3 15.4 17.4 0.885 1.130
09 1.3 933 11 0.848 1.179
03 1.6 112 10.4 1.077 0.929
06 1.6 8.97 8.62 1.041 0.961
09 1.6 6.83 6.74 1.013 0.987
03 1.9 6.63 6.09 1.089 0.919
06 1.9 59 552 1.069 0.936
09 1.9 5.05 477 1.059 0.945
ARSSATS 1.010 0.997

The reported ARSSATS value was 1.01, as seen at the bottom of the column labelled
RSSATS 3-CUSUM vs 1-CUSUM. This column describes the calculation of the
ARSSATS where “3-CUSUM?” is scheme a, and the ratio is calculated relative to “1-
CUSUM”, scheme b. The value of 1.01 suggests that “3-CUSUM” is the slower
scheme on average across the different step shift scenarios. When the relativity is
reversed, the ARSSATS = 0.997 suggesting that “1-CUSUM?” is faster, or in other
words, “3-CUSUM?” is still slower. Note that the second value seems closer to unity
than the first. A problem with this measure has been noted, however, as demonstrated

in later Section 3.3.4.

3.3.2 Mean Relative Loss Pair Wise Comparison

The formula for Relative Loss Pair Wise Comparison (RLPC) is defined as follows:

_ SSATS, , — SSATS, ;

RLPC,, =
b SSATS, 5

and Mean Relative Loss Pair-Wise Comparison (MRLPC) is defined as:
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w SSATS,; — SSATS,
s=& SSATS,

ns

MRLPC,, =

MRLPC and ARSSATS are closely related. In fact,

MRLPC = ARSSATS - 1

MRLPC was considered for describing the relative loss in SSATS as a loss instead of a

ratio.

3.3.3 Average Difference Relative to the Average

Difference relative to the average (DRA) is defined as:

(SSATS , ; — SSATS, ;)
average(SSATS,, ;, SSATS, ;)

DRA,, =100

Here, we have defined DRA as a percentage relative loss for convenience. The

Average DRA (ADRA) is defined as:

s (SSATS, ; — SSATS, ;)
= average(SSATS, ;, SSATS, ;)

ns

ADRA,, =

The motivation for developing the ADRA measure is explained in Section 3.4.
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3.3.4 Testing of Pair-Wise Performance Comparison Measures

MA(2) and MA(3) were compared using the MRLPC measure highlighting a problem
with the MRLPC measure. MA(2) was shown to be optimum by the MRL measure,
and MA(3) was shown to be optimum by the MRLMC measure. Surely a pair-wise
comparison should clarify which scheme is better but the MRLPC measure was
misleading. Figure 3-4 shows that MA(2) is stronger for large step shifts and MA(3)
is stronger for smaller step shifts. MRLPC declares that both schemes are best,

depending on which scheme is on the denominator, see Table 3-2.

1000

Figure 3-4. SSATS profiles of Moving Average Control Charts, MA(2) and MA(3).
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Table 3-2. Example of a problem with MRLPC: MA(2) versus MA(3).

RLPC

RLPC MAQ2)

MA(3) relative relative to

5,  to MA(2) MAQ3)
0.00 0.0014 20.0014
0.25 -0.1368 0.1585
0.50 -0.2533 0.3393
0.75 -0.2985 0.4255
1.00 -0.3076 0.4443
1.25 -0.2954 0.4192
1.50 -0.2519 0.3368
1.75 -0.1963 0.2442
2.00 -0.1145 0.1293
225 -0.0102 0.0103
2.50 0.0999 -0.0909
275 0.1971 -0.1646
3.00 0.2653 -0.2097
325 0.3037 20.2330
3.50 0.3256 -0.2456
375 0.3523 -0.2605
4.00 0.3843 -0.2776
MRLPC 0.0134 0.0578

MRLPC for MA(3) relative to MA(2) suggests that MA(3) is 1.3% better. When the
MRLPC is calculated relative to MA(3), MRLPC suggests that MA(2) is 5.78% better.
MRLPC is clearly not a reliable comparison measure, and as ARSSATS = MRLPC + 1,
ARSSATS is also a poor pair-wise comparison measure in situation such as the

example described here. Whichever term is on the denominator appears to be more

favourable when using ARSSATS and MRLPC measures.

In Table 3-3, the first and second columns represent two fictitious SSATS profiles
being compared. They are straight line profiles with the same mean, but profile B has
an equivalent magnitude gradient to profile A, but negative. The third and fourth
columns are RLPC values, first relative to profile B, then relative to profile A.
Calculation of RSSATS is shown in the fifth and sixth columns with both directions of

relativity. The seventh column shows the result for the DRA measure.
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Table 3-3. Fictitious example of two comparable schemes.

RLPC  RLPC RSSATS RSSATS DRA

A B (A-B)/B (B-A)/A A/B B/A (A-B)/average(A,B)
1 10 -0.90 9.00 0.10 10.00 -1.64
2 9 -0.78 3.50 0.22 4.50 -1.27
3 8 -0.63 1.67 0.38 2.67 -0.91
4 7 -0.43 0.75 0.57 1.75 -0.55
5 6 -0.17 0.20 0.83 1.20 -0.18
6 5 0.20 -0.17 1.20 0.83 0.18
7 4 0.75 -0.43 1.75 0.57 0.55
8 3 1.67 -0.63 2.67 0.38 0.91
9 2 3.50 -0.78 4.50 0.22 1.27
10 1 9.00 -0.90 10.00 0.10 1.64
Average 1.22 1.22 2.22 2.22 0.00

Again, MRLPC declares that whichever profile is on the denominator is fastest. The
calculations for these fictitious profiles suggest that the profile which is not the
denominator has SSATS values which are 122% slower on average than the
denominator profile. Clearly, both profiles cannot be relatively slower on average
than each other. ARSSATS calculations are similarly misleading stating that the
numerator is a factor of 2.22 of the denominator profile regardless of which profile
assume a position on the denominator of the formula. Average ratio of average run
length (ARARL, Zhang and Wu 2006, Wu and Tian 2005) will suffer the same short-
coming as does ARSSATS, and is therefore also a dubious choice of measure for pair-
wise performance comparisons. The ADRA measure, however, has a suitable result of
zero meaning that both profiles are relatively similar on average. Reversing the

relativity of the ADRA comparison again resulted in the same value of zero.

ARSSATS and MRLPC measures fail because their relative loss is calculated by
scaling the absolute loss by a biased estimator of the group’s mean. For example, 100
is 25% bigger than 80, but 80 is 20% less than 100, but the absolute difference is a
fixed amount of 20. In this way, ARSSATS and MRLPC always overstate the relative
difference when the numerator-only profile has a value which is larger (slower) at a
certain step shift, and understate the relative difference when the other value is

smaller. The truth in this statement can be seen in the third and fourth columns where
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the negative numbers have a small magnitude and the positive numbers have a large
magnitude. ADRA, on the other hand, is not biased in the calculation of relative

differences.

Now that the ADRA measure has been defined and tested, let us return to the problem
of comparing MA(2) and MA(3) schemes. MA(3) is faster on average over the
assessment domain having an ADRA value of -2.1% relative to MA(2). MA(3) is
faster (up to 36% DRA) on the sub-domain 0.56 to 2.25c, and MA(2) is faster (up to
32% DRA) on the sub-domain 2.5¢ to 4c.

In the next, use of DRA and ADRA are demonstrated in a practical example for
comparing a CCUSUM3 and X-MR schemes for a joint domain of mean and standard

deviation step shifts.

3.3.5 CCUSUM3 compared to Amin and Ethridge’s X-MR scheme using the
DRA Measure

In this section, the objective is to see how competitive a three-component CCUSUM
scheme is compared to an X-MR scheme (e.g. Amin and Ethridge, 1998) for detecting
step shifts in the mean and step shift increases in the standard deviation.
CCUSUMB3D was the three-component scheme design used in the comparison and
was designed to have the same specification as the X-MR scheme, ICATS = 500 for
known mean and standard deviation parameters. The fine component accounts for
17% of all in-control false alarms, the intermediate component accounts for 41.5%

and the coarse component accounts for the remainder of all in-control alarms.

The domain used for the comparison was [0 = 0.0 to 2.0; increments of 0.25] and
[J, = 1.0 to 2.0; increments of 0.1] as the ARL data provided by Amin and Ethridge
(1998) for 6,>2.0 and 6, > 2.0 provide sufficient significant figures for a comparison

in this domain. Of the two X-MR designs explicitly discussed by Amin and Ethridge,
the design with the most sensitivity to step shift increases in variance and the least
sensitivity to step shifts in the mean was used in the comparison [M = 3.27; R = 4.57].

It was of interest whether a CCUSUM scheme, which has no component specifically
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intended for detecting increases in standard deviation, could detect such events as
well as a composite scheme which does have a component specifically intended to

detect increases in standard deviation.

SSATS results for the simulation of CCUSUMS3D are shown in Table 3-4 along with
the DRA losses of CCUSUMB3D relative to the X-MR design. X-MR only out-
performed CCUSUM3D by more than 1% in DRA terms in the case of pure variance
shifts for step shifts in the standard deviation for ratios between 1.4 and 2.0.
CCUSUMB3D detected pure step shifts in the standard deviation almost as well as did
the X-MR scheme, but CCUSUM3 is much better at detecting pure step shifts in the
mean, and joint step shifts in the mean and step shift increases in the standard

deviation.

CCUSUMB3D has a peak advantage over the X-MR scheme for a pure step shift of
0.750 with a DRA of -160%. The advantage that CCUSUM3D has for detecting
large pure step shifts in the mean rapidly dissipates for increasingly large step shifts in
the variance when these two different disturbances occur simultaneously. However,

the CCUSUM3D scheme is still 24% better (DRA) for joint step shifts of [§, =2, and
0, =2]. ADRA was calculated on the modified assessment domain which included
all values except the shaded cells of Table 4 [0<0 P 0.25 and 1.0<6,<1.2]. Overall,

CCUSUMB3D performed much better on the assessed domain, with ADRA = -50%,
than did the X-MR scheme.
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Table 3-4. SSATS values derived for CCUSUM3D for known parameters. DRA values are relative to X-MR scheme (design parameters: M =
3.27; R = 4.57). CCUSUMB3D had reference values and control limit coefficients: k, =0.35, h, =8.6615; k, =1.0, h, =2.9776; k,=1.8,

h,=1.5477; AL, IC=17.0%; AlLIC=41.5%; Al;1C=41.5%.

SSATS 5,
DRA [%] 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 18 19 2
0.00 | 500.196 190.061 91.399 51.852 32951 22.794 16.705 12.832 10214 8372 7.017
0.8 2.1 1.1 0.1 1.7 0.0 3.1 2.6 21 21 17
0.25| 148231  90.446 57.778 38.628 27.097 19.852 15.121 11.950 9.657 7.999 6.762
-97 -62 236 21 -11 9 2 -1 04 00 09
050 | 37.127  31.961 26731 21.777 17779 14431 11.860 9.845 8283 7.100 6.120
-153 117 -82 -56 236 28 -15 -1 -7 5 -3
075 17.085 15945 14.513 12947 11453 10.053 8780 7.684 6.760 5.956 5.269
-160 132 -101 76 -54 44 28 21 14 <12 -10
s 1.00 |  10.192 9.660 9.093 8364 7.727 7.072 6455 5886 5358 4.841 4.446
“ -157 132 -106 -84 -63 -54 237 29 22 20 -4
1.25 6.751 6451  6.127 5818 5476 5.147 4831 4530 4234 3.943 3.658
-149 127 -104 -84 -66 .58 42 234 26 24 -18
1.50 4.657 4521 4357 4197 4053 3.880 3.683 3503 3361 3.191 3.029
-139 119 -98 -81 -65 -59 -45 .37 29 27 20
1.75 3.336 3275  3.196 3.110 3.059 2943 2885 2765 2.689 2592 2.502
-128 -109 91 77 -62 .57 -44 -39 32 27 21
2.00 2.462 2423 2406 2370 2343 2287 2263 2.198  2.153 2.103 2.043
115 -99 -83 -70 -59 -54 -43 .37 33 28 24
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3.4. Individual Scheme Performance Measures for Multiple
Disturbance Scenarios

Ideally, individual performance measures can express the effectiveness of a particular
design via a “standardised” value that can readily benchmarked against other studies.
Four individual measures of scheme performance are described in this section
including one existing measure, relative loss efficiency (RLE). These measures are
equally applicable to univariate and multivariate control charts, for comparing

performance over a domain of disturbance scenarios.
3.4.1 Relative Loss Efficiency

Sparks (2003) used the RLE measure in his investigation of composite moving
average (CMA) schemes. RLE measures the relative difference in ARL for scheme r
compared to the best of a series of p different schemes. To determine how well the
scheme performed over a domain of location changes, he added together the loss

terms for a number of different location shift scenarios:

ns SSARLr,s — min(SSARLz,s)
Zi:l mln(SSARL15 )

ngs

RLE =

where r is the identity of the scheme in question with /=1,2,...,p and /#r; and [ is the

identity of the various schemes being compared with r. Further,§A was a step shift

of Oc and 6B is the largest step shift considered in the evaluation.

RLE indicates, by its relative magnitude, a desirable scheme within a group of
schemes. By looking at the equation for RLE, we can see that the RLE value for a
scheme depends on:

1) the type and number of the schemes to which it is compared,

2)  the range of the deterministic shift magnitudes applied, and

3) the number of different step shifts within this range that have been applied and

contributed to the summed relative loss efficiency.

50



Chapter 3 — Performance Measurement and Comparison

RLE values change as more schemes are added to a comparison. A performance
measure that changes as an optimisation routine progresses (for one fixed scheme

design) is not very suitable for use in typical optimisation methods.

The magnitude of a calculated RLE value does not help the user understand the
difference in performance of a control chart because the magnitude is sensitive to the
diversity of other schemes which are compared. Any RLE value quoted in a
publication does not universally indicate the performance of that design; it only
indicates its rank within the designs compared in a specific study. That is to say,
RLE cannot be classified as a standardised individual performance measure (neither is
it a pair wise performance comparison measure). Owing to the deficiencies noted

above, three new performance measures are developed as follows.

3.4.2 Mean Relative Loss Multiple Comparison

Mean Relative Loss Multiple Comparison (MRLMC) was developed from the RLE
measure. When calculating the relative loss multiple comparison (RLMC), SSATS is
substituted for ARL into the RLE measure:

SSATS , —min, (SSATS, ;)
RLMC = ’ ’
min, (SSATS, ;)

and, then RLMC is divided by the number of step shift scenarios at which the

comparison is made to calculate MRLMC, where

S SSATS, ; — min, (SSATS, ;)
-l min, (SSATS, ;)

ns

MRLMC =

and where n; is the number of different levels of § at which the SSATS values are

assessed. SSATS was used in the RLMC formula to make the comparison focused on

detection performance related to the choice of the control chart without the delay time
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due to sampling and analysis of the first sample. The effect of the number of step
shifts used to compare control charts is mostly removed by dividing by the number of

step changes at which the comparison is made.

Like RLE, MRLMC 1is not a standardised individual performance measure because the
value changes depending on which schemes are included in the comparison. The

min ,(SSATS L 5) part of the function causes MRLMC to be sensitive to the diversity of

the competing designs included in the calculation.
3.4.3 Comparison of CCUSUM3B to Koo and Ariffin’s run rules using MRLMC

To demonstrate use of MRLPC, let us compare a CCUSUM scheme having three
components to run rules schemes designed by Koo and Ariffin (2006). Koo and
Ariffin published data for two-component run rules schemes which included the
components: an Individuals Chart, and either a two-of-two or a two-of-three rule. A
number of such designs with ICARL = 370 were described, each differentiated by the
number of in-control false alarms generated by each component when operated in
isolation. To measure MRLMC performance, SSARL data of the run rules schemes

was converted to SSATS by subtracting 1.

The assessment domain lower boundary was set to 0, = 0.6c because this was the
closest level to 0.5¢ simulated in the publication by Koo and Ariffin. An assessment
domain upper boundary of J, = 4.0c was used. The design of CCUSUM3B was
derived for the input specifications ICATS = 370 assuming known parameters.
CCUSUM3B was not optimised, but is expected to be a reasonably good design for
the assessment domain based on experience. The RLMC profiles are shown in Table

5 for the odd-numbered run rules schemes from the Koo and Ariffin study, relative to

the CCUSUMS3B scheme.
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Table 3-5. CCUSUM3B and various run rules schemes by Koo and Ariffin (2006) using the MRLMC performance measure. The control limit
coefficients for CCUSUM3B were: k,=0.35, h =8.207; k,=1.0, h, =2.8231; k,=1.8, h,=1.4538; ALLIC=17%; AlLIC=41.5%; ALIC=41.5%.

CLC1 is the control limit coefficient for the individuals component, and CLC2 is the control limit coefficient for the two-of-two or three-of-three
rule.

Two-of- Two-of- Two-of-
CCUSUM Two-of- Two-of- Two-of- Three Three Three
“ -3B Two(A) Two (C) Two (E) (A) © (E)
CLC1 34 3.6 3.8 34 3.6 3.8
CLC2 1.843 1.81 1.792 1.986 1.955 1.94
SSATS RLMC  SSATS RIMC  SSATS RLMC  SSATS RLMC  SSATS RLMC  SSATS RLMC  SSATS RILMC

0 370.635 0.006 37222 0.011 372.84 0.012 371.69 0.009 372.13 0.010 371.94  0.010 368.33 0.000
0.2 170912 0.000 28048  0.641 281.24 0.646 277.38 0.623 277.78 0.625 27546  0.612 274.03 0.603

0.4 52.907 0.000 155.5 1.939 154.78 1.926 152.58 1.884 147.85 1.795 144.25 1.726 142.9 1.701
0.6 23.97 0.000 80.97  2.378 79.83 2.330 79 2.296 75.57 2.153 73.59  2.070 72.8 2.037
0.8 14.184  0.000 44.3 2.123 43.77 2.086 43.65 2.077 40.57 1.860 39.86  1.810 39.47 1.783
1 9.508 0.000 254 1.671 25.45 1.677 25.38 1.669 23.24 1.444 22.78 1.396 22.55 1.372
1.2 6.822  0.000 15.38 1.254 15.51 1.274 15.55 1.279 14.31 1.098 14.05 1.060 14.08 1.064
1.4 5.033 0.000 9.68  0.923 9.75 0.937 9.85 0.957 9.13 0.814 898  0.784 9.03 0.794
1.6 3.807 0.000 6.48  0.702 6.48 0.702 6.6 0.734 6.05 0.589 6.01  0.579 6.04 0.587
1.8 2.929 0.000 441 0.506 4.48 0.530 4.52 0.543 4.52 0.543 416 0420 4.17 0.424
2 2.288 0.000 3.14  0.372 321 0.403 3.27 0.429 3.27 0.429 303 0324 3.09 0.351
2.2 1.818 0.000 232 0.276 2.38 0.309 245 0.348 245 0.348 231 0271 2.36 0.298
24 1.459 0.000 1.8 0234 1.87 0.282 1.94 0.330 1.94 0.330 1.81  0.241 1.87 0.282
2.6 1.177 0.000 14  0.189 1.49 0.266 1.58 0.342 1.58 0.342 144  0.223 1.51 0.283
2.8 0.949 0.000 1.12 0.180 1.21 0.275 1.28 0.349 1.28 0.349 1.19  0.254 1.25 0.317
3 0.763 0.000 09  0.180 0.98 0.284 1.07 0.402 1.07 0.402 098 0.284 1.06 0.389

4 0.221 0.000 027  0.222 0.34 0.538 0.42 0.900 0.42 0.900 0.34  0.538 0.43 0.946

5 0.031 0.000 0.05 0.613 0.07 1.258 0.11 2.548 0.11 2.548 0.07 1.258 0.11 2.548
MRLMC  0.0000 0.8008 0.8495 0.9040 0.8287 0.7325 0.7804
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It can be seen from Table 3-5 that CCUSUM3B was the fastest scheme at all
measurement nodes on the assessment domain (MRLMC = 0). Two-of-Three (C)
appears to be the next best scheme, although there is no clear advantage for two-of-
three schemes generally over two-of-two schemes. Unfortunately, one cannot
determine how much slower the other schemes based on MRLMC values. Hence, a
more refined individual performance measures is required where more insight is

desired.

3.4.4 RLMC Profiles within a Node-Optimised Set

The effect of the number of nodes experienced by the RLE measure was effectively
removed in the MRLMC comparison by averaging, assuming that sufficient
comparison nodes are included to be representative. However, at least two factors can

adversely affect the standardisation of MRLMC values, namely:

1) The optimisation of schemes for the nodes

2) The type of schemes included in the comparison

To explain these two considerations, an example is given below for applying MRLMC

to EWMA schemes.

An un-optimised four-component EWMA scheme CEWMAA4D (ICATS = 400, having
contributing components: [A; = 0.055, h; =2.9849; A, = 0.3, h, = 3.2286; A3 = 0.55, h;
= 3.2841; Ay = 1.0, hy = 3.3259]) was assessed using the MRLMC individual
performance measure.  Single-component EWMA control charts, based on the
following smoothing coefficient values [0.055, 0.1, 0.13, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5,
0.6, 0.64, 0.8, 0.85, 0.9] and ICATS = 400, were used as the reference profiles.
Figure 3-5 shows the RLMC profiles for CEWMA4D and some of the reference
single-component EWMA control charts. It can be seen that CEWMA4D is a
robustly fast scheme across the assessment domain, but is never the fastest scheme at

any measurement node in the comparison.

The selection of reference schemes has an impact on the interpretation of an MRLMC

value as an individual performance measure. If the selections of schemes included in
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a MRLMC comparison are not node optimised, a zero RLMC value means indicates
the fastest control chart of those considered for a step shift of the size under
consideration. The interpretation for a zero RLMC value becomes the fastest control
chart possible within the EWMA class, for the step shift size under consideration.
Therefore, a control chart with MRLMC = 0 is the fastest control chart in the class

being considered, at all of the nodes in the assessment domain.

1 2 3
Step Shift [in number of standard deviations]

| —=—0.055 013 ---w---04 —e—Shewhart CEWMA4D |

Figure 3-5. RLMC profiles for EWMA(L) type schemes where A is defined in the
legend and CEWMAA4D is defined by the component design [A; = 0.055, h, = 2.9849;
A2 =0.3, h, =3.2286; A3 =0.55, h, =3.2841; Ay = 1.0, h, =3.3259]. RLMC data

was calculated from a set of schemes which included EWMA control charts based on
the following smoothing coefficients [0.055, 0.1, 0.13, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5,
0.6, 0.64, 0.8, 0.85, 0.9], with ICATS = 400. SSATS performance was for schemes

designed assuming known parameters in all cases.
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When a background of node optimised reference schemes is included in a
comparison, MRLMC offers a unique and useful interpretation. In this example,
CEWMAA4D had an MRLMC of 12.6% suggesting that this scheme was only 12.6%
slower in SSATS terms than a node optimised EWMA scheme on the assessment
domain. If a universally meaningful MRLMC performance measure is to be defined,
it would require that a standard and large set of control charts are included in the
comparison. MRLMC can demand significant data handling and interpretation efforts
unless certain restrictions are place on the reference profiles set. The next measure is
developed to reduce data handling demands and remove the ambiguity from the

interpretation of the resulting performance measure value.

3.4.5 Mean Relative Loss to the Optimum CUSUM Vector

Mean Relative Loss to the Optimum CUSUM Vector (MRLOCYV) is defined as:

s SSATS; —OCV,
=8 OCV,

ns

MRLOCV =

where OCV is a vector of SSATS results from a particular set of CUSUM schemes.
Each value in the vector is from a different CUSUM scheme which was designed for
SSATS = 400 and optimised for that particular location shift scenario (step shift size).
In other words, OCV is a vector of the CUSUM scheme node-optimal SSATS values.
The SSATS profile for OCV for step shifts is shown in Table 3-6.

MRLOCYV is a performance measure related to a standard reference profile, thus an
MRLOCYV value has a meaning or interpretation that could potentially facilitate
comparison of the performance across various design focused papers. Instead of
including many node-optimised vectors in a comparison, only a single vector, OCV ,
needs to be handled. Comparison with just one other vector gives a firm quantity that

does not change as new schemes are measured and added to a dataset.
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A performance measure referencing a vector of node-optimised EWMA or MA
SSATS values could also be defined. OCV was selected as the basis for the reference

vector because CUSUM schemes are more efficient than MA and EWMA schemes.

Table 3-6. Optimum CUSUM reference vector, OCV , used for RLOCYV calculations.
The vector was created from profiles of 15 different CUSUM schemes.

8, SSATS 8, SSATS

0.00  400. 2.25 1.611
0.50  24.67 2.50 1.250
0.75  13.20 275 0953
1.00  8.210 3.00 0.714
1.25 5.541 325  0.528
1.50 3916 3.50  0.377
1.75 2.856 375  0.266
200 2122 4.00 0.179

3.4.6 Mean Relative Loss
Mean Relative Loss (MRL) is defined as:
2&3 SSATS ; — C

S=A C
5

ns

MRL =

where the vector Cy is the SSATS for a step shift in the mean 6 for CUSUM control

chart based on estimated parameters (7,5, = 200) with £ = 1.1, and & =2.2908. The
SSATS profile for C; for step shifts is shown in Table 3-7.
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Table 3-7. CUSUM reference distribution, Cy, used for RL calculations. CUSUM

design parameters are k = 1.1, and & = 2.2908, and parameters were estimated from

200 observations.

5, SSATS 5, SSATS
0.00 400 225  1.644
050 784 250  1.250
075 306 275 0978

1.00  14.05 3.00 0.763
1.25 7.54 325  0.601
1.50  4.604 350 0463
1.75 3.080 375  0.349
200  2.198 4.00  0.260

The above CUSUM chart has an SSATS = 400, thus is most suitable for a standard
reference for other control charts with and SSATS = 400. This particular configuration
of a CUSUM control chart was chosen because it is approximately optimised for the

midpoint of the comparison domain.

3.4.7 Comparison of the Performance Measures

The question arises, how does selection among RLE, MRLMC, MRLOCV and MRL
measures affect optimisation? These performance measures were compared for the
MA control charts as shown in the Table 3-8.

Table 3-8. MRL and RLE performance for Optimum MA(7n ) schemes.

MA Span, n RLE  MRLMC MRLOCV MRL

1 1.395 1.611 1.980 1.057
2 0.553 0.799 1.069 0.456
3 0.381 0.755 1.036  0.498
4 0.348 0.851 1.158 0.636
5 0.359 0.980 1.316 0.790
7 0.424 1.250 1.640 1.084
& 0.464 1.381 1.796 1.221
12 0.627 1.842 2.344 1.689
28 1.120 3.092 3.820 2911
30 1.169 3.211 3.960 3.026
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Table 3-8 demonstrates the RLE, MRLOCYV and MRL measures are not consistent in
which MA control chart is optimum on the assessment domain. The optimum MRL
result was for MA(2), and the optimum RLE measure was from MA(4). The effect of
using MRL, which is a comparison measure based on SSATS, was to indicate a coarser
component as the optimum scheme as compared to RLE which is based on the SSARL
measure. This is because the SSATS measure is smaller than the SSARL measure.
Effectively, MRL weights the small SSATS values, which corresponding to large step
shifts, more heavily than larger SSATS. As smaller span are optimum for large step
shifts, a smaller span is optimum for the MRL measure than the optimum found by the

RLE measure.

MRLMC and MRLOCYV, however, did agree that the MA(3) scheme is optimum for
the assessment domain. MRLMC and MRLOCYV are different because the MRLMC
effectively referenced a node-optimal vector of MA SSATS values, whereas,
MRLOCYV referenced a node-optimal vector of CUSUM SSATS values. Also, the
reference scheme profiles in MRLMC were based on known parameters, but the OCV
was based on parameters estimated from 200 observations using the absolute moving
range formula to estimate standard deviation. There were sufficient schemes included
in the MRLMC calculation so that the SSATS values were approximately node-
optimal. It has not been considered whether the agreement between MRLMC and
MRLOCYV can be expected always. The large difference in the tuning parameter
between a MA(2) and a MA(3) schemes may have contributed to the common finding

for the optimum tuning parameter.

In Section 3.4 it was shown that MA(3) was 2.1% faster than MA(2) on average
according to the ADRA measure. From this information, we might conclude that the
MRLOCV measure is a better individual performance measure to use when

optimising design configurations.
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3.4.8 MRL and MRLOCY used for Optimisation of Composite Schemes

To demonstrate use of individual performance measures MRL and MRLOCYV, two-

component CCUSUM designs were optimised.

demonstrated the affect of the performance measure selection on optimised composite
scheme configuration. A three-factor, four-level full factorial experimental design,
that is a 4> design, was performed on schemes with a specification of ICATS = 400
when parameters are estimated from 200 observations and Equation 1 is used to
estimate the standard deviation. The levels used in the experimental design are shown

in Table 3-9. Table 3-10 shows a slice of results for a loading on the fine component

of ALIC =25%.

Table 3-9. Experimental design levels for two-component CCUSUM scheme

This optimisation exercise also

optimisation
Factor Levels
ALIC [%] 10, 20, 25, 30
k, 0.3,0.4,0.5,0.6
k, 1.0,1.2,14,1.6

Table 3-10. MRL and MRLOCYV performance for two-component CCUSUM schemes

at AlIC = 25% slice of the experiment lattice

MRL, k,

MRLOCV 0.2 0.4 0.6 0.8
10| -0.068 -0.071 -0.068 -0.046

0208 0207 0242 0314

12| -0.102 -0.121 -0.114 -0.083

k, 0.168 0.146  0.188  0.276
14| -0.089 -0.128 -0.124 -0.090

0.182 0136 0.177 0.273

16| -0.048 -0.109 -0.114 -0.081

0230 0.157 0.190  0.288
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The optimum two-component CCUSUM configuration according to both the MRL
and MRLOCV measures was [ALIC = 25%, k,= 0.4, k, = 1.4]. Identical results

from both the MRL and MRLOCV measures suggest that optimisation is not
particularly sensitive to the performance measure used when optimising two-
component CCUSUM schemes. It has not been established whether optimisation of
other composite schemes, such as three-component CCUSUM schemes, will be more

sensitive to the choice of performance measure than shown here.

3.5 Absolute versus Relative Performance Measures

So far, only relative performance measures have been discussed. In ADRA and
MRLOCYV, performance is relative to some profile. Absolute losses could also be
considered when measuring individual performance or in pair-wise comparisons.
Small step shifts are relatively slow to be detected by control charts. As a result, the
absolute differences between the SSATS values for various schemes tend to be most
divergent for small step shifts. Unweighted absolute loss measures mainly represent
the performance on small step shifts hence optimisation attempts on unweighted
absolute loss measures will be optimised for smaller step shifts than optimised
unweighted relative loss measures. In the absence of detailed cost data, relative loss
measures seem to be more appropriate for optimisation purposes than absolute loss
measures as they will produce designs which are suitably tuned for moderate to large
step shifts which are more likely to harm product quality. A comparison measure
called Ratio of Average Extra Quadratic Loss (RAEQL, Reynolds and Stoumbos
2004) is effectively a weighted absolute loss measure. RAEQL weights large step
shifts in the mean and/or variance proportionately to the size of the step shift. RAEQL
would be a reasonable choice of performance measure if it also applied a weighting
factor for the expected frequency of various disturbance sizes. Assuming that the
weighting for the relative consequence of larger step shifts will be offset by a higher
frequency of step shifts which are smaller in size, it would not be wise to introduce
one of these weightings without the other. Relative loss performance measures are
likely to have more generally applicability than absolute loss measures. Absolute loss

measures have not been explored in this thesis.
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One might argue that there is a risk that the relative performance measures such as
MRLOCYV and MRL measures might over-represent relative differences that are too
small to be addressed in practice. Imagine a relative loss of 30% at large step shifts.
A process operator cannot practically benefit from a warning that is 30% less delayed
in the evidence collection window if the absolute benefit is only 0.01 observation
(taken two hourly) on average. The benefit would be 0.01 [observation] x 2
[hours/observation] x 3600 [seconds/hour] x 0.3 [-] = 21 seconds. Cleary, twenty-
one seconds is not long enough to do much. This is not a valid argument because even
though the differences in SSATS might be 0.01 observations, effectively a ratio of
99:1 for 0 and 2-hour delay events. Something practical can usually be achieved by
an operator within a two-hour period, this typical margin being provided by avoidance

of a one-sample delay afforded by superior scheme design.

3.6 Discussion and Conclusions on Statistical Measures of Control
Chart Performance

Economic control charts have the potential to best optimise control chart
configurations for specific applications, but are complex to build. Statistical
performance measures are convenient for researching the effect of control chart
design factors for general situations, and a number of such measures have been
reviewed and developed in this thesis. One needs to be careful when choosing a
statistical performance measure for researching a control chart as it has been shown
that the increasingly popular ARSSATS may produce misleading results. Schemes
look more favourable when they are represented in the denominator of the ARSSATS
formula compared to when they are represented in the numerator. A new measure
called ADRA was proposed as a measure for comparing the performance of two
control chart schemes, for a number of location shift scenarios. ADRA does not
demonstrate any hysteresis based on which position it takes in the performance

measure formula.

Statistical performance measures based on SSATS better represent the economic
advantage of a monitoring scheme than measures based on SSARL, neglecting the

imperfections of any assumptions relating the statistical measure to the economic
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performance. When the SSARL measure was substituted for SSATS in the MRLMC
measure, the effect on optimisation was to produce a control chart configuration
which was more sensitive to smaller step shifts and slightly detuned for larger step
shifts. In a more general context, however, selecting between individual performance
measures based on SSARL or SSATS may be somewhat pedantic if there is not a good
understanding of economic factors of the problem at hand. ADRA is a superior pair
wise comparison measure and MRLOCV is a superior individual performance

measure for a domain of disturbances as compared to SSARL and SSATS measures.

Demonstrations using the new performance measures yielded insights regarding the
performance of composite CUSUM schemes to alternative control charts. The
MRLMC measure showed that a three-component CUSUM scheme performed better
on average in detecting step shifts in the mean on an assessment domain from 0.56 to
4.0c. Also, a three-component CUSUM scheme performed better on average than an
X-MR scheme over a domain of pure and joint step shifts in the mean and step shift
increases in the standard deviation as compared to an X-MR scheme. The X-MR
scheme performed slightly better in the case of pure step shift increases in the
standard deviation. However, the three-component CUSUM scheme performed much
better pure step shifts in the mean and joint step shifts in the mean and variance
increases. A CUSUM-MR scheme might reasonably be expected to perform better for
a joint step shift of [, = 2, and J, = 2] than both X-MR and CCUSUM3 schemes.

Further research could be performed to verify this hypothesis.

Two different performance measures have been derived which are suitable for
optimising monitoring schemes for specified domain. Both MRL and MRLOCV
agreed upon the optimum configuration for a CCUSUM?2 composite schemes in an
example. However, MRLOCV was shown to produce a better design than MRL
according to the ADRA measure, when optimising single-component MA schemes.
MRLOCYV optimisation resulted in a design which was more efficient small step shifts
in the mean as compared to the MRL measure. Development of individual
performance measures is still in its infancy, and further investigation is recommended
to determine if any measure is globally superior for measuring performance and

optimising control chart designs.
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3.7 Rationale for Defined Assessment Domain Boundaries

In this subsection, rationale for the nominated values of lower and upper assessment
domain boundaries is presented. Universal values for the bounds of an assessment
domain are not advocated in this section, but rather, considerations that a SPC system
designer needs to consider when assigning assessment domain boundaries for

individual quality variables to be monitored.

3.7.1 Defining the lower boundary of the out-of-control region, /A

Defining 0A might be aided by several considerations. It is asserted that small
location shifts are not feasible to rectify and control charts should not be tuned for
sensitivity to small location shifts. Firstly, by way of support for this assertion, small
shifts in the mean of a quality variable will be less problematic for a customer than
large shifts. Hence, small shifts offer less benefit for correcting the problem than do
large shifts. One’s ability to find the cause of a small location shift in quality is an
important consideration for the definition of the limit to practical significance.
Variables that have a weak effect on quality in their normal operating range are less
likely to have an online measurement device. Again, decisions to include monitoring
devices such as on-line analysers are typically based on benefit to cost ratios or net
present worth. In the absence of on-line analysers, assignable causes would require a
manual sampling investigation which may be relatively time consuming. In a
processing plant situation, users tend to have incomplete records and frequently rely
on the memories of various contractors, operators and managers when trying to
identify causative events that coincide with quality problems. Diary-records are often
minimal in detail, and memory of these events is limited in duration. Records do not
exist for every event a manual adjustment to a ventilation damper. Another three
practical reasons as to why there should be a limit to the power of the fine component
include “risk of over-correction”, “management of priorities” and ‘“cost of

distraction”. These concepts are further developed below.
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Risk of Over-Correction

Upon an alarm, process operators may feel compelled to make an adjustment to
whatever adjusting device is related and available, even if the assignable cause cannot
be found. If the adjustment to the location of the variable exceeds the size of the
original disturbance, or is in the wrong direction, the variation of the variable from
target will increase. As an assignable cause with a small effect is less likely to be
correctly identified, an alternative adjusting device is more likely to be used with an

incorrect adjustment magnitude.

Management of Priorities

In relation to management of priorities, an assignable cause with a large effect
presents a large threat to quality. Therefore, alarms arising from small shifts in a
variable are less important than alarms for larger threats. If an alarm from a small
effect requires staff to complete some quality assurance documentation, time is
robbed from project execution time that is otherwise available for eliminating priority
assignable causes. A strategically refined continuous improvement program tackles
root causes that most grossly harm product uniformity. Projects to improve process
stability should prioritise resolution of assignable causes which have “large” effects,

say greater than 2o initially, until large shifts become rare.

The phase of control chart operation and the type of variable will determine the

appropriate value for A Chemical process plants, for instance, are complex and can

be frequently out-of-control to the extent of continual wandering. Laboratories,
however, constitute a process that is simple in comparison to a process plant. Large
homogenous batches of material are held in laboratories for the purpose of checking
the reproducibility of results from analytical equipment. “Control-samples” are
frequently taken from these batches and analysed to see if the calibration or
preparation procedures are in-control. Control-samples have comparatively few
triggers of location shift compared to variables in process plant streams. As control-

samples are not subject to frequent large location shifts, laboratory staff can
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logistically address smaller location shifts. This being true, a smaller value of

0A would be appropriate for laboratory control samples than for plant variables.

Cost of Distractions

Just as searching for false alarms incur expenses that do not reap the intended reward,
so can alarms on trivial shifts. Assuming that the causes of small location shifts
cannot easily be found and corrected, searching for these alarms has an unfavourable

expected benefit to cost ratio.

3.7.2 Defining the upper boundary of the out-of-control region, 0B

An interest when doing this thesis was to compare optimised composite schemes to
better understand the potential performance of the different types of components, for
location shifts sizes typical of those considered in publications. In this thesis, 0B =
4.0 was used because this is typical for many studies. No logical reason is proposed as
to why a larger value should not be used. It is acknowledged that MRL is dependent
on the values A and dB which are subjectively assumed. However, as fallible as the
measure may be, MRL provides valuable insight into the performance potential of
different schemes for hypothetical situation. Naturally, however, a designer can use
any value when customising a design for a specific variable. One would need specific
information on the likely distribution of location shifts magnitudes to be encountered
to get a more meaningful performance measure. An economic design might be used if

sufficient information is available.
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Chapter 4

Determining Control Chart Properties

A publication titled “Design and optimisation aids for composite control charts”
(MacNaughton and Coomans, 2009) describes the software created and used for the
thesis. Simulation and specification seeking algorithms are described in detail, as are
detailed instructions on how to navigate about the graphical user interface to achieve
control chart simulation and design functions. The following sections of this chapter

cover the content of the publication without repeating content from previous chapters.

4.1 Precedence for use of Simulation Software

Software is generally used to determine the properties of control charts in quality
control literature. Luceno and Puig-Pey (2002) created a FORTRAN Computer
Program (Luceno and Puig-Pey, 2002) for computing the run length distribution for
CUSUM control charts. Turner, Sullivan and Batson (2001) demonstrated software
for retrospective analysis of a change point within individual observations. Aparisi
and Garcia-Diaz (2007) used a genetic algorithm to optimise a control regions
problem for single-component exponentially weighted moving average (EWMA)
schemes and made that software freely downloadable. Wu and Wang (2007) released
a program for optimisation of the parameters of a single-component CUSUM scheme
which monitors a weighted statistic of the average and squared deviation of the
observations. The statistic was designed for efficient detection of step shifts in the
mean and variance, and derivation of results was based on the Markov chain model.
None of the software described above is suitable for design of composite schemes
with multivariable in-control performance specifications. Unfortunately, the Markov
chain approach has not previously been applied to composite control charts (Wu and

Wang, 2007), and neither has the integral equation approach.

Simulation is an option for estimating an empirical run length distribution and has
been used in the study of EWMA related schemes by Albin, Kang and Shea using
30,000 trials in 1997; Klein 40,000 trials in 1997; Jiang, Wu, Tsung, Nair and Tsui
160,000 trials in 2002; Sparks 100,000 trials in 2003; Reynolds and Stoumbos a
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combination of 100,000 and 1,000,000 trials in 2004, per derived average run length
value. One can see from the above chronology that simulation sizes have generally

increased over time. The simulations in this thesis typically have 4,000,000 trials.

4.2 Simulator Overview and Assumptions

A simulation program “Composite Monitoring Schemes” with a graphical user
interface (Figure 4-1) was created by the master’s candidate to ensure ease during
extensive simulation work. The executable program is MS Windows 2000, and XP
compatible. A restricted freeware, beta quality version of the program may be

downloaded from www.jcu.edu.au/~jc133757/index.htm.

The software was created using MS Visual C++ which is a language and compiler
used for creation of Microsoft Windows compatible programs which can have
graphical user interfaces. C++ is an object orientated language (the basis of MS
Visual C++) which facilitates sharing and reuse of code. Software can be written
using classes which encapsulate code and data. In fact, the class for the random
normal number generator “StochasticLib” was acquired on the World Wide Web,

provided courtesy of Fog (2003).

Assumptions built into the simulator include:

® Monitored variables are identically, independently and normally distributed.

e Scheme performance for step shifts from 0.56 to 4.0 in the mean is considered
important.

e Steady state distribution of statistics which reference in-control process history

(achieved through 100 warm-up observations).
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Figure 4-1. The graphical user interface of the simulator software created for the thesis.
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The warm-up is a series of random values generated to fully develop the
distribution of the observed statistic. Only upon the last observation of the warm-
up, immediately prior to the step shift, the components of the composite schemes
are tested against their respective control limits. If the value of the statistic is not
within the upper and lower control limits, then the simulation is discontinued and
not considered in the performance statistics. A normal distribution truncated at
the upper and lower control limits results for the warmed up statistic to be

monitored at i = 1.

The interface permits distribution parameters to be known or estimated from a

specified number of observations.

The software was validated against ARL profiles published by authors such as
Sparks (2000, 2003), Quesenberry (1993), and Lucas and Saccucci (1990). All
validation was based on steady state simulation as this is the only form of
simulation for which the software was configured. Results were generally within
1% of other published results except where the other publications used small
simulation sizes. Details of the validation method and the results are described in

Appendix D.

A flow chart describing the simulation of a set of steady state control chart runs is
found in Figure 4-2. The key C++ classes hosting the simulation algorithms class

inheritance structure are described in Appendix E.
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Start
Simulation Run

Set Alarm tally and ATS
values to 0

Reset chart run length
variahles, TS=0

!

Estimate parameters from
200 in-control observations

¢

Warm up using 100 in-
control observations

!

Control chart run. Generate
observation andtest until
alarm. Count TS

'

Sum ECT and tally alarms in
cumulative variables. Count
chart runs, n.

M = ntrials?

Calculate simulation statistics
ATS and Alarm%

End Simulation
Run

Figure 4-2. Flow chart for the simulation of ATS values from ntrials x chart

runs. TS is the Time to Stop for a single chart run.
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4.3 Modelling the Contribution of Individual Components

Design of a three-component control chart, which has control limits that are
symmetrical about the process average, requires six design decisions to be made:
three tuning parameters and three control limit coefficients. If we wish to specify
the tuning parameters directly, three design decisions remain. For the remaining
design decisions we have the option of specifying three control limit coefficients,
but if “loadings” are introduced one may study design of composite schemes in a
more general fashion. The loading for component y, AL,IC%, is defined here as
the percent contribution of component ¥ to the overall false alarms rate. That is,
the control limits for each of the schemes can be designed such that the
corresponding component contributes some specified proportion of the overall
number of false alarms in the simulation. Consider a three-component composite
control chart for example. Simulating 1,000,000 in-control trials may generate an
overall count of 1,500,000 alarm signals. This is because two or three
components can alarm simultaneously upon the same chart stopping observation.
Of the overall count, Component 1 may contribute 400,000 alarm signals. Thus

400,000

Component 1 would have a loading of 100% x =26.7% . Clearly, a

loading will always be in the domain 0%-100%. Optimum loading for a
component is expected to remain fairly constant when ICATS specifications are
increased or decreased. Another example: given some performance criteria, the
optimum loading of Component 1 may be 13% when ICATS = 400, and the
optimum loading may be 9% when ICATS = 2,000. Now consider an example
where the control limit coefficients are scaled directly. Control limit coefficients
may range from zero to infinity. Furthermore, the relationship between control
limit coefficients and ICATS was found to be non linear by this author. A further
example: say the control limit coefficient value h; = 2.9013 is optimum when
ICATS = 400, but when ICATS = 2,000, h; = 3.6120 optimum. Further, h; =
3.6870 is hypothetically found to yield poor performance. Thus, it can be seen
that it could be difficult to anticipate control limit coefficients in the vicinity of
the optimum. Loadings are more intuitive and values in the vicinity of the

optimum can be anticipated more easily.
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4.4 Algorithm for Seeking In-Control Specifications

The specifications applied in this thesis are multivariable in nature with the
ICATS and loading variables all being dependent on the control limits of the
individual, interacting control chart components. ICATS increases as the value of
the control limit coefficients. Conversely, loadings decrease as the value of the
corresponding control limit coefficient decreases. Further, a change in one of the
control limit coefficient changes all of the loadings, not just the corresponding

loading.

A form of secant method was used in the program to seek the control limit
coefficient needs to achieve specified ISATS and loading. The algorithm is
similar to a basic secant method (Black, 2004) with additional constraints and
features to ensure that the convergence is robust to data containing sampling
error. Economy is gained by using reduced simulation sizes for three of the four

stages of approach to the solution.

The algorithm was formulated with a response vector w, having the following

elements [ICATS, ALIC, ALIC, ...., ALLIC]; . Control limit coefficients are the
independent variables affecting the response vector elements.  Secant methods
find the value of the response for some initial value of the independent variable
then perturb the independent variable and the second value for the response vector
is recorded. A formula for the secant which joins the co-ordinates of the two
observations on the function is found. A straight line relationship is assumed
between the most recent two coordinates [response, independent variable] and the
secant is projected to a new estimate of the independent variable required to
achieve the response target. Due to the multivariable nature of the problem, the
response-independent variable relationships were not defined directly. In stead,
search-dimension variables were introduced to de-correlate the affects of the
control limit coefficients. This formulation approach permits convergence of all

response vector elements (ICATS and loadings) simultaneously.
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The search-dimension independent variable for ICATS is the scalar /;, which is
given an initial value [, =1. Component loadings use the search dimension
variable vector g, whose elements are individual factors for the control limit
coefficients of the respective components. Initial values are assigned g, ; =1 for

each element j.

The algorithm commences by simulating charts with the initial values, h, for the
control limits of the v components to generate the response vector w,. A second

response vector w, is generated by perturbing the search-dimension variables and

then the gradients are calculated.

The gradient ml,, for the ICATS search dimension variable /,, is calculated for
iteration i :

ICATS, — ICATS,_,
ml, =
li =1,

and the intercept for the corresponding secant is:

¢l = ICATS, —ml. 1,

The vector of gradients, m3,, relating AIIC, to the component loading search-
dimension variables in g, , is calculated:

m3, = (AIIC, - AlIC,_,)/(g, —g,_,)
and the vector of intercepts for the corresponding secants is:

c3, = AlIC, -m3, - g,

The secant method projects successive estimates for the control limits, h,,

required to achieve the in-control specifications using the following formulae:

g., = (AlIC,, ., —AIIC,)/m3, +g,

Target
and

L., = ICATS,,,...— ICATS, )/ ml, +1.

Target
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At this point, the iteration history is indexed via temporary memory locations.
The iteration index for the following step becomes i. The secant method is

repeated with the new vector of control limit coefficients h,, being calculated

from the search-dimension variable values using the formula:

h,=1[-g h;

In the first level of the specification seeking algorithm, 10,000 chart runs are
simulated to estimate the parameters for the secants. The algorithm iterates
toward the solution by repeatedly measuring the gradients, projecting new control
limits and re-simulating. Once the tolerances in the response vector for the stage
are achieved, the algorithm proceeds to the next stage with an increased
simulation size and smaller tolerances. At the fourth stage the user input
tolerances are applied. Convergence to a solution has proven to be reproducible

when starting from different initial values.

When using a simple secant method random error in the response variable causes
inaccurate gradient estimation, particularly after a relatively small increment in
the independent variable. The quasi-secant method varied from the simple secant

method by inclusion of stability enhancing features.
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4.5 Using the Software
4.5.1 The Main Interface

The software interface is arranged across eight groups of controls for the user to
set up the simulation instructions and occupy with parameters and specifications.
Below, the control groupings are explained under headings that match the text on

the interface (in bold text).

a) Choose the Scheme. Choosing the control chart type is permitted in the first
group of radio buttons. A choice of CCUSUM, CEWMA, CMA and Shewhart
are given. Single component schemes are basically one-component composite
schemes which may be selected through the corresponding parent scheme. For
example, a CUSUM scheme can be selected by choosing the CCUSUM scheme

radio button and un-checking three of the four components.

b) Simulation Tasks. Next, in the second interface grouping, the simulation task
needs to be specified. The Simulate IC Run radio button is selected when only an
in-control scenario needs to be simulated. If one also wishes to find the ATS for
various deterministic events then the second option Simulate Across a Domain

needs to be selected.

A validation routine is accessible via the Simulation Task group to validate the
software in real time. Published ARL profiles are stored within the code and a
text file opens at the end of the validation routine showing the relative differences

of the results compared to other authors.

Four-level full factorial experiments for step shifts in the mean can be selected for
two or three-component schemes. A lattice of tuning parameters is then defined
from a child window when the simulation is initiated. The experiment is based on

the scheme type selected in “1. Choose the Scheme”.
c) Location Shift Type. Location shift type and size can be specified in the third

group of controls only when Simulate across a Domain or Experiment Design is

selected in the second group of controls. Step shift and ramp shift in the mean,
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and shift in the variance can be selected. When the checkboxes for these options
are checked, the user can then enter the required domain boundaries and
increment size in the respective text boxes. Pre-coded values can be selected from
a drop-down list, or original values entered. If step shift in the mean and step shift
in the variance are both selected, the pure and joint combinations of both step

shift types will be simulated.

d) Parameter Definitions. The fourth interface group permits specification of the
tuning parameters and control limits. Controls are arranged in three subgroups by
scheme basis: CUSUM, EWMA and moving average (MA). Checkboxes enable
the user to select a composite scheme with between one and four components.
Composites based on a combination of different statistics, for example EWMA

plus CUSUM, are not permitted.

e) Specification Seeking Instructions. Simulation by “Simulate IC Run” or
“Simulate across Domain” can be done either for entered parameters and control
limit coefficients, or according to ICATS and IC Alarm Contribution (loading)
specifications. In the latter option, loading specifications are entered into the IC

Alarm Contribution edit-boxes.

The control limit coefficients in the Scheme Parameters group are used as initial

values and an algorithm iteratively seeks toward the specifications.

f) In-Control Specification accepts positive values for the ICATS and loadings
specifications.  Controls within this group are only active when Tune to

Specifications is selected in Specification Seeking Instructions.

g) Distribution Parameters is the control group which permits the user to choose
between known and estimated distribution parameters (mean and standard
deviation of the monitored variable). The standard deviation can be estimated
using the traditional sample standard deviation formula or via the absolute

moving range based formula as described in Chapter 3.
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h) Simulation Sample Size. User tolerance specifications for the simulated
results need to be entered when the Specification Seeking Instruction “Tune to
nominated targets” is selected. There is a button here for the ICATS to be
calculated from 15 simulations of 1000 chart runs per simulation. The ICATS is
displayed on the output text pane (above the “Simulate” button), and an estimate
of the simulation size required for attaining the tolerances within 2 standard
deviations of the mean is output to the “ntrials” field. Because ICARL (hence
ICATS) values for EWMA control charts are approximately geometrically
distributed (Gan, 1993), the search can become fail to converge when a

simulation size of less than 100,000 is used.
4.5.2 The Experimental Design Dialog Box

In Step b) “Simulation Task” (in Section 4.5.1), a series of control chart
configurations completing an experimental design can be initiated. If an
experimental design task is selected, the dialog box as shown in Figure 4-3 pops

up when the Simulate button is clicked.

| CCUSUM Experimental Design Lattice Setup

1. First add the CUSUM lattice co-ordinates

Filters
Fire Fine Filter Intermediate  Coarse Filter  ALZICE: AL3ICE
1 Filter |C-slarri Filter
Eovee| Min ‘0.25 ‘9 |n.a 11.? no v

]

Irtermediate & ":'- 35 |'| 3 |D.9 1.8

Intermediate B 1':'-45 ‘1 7 ]1 13

[ Max 10.55 ‘25 ]1.1 2

Figure 4-3. Dialog box for defining a three- to four-level, full factorial,

CCUSUM3 performance measurement experiment.
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The “474 Experimental Design” function uses four nested loops to increment
through the levels of the experiment. All permutations of the experimental levels
are achieved as required for a full factorial design, setting the composite scheme
parameters and in-control specifications for each simulation in turn. At the centre
of the nested loops, a specification seeking search algorithm is called. The search
algorithm repeatedly calls the simulation algorithm, manipulating the control
limits until the in-control specifications are reached. The resulting design
parameters and SSATS profile are stored in an array. When all of the design
configurations in the lattice have been executed, the MRL and MRLOCV
performance data is calculated and written along with the design configuration

into AnalysisFile.txt.

The fifth design variable is AL,IC:AL3IC, the ratio of the loadings on the
intermediate and the coarse components. To collect performance results for four
levels of this design variable, one seeks to run another three instances of the
software for the “4"4 Experimental Design” task. Execution of the different
levels can be done in series or parallel with different values for AL,IC: AL3IC. If
you choose to do these simulations in parallel, run the software from different
folders (directories, on the storage device) then merge the four resulting
AnalysisFile.txt files into one file. Finally, import AnalysisFile.txt into a spread-
sheeting software package and analyse the results. A “pivot table” is convenient

for this purpose.

4.5.3 Simulator Output Data Files

Three different text files can be created by the software, described as follows.

Simulator_OQOutput.txt. All Simulation Tasks options produce a file called
Simulator_Output.txt. Simulator_Output.txt is created in the operating directory
when the Simulate button is depressed, or opened if it already exists. This file can
be used to track detailed information on the intermediate solution when seeking
toward the specifications hence can be used for fault finding if convergence is not
achieved. This file also contains detail of the proportion of alarms triggered by

each of the components for different location shifts.
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AnalysisFile.txt is the database output of the experimental design simulation
functions of the software and contains one composite control chart design and set

of performance descriptors per row. The columns of this file are:

o dICATS, the target ICATS for the simulation

e dICBoundary, the step shift size to which the dICATS is specified. Typically
dICBoundary = 0.

e dNcomponent, the number of components in the composite

e dType, the type of composite scheme: CMA, CEWMA, CCUSUM

e dNestim, the number of observations from which the distribution parameters
are estimate, if the parameters are estimated.

e dEstimMethd, the method of estimating distribution parameters with formulas
specified as follows: ‘SD’ = std dev formula; ‘MR’ = moving range formula;
‘KNOWN’ = the parameters were not estimated but rather assumed to be
known.

*  All%, the targeted loading for the fine component.

o AL2toAL3, the targeted ratio of loadings for the intermediate and coarse
components

e PI, P2, P3, the tuning/reference parameters for each component

e HI, H2, H3, the control limit coefficients for each component

e Al, A3, the actual component loadings,

e MRL
e MRLOCV
e ATS(dICBoundary), SSATS(0.5), SSATS(0.75), ..., SSATS(4.0); 0.25

increments in the step shift size; the number in brackets is the step shift size.
The data for each variable are in columns suitable for importing into a statistical
analysis or database query program. One may choose to transpose a subset of the
text file data to arrange the data in a format more typical of that seen in
publications. Validation.txt is created when running the validation simulation
task and is written in the operating directory. It shows the software’s results and
the relative difference compared to the other authors after adjusting by -1 to

equate to SSATS terms.
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4.6 An Application to Industrial Data

A variable sometimes considered important in cement quality is the 28-day
compressive mortar strength. It is desired to prospectively monitor individual
observations of the data to see if the mortar compressive strength is in-control. If
a control chart which has ICATS = 400 is used for the analysis, there should be
few, if any, false alarms generated by the dataset. Design of a four-component
CCUSUM scheme using the Composite Monitoring Schemes computer program
is demonstrated below for a cement quality problem. The resulting scheme
design is referred to as CCUSUM4a and it is applied to 28-day compressive

mortar strength data.

4.6.1 Distribution Parameters: 28-day Compressive Mortar Strength

28-day compressive mortar strength data was shown in Figure 1-4 of Chapter 1.

To create a control chart, an estimate of the mean and standard deviation is
required from the full dataset of 236 weekly observations. Table 4-1 summarises
the descriptive statistics from the dataset. There seems to be a shift at
approximately observation 66, thus the mean of the first location is estimated

from the first 65 observations.

Table 4-1. Compressive Mortar Strength Dataset Statistics.

Sample
Statistic Result Size
Stand. Dev. 1.22 236
average(MR|) 0880 235
average QMR|)/1.128 0.780
Y, 55.91 65
Y, 57.84 34
Y,-Y, 1.93
8,=(Y,-Y,)s 2.47

The control charts in this thesis are designed assuming no autocorrelation exists.

Departures from the identically and independently assumption run the risk of
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altered in-control and out-of-control run lengths. However, small amounts of
autocorrelation have small impacts on the ARL properties. In fact Wardell,
Moskowitz and Plant (1992) found that standard control charts can even perform better
than common cause control (CCC) and special cause control (SCC) charts, which
especially designed for autoregressive moving average (ARMA) data, in certain
circumstances. EWMA(A=0.3) was better at detecting small shifts in the mean (up to 2
std.dev.) and large shifts when the autocorrelation factor was negative and the moving
average factor was positive, than did CCC and SCC charts. With these facts in mind, any
trivial amount of autocorrelation in the cement quality data has been disregarded for the

purpose of demonstrating our CCUSUM3 control chart.

It can be seen that the estimated standard deviation which uses the regular
standard deviation formula (1.22) is lower than the estimate based on the absolute
moving range formula (0.78). Absolute moving range is less sensitive to changes
in location than are squared deviations from target when the location of the data
varies sufficiently. Due to the apparent heterogeneity of the location of the data
and the fact that individual observations are not being grouped, the absolute
moving range based formula was considered the most appropriate method for
estimating the standard deviation of the in-control process. In the example, the
sample sizes for the mean and standard deviation differ. The standard deviation
has been estimated from 236 absolute moving range values, and the mean of the
first location has been estimated from 65 observations. For simplicity, a single
sample size assumption of nestim = 150, a compromise between the two different
samples sizes, will be applied. A procedure for using the software to design the

control limit coefficients is given next.

4.6.2 Using the Software to Design a Control Chart

The procedure given below solves the control limit coefficients required to
achieve specified in-control performance for a CCUSUM scheme using
Composite Monitoring Schemes computer program. Simulation processing times
will be in the order of 20 minutes on a Pentium Core Duo 3.0 GHz IBM
compatible personal computer. Using a running instance of the software, the

steps are:
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10.

11.

“Choose the Scheme” - Set to the “CCUSUM?” option.

“Simulation Task’ - Set to the “Simulate across Domain” option.

“Location Shift Type” Check “Step Mean” and select a domain of [0.5, 4.0;
0.25 Increment].

“CUSUM Parameters” Ensure that all four components are activated, enter
reference values, and initial values for the control limit coefficients. In the
control chart examples below, CUSUM reference values of 0.25, 0.95, 1.5 and
1.85 were used.

“Specification Seeking Instructions” - Select “Tune to nominated targets”.
“In-Control Region Specifications” - Accept the default values of 400 and 0
for ICATS and Delta respectively. Change the IC Alarm Contributions
(loadings) to 10, 30, 30, 30 for Components 1-4 respectively.

“Distribution Parameters’ - In the example, “Estimate the mean and SDev”
was selected, “based on 150 observations”. Further, “Estimate SD from IMRI”
was selected.

“Simulation Sample Size” - Enter the simulation tolerances here (ATS Tol =
1.5 and PCNT Tol = 0.15 were applied).

“Simulate” - Click the “Simulate” button and wait approximately 20 minutes
for a dialog box to indicate that the simulations have been completed and
converged to target.

“Close the application and review the results’ - The results will be found in
the file called “Simulator_Output.txt” in the same directory as the executable.
An extract of the output file is shown below in Table 3.

“Construct Control Charts using the Design” - Take the converged control
limit coefficients solution from the simulator output file and construct a
control chart. The component values and alarm points for the 28-day

Compressive Mortar Strength monitoring example are shown in Table 4.

Columns of Table 4-2 show the perturbations and secant projections of the control

limit coefficients and the effect on ATS; however, some content available from

Simulator_Output.txt was omitted for simplicity. Data from Simulator_Output.txt

not shown in Table 4-2 includes the loading responses to the combination of

control limit coefficients applied. Examining Table 4-2, it can be seen that 10

secant iterations were required to converge within tolerance of the targets. Only
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the last of the fifteen responses to the initial values, Level 0, is used in the secant

method. Three iterations were applied at Level 1 and one iteration at Level 2.

Forty-five replicate simulations, using the intermediate solution achieved at Level

2, were sampled to re-estimate the standard deviations of ICATS and the loading

for Component 1, prior to proceeding to Level 3. One iteration was performed at

Level 3, and then four iterations at Level 4 to converge within tolerance of the

simulation targets.

Table 4-2. Control Chart Design Convergence Results.

Extracted from Simulator_Output.txt. CUSUM reference values were 0.25, 0.95,

1.5 and 1.85 for Components 1-4 respectively.

ATS d, - h, h, h, h,  nrejects ntrials  Level
15 trials of 1000 chart runs
310.269 0 1 12 2.8 1.8 1.2 31 1000 0
270.898 0 1 11.4075 2.6618 1.7111 1.1993 311 10000 1
403.353 0 1 12.3295 2.9072 1.674 1.3026 275 10000 1
394.323 0 1 12.2062 2.8826 1.7611 1.2896 273 10000 1
395.479 0 1 12.2384 2.869 1.7444 1.3014 850 33782 2
45 trials of 1000 chart runs.
397.669 0 1 12.2232 2.843 1.746 1.3132 5197 197703 3
393.953 0 1 12.1876 2.8462 1.7419 1.3101 23497 879063 4
394.708 0 1 12.0433 2.8533 1.744 1.3116 24012 879063 4
412.374 0 1 12.2592 2.8743 1.7578 1.3218 22742 879063 4
400.352 0 1 12.1808 2.854 1.7477 1.3163 23361 879063 Result
37.083 0.5 1 12.1808 2.854 1.7477 1.3163 6600 293021
17.681 0.75 1 12.1808 2.854 1.7477 1.3163 5065 219766
10.416 1 1 12.1808 2.854 1.7477 1.3163 4043 175813
6.602 1.25 1 12.1808 2.854 1.7477 1.3163 3338 146511
4.376 1.5 1 12.1808 2.854 1.7477 1.3163 2801 125580
3.041 1.75 1 12.1808 2.854 1.7477 1.3163 2455 109883
2.197 2 1 12.1808 2.854 1.7477 1.3163 2114 97674
1.638 2.25 1 12.1808 2.854 1.7477 1.3163 2050 87906
1.236 2.5 1 12.1808 2.854 1.7477 1.3163 1765 79915
0.947 2.75 1 12.1808 2.854 1.7477 1.3163 1685 73255
0.716 3 1 12.1808 2.854 1.7477 1.3163 1490 67620
0.527 3.25 1 12.1808 2.854 1.7477 1.3163 1472 62790
0.383 3.5 1 12.1808 2.854 1.7477 1.3163 1314 58604 .
0.279 3.75 1 12.1808 2.854 1.7477 1.3163 1239 54941 .
0.185 4 1 12.1808 2.854 1.7477 1.3163 1216 51710 Result
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4.6.3 Generating the Composite CUSUM Control Chart

Next, the lower control limits (LCL) and upper control limits (UCL) are
calculated as shown in Table 4-3 using the descriptive statistics (Table 4-1) and

the control limit coefficients (from the design produced as per Table 4-2).

Table 4-3. Composite Control Chart Design CCUSUM4a for 28-day

Compressive Mortar Strength (Cement Quality) Example.

Component
i 1 2 3 4
k; 0.25 0.95 1.5 1.85
h; 12.18 2.854 1.7477 1.3163
hio 9.5008 2.2262 1.3633 1.0268
LCL 46.40 53.67 54.53 54.87
UCL 65.40 58.12 57.26 56.92

The CUSUM statistics for CCUSUM4a’s components and the respective upper
control limits from the observation of the step shift are shown below in Figure 4-
4. The red observation marker indicates the point at which the component of the
composite scheme first alarm. Component 2, 3 and 4 alarm concurrently for the

first time at observation 67 and Component 1 first alarms at observation 69.
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Figure 4-4. Chart Run for CCUSUM4a on 28-day Compressive Mortar Strength,
Cement Quality Example.

4.7 Concluding Remarks on Significance of the Software

It is hoped that wider use of composite control charts will be encouraged by the
free beta software may be used to design charts for user specifications. The
software includes functions for experimental lattices where users may enter the
ICATS specification and levels for the tuning parameters. The logistics for
researchers wishing to use optimised composite schemes as a benchmark for other

control chart methods have been greatly improved.
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Chapter 5

Understanding Tuning Parameter
Optimisation

Optimisation of a control chart via the tuning parameter affects the statistical
power of the component, which in a moving-average type component, is
effectively related to the amount of evidence used to distinguish the out-of-control
population from an in-control population. For a MA component, as the span (n)
is increased, the power of the component increases. Maximising power is not our
primary concern, but rather minimising the average detection time of the
monitoring tool. As n becomes greater than the number of observations elapsed
since a step shift, more in-control data might dilute the location shifted data as

captured in the moving average statistic.

For example, a MA scheme based on a span of 2, i.e. MA(2), has an ATS of 1.58
for a step shift of 4o, whilst MA(15) has an ATS of 1.87 (see Table B-1 of
Appendix B). MA(15) reacts slower to a step shift of 46 compared to the MA(2)
scheme because the additional 13 observations in the span increase the weighting

of in-control history in the statistic.

Hunter (1986) described the slow reaction of control charts which are tuned to
have a high power, as the scheme suffering from the “memory” of past
observations. Large spans however are required to develop sufficient power to
detect small shifts competitively. As a result, each different span is optimal for a
unique location shift size. Combining moving-average type schemes with
different spans in a composite scheme might be a way to achieve best detection

times over a broad range of non-stationary scenarios.
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5.1 EWDMA Performance over Time

Considering the performance of a EWMA scheme over time from the onset of a
location shift helps one to understand the benefit of using multiple components in
a composite scheme over a basic scheme. Each component draws different
amounts of statistical inference power, and this can be likened to multiple

memory levels.

The probability of detecting a location shift is detected by a control chart is a
function of time. Sparks (2003) graphically demonstrated for MA schemes how
the probability of detecting a step shifts increased to some maximum. The
probability reached its maximum when the number of observations elapsed since
a step shift reaches a value equal to the span n, the number of observations in the
moving average statistic. In a similar fashion, the conditional probability of
detecting a step shift upon a new observation when using EWMA schemes is
explored. The probability, conditional on the scheme not already being in alarm,
increases with each observation from the onset of the step shift until some
maximum probability is reached. Unlike the simple moving average, the EWMA
reaches its maximum probability of detection smoothly. The probability profile of
EWMA schemes are shown below in Figure 5-1 and Figure 5-2 for step shifts of

1o and 26 respectively.

In Figure 5-1, it can be seen that at TS = -1 the probability of correctly detecting
of a step shift for al EWMA control charts is zero. At TS = 0 the first
measurement that is made after the deterministic shift, the probability of detection
of the shift has risen above zero. The probability of the EWMA statistic with 4 =
0.55 rose fastest initially, but by the third observation at TS = 3, it has become the
least probable alarm to signal. EWMA( 1 =0.55) has reached a steady-state
detection probability at approximately TS = 5. EWMA(1=0.05) has the best
detection probability when TS > 10. In Figure 5-2, a similar pattern can be

observed for detecting a 2c step shift except probabilities climb much faster than
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for the 1o step shift in the mean. Similar observations can be made by inspecting
MA scheme detection probability curves for various spans Sparks (2003).
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Figure 5-1. The probability of detecting a step shift using EWMA schemes with
A = 0.05 to 0.55, for a step shift of 1 o, ICARL = 400 observations, based on
100,000 simulated chart runs.
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Figure 5-2. The probability of detecting a step shift using EWMA schemes with
A =0.05 to 0.55. for a step shift of 2 o with ICARL = 400 observations, based

on 100,000 simulated chart runs.
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Statistical power to distinguish samples not only increases as the difference
between the means increases, but also as sample size increases. Figure 5-1 and
Figure 5-2, demonstrated that the shortest memory EWMA chart (i.e. 2=0.55)
initially had the highest probability of detecting a step shift because at TS =1 its
value contains the smallest weighting to past in-control observations. Long
memory control charts have a larger effective sample size, hence more statistical
power than short memory control charts. Prior to reaching steady state detection
probability, the contribution of out-of-control data to the EWMA value decreases
as TS increases. The control chart which has superior power (longest memory,
i.e. 1=0.05) gains advantage over the other control charts as more observations

are incorporated and the misleading influence of past in-control data diminishes.

Thus far, this discussion on detection probabilities has only considered the
performance of the control chart at each new observation as though the collective
result for the current and previous observations is unimportant. The ATS
performance of a scheme relates to the cumulative probability of detection or the
expected number (N) of alarm signals. Figure 5-3 shows the expected number of

alarms after a step shift of 16 simple signalled by EWMA schemes with 4, =0.05
A, =0.15 and 4, =0.25 and A, =0.55. It can be seen that EWMA (4, =0.15
and A, =0.25) reach an expected N = 1 earlier than the control charts which had

smaller and larger A’s. That is to say, EWMA control charts which have a
medium memory may have better average performance than control charts with

either greater or lesser memory.

Figure 5-4 reveals that when the deterministic step shift is increased to 2o, larger

values of the smoothing constant are required for optimisation than for the 1 step
shift scenario. That is, 4, =0.25 and A, =0.55 reached a cumulative probability

of 1 before the smaller smoothing coefficients.
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Figure 5-3. The expected number of alarms for detecting a step shift of 1 o

using EWMA schemes with 4 = 0.05 to 0.55, with ICARL = 400 observations,

based on 100,000 simulated chart runs.
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Figure 5-4. The expected number of alarms for detecting a step shift of 2 o using

EWMA schemes with 4 = 0.05 to 0.55, with ICARL = 400 observations, based

on 100,000 simulated chart runs.
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Figure 5-1 and 5-2 demonstrated that EWMA control charts which had larger
smoothing constants had high probabilities of detecting out-of-control process at
each observation relative to the other control charts. However, control charts
which had a small smoothing constant ultimately developed higher probability of
detecting an out-of-control process at each observation. Figure 5-3 and 5-4
considered the collective performance over several observations showing that
optimal chart memory is a trade-off between the power of the EWMA statistic
and rate at which the influence of past in-control observations diminishes. Figure
5-3 and 5-4 also demonstrated that the optimum smoothing coefficient will
depend on the size of the step shift disturbance. Fortunately for the statistical
quality control practitioner, one is not restricted to just one control chart design.
Therefore, he (she) does not need to have exact knowledge of the size of step
shifts to be encountered in the future. Several control charts optimised for
different step shift sizes can be used concurrently to monitor a single variable, as

demonstrated in Chapter 6.

Different control charts have different performance characteristics. Classical
single component control charts have a single tuning parameter that permits
optimisation for a specific location shift magnitude. The relative performance of
the optimised scheme falls away quickly as the magnitude of the shift varies from
the design basis value. A composite control chart achieves fast detection of
assignable causes across a broad domain of step or ramp shifts, by monitoring a
single variable using several components simultaneously. Each component draws
on a different distribution of past data with the result that the expected
performance of the control chart remains close to the optimum value at any point
across the design basis domain. Composite schemes have better overall
performance across a domain than a single component scheme (e.g. CMA, Sparks
2003), but single component schemes may perform better for a small sub-domain

about a particular location shift magnitude.
Basic MA, EWMA and CUSUM schemes are now compared to help support

conclusions to be made about the difference in performances between various

composite schemes in Chapter 7.

92



Chapter 5 — Understanding Tuning Parameter Optimisation

5.2 Literature on Comparisons of Basic Control Charts

Various references state that MA and EWMA, and EWMA and CUSUM control
charts can be designed to have similar performance. Improved computational
capabilities permit these statements to be verified through simulation with more
accuracy than previous studies. Roberts (1959) suggested that MA and EWMA
schemes which are linked by a common variance term would lead to similar ARL

properties, which can be determined according to the formula:

neﬁecti ve

2-1
T 10

7 (10)
Equation (10) can be derived from equations for the variance of the EWMA and

MA statistics. Let us call this calculated n the effective span of the EWMA

scheme with smoothing constant A .

Now let us consider EWMA and CUSUM control charts. Lucas and Saccucci
(1990) stated that EWMA and CUSUM schemes can be tuned to have sensitivity
and performance so similar that they stated: ‘“nonstatistical criterion could be
used to decide which particular procedure should be used”.  Whilst a small
difference in performance may not lead to improved quality control due to the
number of other practical considerations, there is no reason not to constantly
improve all challenges to good quality production (Woodall and Montgomery,

1999). In the following section, results are first discussed in terms of ATS values.

5.3 MA, EWMA and CUSUM Comparisons

Simulations showed that EWMA schemes could be optimised to have smaller
ATS values than the MA scheme for step shifts of various magnitudes. An
example of a curve used for optimizing the tuning parameters of a CUSUM
scheme for a step shift of 0.5c is shown in Figure 5-5. The optimum steady-state
ATS values for MA, EWMA and CUSUM schemes were found at the minima of

the ATS versus tuning parameter curves. Results are summarized in Table 5-1 for
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step shifts of 0.25, 0.5, 0.75, 1 and 3c. Full ATS profiles are found in Tables B-1
and B-2 of Appendix B.
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Figure 5-5. Optimal ATS for the CUSUM Control Chart for Step Shift of 0.5c,
with ICATS = 400.

Table 5-1. Comparison of optimised MA control charts relative to optimised

EWMA control charts.

ATS Relative Relative
Difference in  Difference in
o MA EWMA ATS [%] ARL [%]
0.5 27.0 25.50 6.1 5.7
0.75 14.55 13.73 6.0 5.6
1.0 9.06 8.574 5.6 5.1
3.0 0.961 0.801 20 8.9

At the five discrete step change scenarios investigated, the steady-state EWMA
scheme had detection times at least 5% faster than MA schemes. For example, in
the 0.5¢ step shift scenario, the optimum EWMA scheme achieved an ATS of
about 25.5 whilst the MA scheme achieved an ATS of about 27 which was 6.1%
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slower. The relative difference in ATS values jumps from approximately 6% for

step shifts of 1o, to 20% for step shifts of 3c.

Table 5-2. Comparison of optimised CUSUM control charts relative to optimised
EWMA control charts.

Relative Relative
CUSUM Difference in Difference in
d ATS ATS [%] ARL [%]
0.5 24.8 27 26
0.75 13.22 37 35
1.0 8.25 38 34
3.0 0.716 -10.6 4.7

5.4 Conclusions on Comparisons Basic Control Charts

A reason that the difference in performance between MA and EWMA schemes is
so high at step shifts of 3o is due to the integer nature of the MA tuning
parameter. MA control charts cannot be finely optimised when the optimal span
is small. For a 3¢ step shift the optimum span was found to be n=2 and the
optimal smoothing coefficient for the EWMA scheme for the same step shift was
A = 0.65. Using Equation (10), it can be seen that the comparable MA scheme,
according to Roberts, would have an effective span of n=2.077. Of course this
must be rounded to the nearest integer for a MA scheme, MA(2), resulting in
deviation from the optimal span by approximately 4%. Run rules would also be
expected to perform inefficiently as their “tuning parameter” is typically also an

integer.

For control charts optimised for detection of single step shift scenario: CUSUM is
superior to EWMA. The reflective boundary k prevents the inertia problem
Woodall, Hoerl, Palm and Wheeler (2000) from developing where a random chart

run occurring on one side of the mean can cause a delayed response of a moving
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average statistic (MA, or EWMA) to an assignable cause which causes a shift to

values on the other side of the mean.

Another feature of the CUSUM statistic that differentiates it from the MA and
EWMA statistic warrants discussion. CUSUM might also be better understood
by considering the form of a one-sample, one-sided t-test with the following

hypothesis:

Hp. x;1 —t<k.s

Hi:x1-t>ks

where x; = CUSUM;.; + x; ; and k is chosen such that k.s is considered to be just
practically significant. For step shifts larger than k.s, the consequences of losing
of control of the monitored variable become more likely. Use of a non-zero value
for k permits a focus on non-trivial step shift magnitudes. The MA and EWMA
statistic lack the flexibility to specify a non-zero k value. Consequently, MA and
EWMA statistics always test very small step shifts and must have their
performance “detuned” to have an acceptable SSATS. “Detuning” is achieved by
having wide control limits, which in turn harms the detection performance for all

non-zero step shifts.

It is interesting to note the how use of ATS affects the relative difference in
performance as compared when ARL is used. It can be seen that the relative
differences in ARL values are substantially less than the relative difference for
ATS values for step shifts of 3o, particularly in the case of the comparison
between MA and EWMA schemes. Optimisation for a broad domain step shift
sizes based on ARL values instead of ATS values would result in different

composite designs.
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Chapter 6

Optimisation of Composite Control Charts

6.1 Introduction

Two-component and three-component control charts have not previously been
optimised; therefore, the full potential of these schemes is unknown. In this
chapter, CEWMA?2, CEWMA3, CMA3 and CCUSUM3 schemes are optimised
and compared with each other, using the performance measures developed in
Chapter 3. It is intended to publish the material in this chapter after successful

publication of Chapter 3 and 4.

6.2 Methodology

The optimisation method used was direct search of a discrete lattice (Carlyle,
Montgomery and Runger, 2000) created by a full factorial experimental design. It
is a simple technique which is costly in terms of the number of results that need to
be generated. When the optimum was found at a boundary of the original search
lattice, additional levels were added to the lattice to prevent constrained
optimisation. Simulations were replicated to ensure at least two standard errors
(refer to Appendix A - Error Analysis) differentiated the apparent optimum result
from the other results at the inner hyper-cube of the lattices. Response surface
modelling (e.g. Wu and Hamada, 2000) was not applied as such a technique
would produce misleading results, over-fitting to data points insufficient in

number for such a degree of variance.

Full lattice simulation provided an optimum solution despite interaction terms
existing between the design parameters. For example, there is interaction
between the values of the tuning parameter and A/,/IC. As the fine component
becomes coarser, a larger value for A/, IC becomes locally optimal. Generation

of a full lattice also permitted data for presentation in surface-area graphics. A

lattice with three-factors at four-levels, full factorial design, that is, a 43 design
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was used to optimise CEWMA?2 schemes. The levels used for the experimental
designs are shown below in Table 6-1. Three-component composite schemes were
simultaneously optimised with respect to up to 5 parameters at four levels, that is,

ad’ design.

Table 6-1. Levels used in optimisation of the CEWMA?2, CMA3, CEWMA3 and
CCUSUM3 schemes. Al jIC refers to the percentage of alarms attributable to

component j when the monitored variable is in an in-control state.

Scheme Values for the different levels
CEWMA2

A [0.1, 0.15, 0.25, 0.30]
A [0.55,0.7, 0.8, 0.95]
ALIC [%] [15, 30, 45, 60]
CEWMA3

A [0.05, 0.08, 0.12, 0.15]
A [0.35, 0.4, .43, 0.48]
A [0.9,0.93,0.96, 1.0]
ALIC [%] [9, 12, 17, 25]
ALIC:ALIC [1,1.222, 1.5, 2.333]
CMA3

n [7,8,9,10]

ny [2, 3, 4]

n3 [1]

Al [%] [15, 20, 25]
ALIC:ALIC [0.667, 1, 1.222]
CCUSUM3

k, [0.25, 0.35, 0.45, 0.55]
k, [0.8,0.9, 1.0, 1.1]

k, [1.7, 1.8, 1.9, 2.0]
ALIC [%] [9, 13,17, 25]

ALIC:ALIC

[1,1.222,1.5,2.333]
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6.3 Optimised Scheme Configurations

The configurations of the optimum composite schemes from the simulated lattices
are shown in Table 6-2. Whilst the response surface for MRL values to designs in

the region of the optimum schemes are shown in Figures 6-1 to 6-4.

Table 6-2. Configuration and performance of optimised composite schemes. Py
refers to the tuning parameter of the respective component of the respective

composite scheme.

CEWMA2 CMA3 CEWMA3 CCUSUM3
MRL -0.055 -0.050 -0.096 -0.137
Py 0.25 9 0.12 0.35
Py 0.8 2 0.48 1
P; N.A. 1 1 1.8
h, 3.0925 3.2025 3.2512 8.8138
h, 3.1021 3.1546 3.1025 2.7295
h, N.A. 3.2007 3.1869 1.3856
ALIC [%] 45.0 20.0 17.0 13.0
ALIC:ALIC N.A. 1 1.22 1
Al2 [%] 55.0 40.0 46.5 43.5
Al3 [%] N.A. 40.0 36.6 43.5
o, ATS
0  400.5 399.5 399.7 400.4
0.50 58.1 64.0 47.8 39.2
0.75 21.87 23.35 18.93 17.16
1.00 10.89 11.264 10.283 9.959
1.25 6.520 6.785 6.539 6.445
1.50 4.397 4.681 4.511 4.382
1.75 3.159 3.421 3.233 3.090
2.00 2.350 2.529 2.378 2.242
2.25 1.787 1.864 1.772 1.670
2.50 1.369 1.368 1.331 1.255
2.75 1.050 1.013 1.006 0.958
3.00 0.798 0.748 0.756 0.726
3.25 0.597 0.550 0.563 0.545
3.50 0.441 0.409 0.411 0.402
3.75 0.318 0.296 0.294 0.292
4.00 0.227 0.209 0.204 0.202
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Figure 6-1. Surface plot of MRL values for CEWMAZ2 designs, Al IC =45%.
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Figure 6-2. Surface plot of MRL values for CEWMA3 designs. A, =0.43,
A, =0.96,ALIC: ALLIC =1.222:1.
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Figure 6-3. Surface plot of MRL values for CMA3 designs. n, =2,

n, =1,ALIC : ALIC =1:1.
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Figure 6-4. Surface plot of MRL values for CCUSUM3 designs. k, =1.0,

ky,=1.8,ALIC: ALIC =1:1.
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6.4 Effect of the Number of Components

Prior to optimising and comparing different composite schemes, it was decided to
investigate how sensitive a CEWMA scheme was to the number of components
used (CEWMA was formally the focus of the thesis). No published literature to
date has demonstrated the additional benefit for use of three components in
CEWMA schemes as opposed to two components. For CCUSUM schemes,
however, Sparks (2000) recommended three components for a domain of 0.5¢ to
2.0c, and four components for good performance across a 0.5¢ to 4.0c step shift
domain.  Optimisation of four-component schemes was considered to be
excessive in scope for a thesis and unnecessary for comparing CCUSUM,

CEWMA and CMA schemes.

0.20 -
0.10

0.00

-0.10 -

RL[]

-0.20

-0.30

-0.40

CEWMAS3 — — — - CEWMA2

-0.50 -
0 1 2 3 4

Step Shift Size [Standard Deviations]

Figure 6-5. The RL profiles of optimum CEWMA2 and CEWMA3 schemes,
relative to the reference CUSUM scheme (k=1.1, £=2.2908).
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The optimum CEWMA3 scheme was 5.2% faster overall (ADRA) than the
optimum CEWMAZ2 scheme. CEWMAZ3 is faster than CEWMA?2 from 0.50 to
1o, and from 2.25 0 to 4 0. Both two-component and three-component
schemes provide a broader domain of good detection performance than that
achieved by the reference CUSUM scheme. However, the composite schemes are
approximately 7%-8% slower (RL x100%) than the reference scheme around the
centre of the assessment domain (2.00 to 2.250 ). The additional component
served to increase the performance at small and large step shifts on the domain
investigated. Optimised CEWMA?2 and CEWMAJ3 schemes perform similarly for

step shifts between 1.250 and 20 .

Figure 6-1 shows the MRL data in the vicinity of the optimum CEWMA?2
scheme. Some sublevels were subsequently simulated but the MRL performance
was indistinguishable from that determined at the major levels according to the
error bars calculated in Table 6-3. Table 6-3 summarises the error analysis details
in Appendix A for up to two replicates of each lattice point. The best design for a

CEWMAZ2 scheme, on the assessment domain, was found to have the parameters

[A1 = 0.25, A, = 0.80, A, IC = 45%] based on 3 simulations of that lattice point.
Interpolation of the main lattice at [A; = 0.20, 0.35, 0.4; A, = 0.75, 0.9, 1.0;

AL IC =40%, 50%] did not produce any results which were significantly better.

The best CEWMA3 scheme was found to have the parameters [A; = 0.12, A, =
0.48, A3 = 1.0, ALIC = 17%, ALIC : ALIC = 55:45]. Some of the other

designs in the vicinity of the optimum are shown below in Figure 6-2.

Table 6-3. Error bars for simulated MRL results.

1.96xStdError Number of simulations

1 2 3
CMA3 0.0026 0.0021  0.0017
Type of Scheme ~ CEWMA3 0.0024 0.0017  0.0014
CCUSUM3 0.0024 0.0017  0.0014
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6.5 Comparison of Three-Component Composite Schemes

Analysing the relative loss profiles in Figure 6-6, it can be seen that the simple
CUSUM reference distribution is at most only 2% faster (DRA) than CCUSUM3
at 20, which is in the vicinity of a 2.2 0 for which the reference scheme was
optimised. Despite the strength of the reference CUSUM scheme at 20, it is
much slower than the composite schemes outside of the 1.50 to 30 region. The
optimised CMA3 scheme is generally the weakest three-component scheme
across the domain. It performs more strongly than the reference scheme at small
and large step shifts, approximately 22% faster (DRA) at the boundaries of the
domain. CCUSUM3 has its most notable advantage over the reference CUSUM
scheme at 0.5 0 (DRA =-40%).

CCUSUM3 is consistently the fastest composite scheme across the domain of
comparison. The region of most divergent relative loss performance between the
composite schemes is at 0.5 0 where CCUSUM3 is better than CEWMA3 by
approximately 20% (DRA). A large spread also exists between the schemes at
20 where CCUSUMS3 is better than CEWMAZ3 by approximately 6% (DRA).
Basically, the optimised CCUSUM3 scheme significantly outperforms the
optimised CMA3 and CEWMA3 schemes at small and moderate step shift sizes
within the assessment domain. There is little difference between the composite
schemes from 30 to 40. CCUSUMS3 is 5.0% faster overall (ADRA) relative to
CEWMA3.
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Figure 6-6. RL profiles for optimum CMA3, CEWMA3 and CCUSUM3 control
charts, relative to the reference CUSUM scheme (k=1.1, h=2.2908).

Sparks (2000) recommended three components for CCUSUM schemes with k
values of 0.375, 0.5 and 0.75 for good performance across a 0.75¢ to 1.6c step
shift domain. He did not claim, however, that these parameters were optimum
under any assessment criteria. His scheme is compared with the optimum
CUSUM3 as shown in Appendix F. However, as he was targeting good
performance on a smaller sub-domain, a fair performance comparison cannot be

made.
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An important observation was made by Lucas and Saccucci (1990) in their

comparison of EWMA and CUSUM schemes designed for a step shift of 1 0:

“Our comparisons showed that the ARL’s for the EWMA are usually smaller than the
ARL’s of the CUSUM up to a value of the shift near the one that the scheme was
designed to detect. Beyond this shift, the ARL’s of the EWMA are larger than the ARL’s
of the corresponding CUSUM.”

From the above quotation, one might expect increasing efficiency of optimised
CCUSUM schemes relative to optimised CEWMA schemes for increasing step
shift size. A pattern such as that described by Lucas and Saccucci above cannot
be seen in Figure 6-6. Performance of the CCUSUM3 and CEWMA3 schemes
actually converges in the proximity of 4 o step shifts. Our design method was
not to optimise for a single point, however, but rather optimising for an out-of-
control region. Therefore, the observation of converging performance does not
contradict the observation made by Lucas and Saccucci. In fact, the superior
performance of the CCUSUM3 scheme over the CEWMA3 scheme for an out-of-

control region is consistent with their observation.

Another possibility one may consider after the observation drawn in the above
quotation by Lucas and Saccucci (1990) is that a CUSUM-EWMA composite
may offer superior performance to a two-component CCUSUM scheme. Our
initial 3-level full factorial experiments found no evidence of this, rather a
preliminary indication on a domain of step shifts was somewhere between the
performance of CCUSUM?2 and CEWMA?2 composites. Rigorous investigation

into this matter is nominally outside the scope of this thesis.
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6.6 Ramp Location Shift Performance

The optimised three-component composite control chart designs from Section 6.2
(see Table 6-2 for parameter values) were compared for ramped location shift
scenarios. CEWMA3 performed slower for smaller ramp coefficients, but in the
order of 2% better (DRA = -1.7%) for a ramp rate of 0.125 o /observation.
CMA3 performed slower than CCUSUM3 for all ramp coefficients investigated,
although the difference was not significant for a ramp rate of

0.125 o /observation. The results are shown in Table 6-4 below.

Table 6-4. Comparison of optimized three-component composite schemes on

ramp location shifts relative to the CCUSUM3 scheme.

Ramp CCUSUM3 CEWMA3 CMA3

Coefficient ATS ATS  DRA [%] ATS  DRA [%]
0.005 82.634 86.575 4.658  93.345 12.173
0.020 35.479 36.031 1.544  38.439 8.009
0.045 21.289 21.116 0.816 22.05 3512
0.080 14.608 14.372 1.629  14.802 1.319
0.125 10.780 10.597 1712 10.872 0.850
0.180 8.298 8.219 -0.957 8.463 1.969
0.245 6.590 6.540 0.762 6.808 3.254

The ramp coefficients were chosen to be similar to that used by Sparks (2003).
CEWMA seems favourable because it was faster for more significant ramp
coefficients, but it is not clear from literature how much practical influence such
small shift rates have on plant operations. Overall CEWMA3 and CCUSUM3 are
similar so should not be considered a deciding factor between the two schemes.
CMA is statistically the least favourable option of those compared for detection of

ramp shifts.

107



Chapter 6 — Optimisation of Composite Control Charts

6.7 Hierarchical Monitoring

Exception reports can succinctly inform the managers of a manufacturing facility
(asset), by summarising control chart alarms. For an asset within a large
multinational company, normal business activities are often managed by a person
under the job title Operations Manager (or General Manager). Plant operating
personnel are typically divided into several plant areas and a laboratory lead by
area Managers and Laboratory Manager respectively. Each plant area may then be
further divided into several process areas operated by a dedicated team who are
lead by a Superintendent. Line management for one such process area is
highlighted in Figure 6-7, a simplified organisational chart for manufacturing

plant operating teams.

Operations
Manager
| |
Manager Manager Laboratory
(Plant Area) (Plant Area) Manager

Superintendent Superintendent Superintendent

(Process Area) (Process Area) (Process Area)
| |
Process Control Room Btaratons
Engineer Operator P

Figure 6-7. Simplified organisational chart showing the process and laboratory

components for a large manufacturing plant operation.
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The differentiated locus of responsibility of personnel in the hierarchy of an
organisation is an important consideration when designing tools and methods to

assist operating and management.

Process Engineers and Control Room Operators (who often have an overlapping
scope of focus in monitoring) should frequently monitor an array of critical and
non-critical operating data (process input, control and output variables).
Monitoring is usually via visual inspections, taking samples, measurement and
analysis of samples and viewing tables and trends for online instruments and
laboratory analysis results. Detection of process disturbances should trigger
activities including: identifying causes of the disturbance, assessing risk,

identifying potential corrective actions and formulating an action plan.

Closely monitoring the value of all variables in a process area would employ such
numbers of engineers that a low benefit to cost ratio from their employment may
result. One way of reducing this workload at a process engineer’s level is to
closely monitor only key variables for the process area, and process variables that
are out of their normal range. Exception reports generated by composite control
charts may be used for this purpose. In this scenario, the composite control
charts should be designed to optimise the trade-off between detection sensitivity
and annoyance frequency (defined here as the collective rate of false alarms and
alarms for trivial process disturbances for the entire set of control charts
configured for the process area). That is, these control charts are to be optimised

for use by the Process Engineer.

Superintendents manage the performance of individuals and coordinate their team
to achieve the following goals: cost effectively produce quality outputs subject to
safety, equipment longevity and legal constraints. Furthermore, they need to liaise
with superintendents of upstream and downstream process areas to coordinate
operations. Whilst superintendents usually have process engineering technical
skills and responsibilities to achieve the above goals, they have less time available
to review operating data relative to their process engineer(s) who have mostly

technical responsibilities. Hence, the Superintendent would be best served by an
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exception report that is more succinct relative to the exception report reviewed by

the Process Engineer.

Managers are accountable for the economic performance of their plant area, and
complying with established business processes. They are responsible for
coordinating and coaching several superintendents and liaising with other plant
area, safety, human resources and maintenance managers. When costly or
dangerous process disturbances occur, access to accurate operating data is useful.
The information can be used to objectively coach superintendents in problem
solving and to consult with pier managers and the Operations Manager. As
mangers have a higher proportion of non-technical responsibilities as compared to
superintendents, a comparative reduction is warranted in the amount of operating
data reviewed in a set period. The method of reducing technical data should also

account for the multiple process areas in his (her) locus of accountability.

An Operations Manager coordinates and coaches several managers, and
administers business systems to support production of a quality product,
achieving cost effectiveness and asset longevity within the safety and legal
constraints mentioned previously. To achieve this, one might argue, an
operations manager only needs to monitor the key inputs and outputs for the

overall process, and hire good managers.

It can be seen that inclusion of different amounts of operating data is appropriate
in exception reports reviewed by managers at different levels within an
organisation. To reduce the amount operating data, a method is required. Several
options are clearly evident: certain variables may be deselected based on lower
criticality; certain variables may be deselected according to the specific technical
responsibilities not included within the respective employee’s job description;
finally, the sensitivity of the composite control charts may be reduced. The
suitability of these information reduction methods is explored below for each

level of management.

For a superintendent, only “problem” areas need to be bought into focus; a

“problem” being defined as a variable of sufficient business criticality sufficiently
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disrupted from its ideal operating range (which hopefully equates to the normal
operating range about which control charts are centred). However, it can be
difficult to apply a heuristic as to which variables are critical to the business as
criticality depends on the size of the departure from the (multivariate-) normal
operating range. Thus it would be advisable for the Superintendent to monitor all
variables in their process area via exception, but using control charts which are

designed to be less sensitive to small disruptions.

For managers who oversee several process areas, several options for further
reducing this data seem logical. Intra-process area inputs and outputs within the
plant area may be deselected, monitoring only at the plant area boundaries.
However, timely notification of inappropriate levels in critical operating variables
or extremes in quality at the process area interfaces may be helpful. This
information may prompt the manager to coordinate the superintendents and coach
them in problem solving. Thus, de-selection of all intra-process area variables is
not advisable. Instead, a combination of de-selection and desensitising is
recommended. Composite control charts for critical operating variables may be
desensitised for small step shifts (relative to those used by the superintendents),

and non-critical variables should be deselected.

Which method of desensitising control charts is best? One option is to spread the
control limits further apart. Ideally, however, when a significant process
disturbance occurs, and all levels of management receive the same notices on
exception reports and view identical control charts. All staff working from “the
same page” enhances communication. Composite control charts offer a way of
differentiating the annoyance rate and sensitivity to small step shifts that does not
require viewing completely different control charts. As each control chart
component contributes to the annoyance rate, monitoring a subset will reduce this
annoyance rate. The control chart components which are most effective at
detecting small step shifts (see Chapter 5) seem the most logical components to

deselect when reduced sensitivity to small step shifts is required.

The Operations Manager and plant area managers may view a subset of the

control chart components from each composite scheme. In fact, exception reports
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for a plant area manager might best be based only on the coarsest component of
all the composite control chart components. The Operations Manager is probably
well advised to further deselect most operational variables except for the few

most critical for the whole facility.

Timely provision of critical information is supportive of loss mitigation actions.
In fact, economic losses and legal non-conformances are potentially avoidable if
the information is sufficiently timely. Electronic exception reports based on
control charts are capable of transferring critical operating data and other
business performance measures directly to an operations and plant area managers.
As the information transfer is not triggered by indirect feedback from a
production rate or quality crisis, the information transfer is arguably completed in

a timely manner.

Some preliminary comparisons have been completed for the ratio of false alarms
from an eight-component scheme versus only the coarsest component, but are not
reported in this thesis. The concept of hierarchical monitoring has been
introduced without rigor or referencing merely to demonstrate the potential of
composite control charts over adaptive control charts, justifying the significance
of these studies. Further development of the hierarchical monitoring methods is

recommended to interested researchers.
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Chapter 7
Conclusions

In this chapter, the results of the thesis are evaluated for satisfaction of the thesis
aims. Interpretations and limitations are discussed, then justification and

significance of the thesis are considered.

7.1 Satisfaction of Thesis Aims

The basic objective of this thesis was to explore composite control charts so that
manufacturing end users would be better informed to make a control chart
selection. This objective could be fulfilled in terms of the primary and secondary
aims:

Primary Aim

Aim 1 — determine which composite control chart performed best over a domain
of location shift sizes when distribution parameters were estimated.

Secondary Aims

Fulfilling the following secondary aims would further satisfy the basic objective:
Aim 2 — determine the benefit of three-component over two-component schemes.
Aim 3 — compare the performance of the control charts for ramped location shifts
Aim 4 — identify additional opportunities that composite control charts offer over

the alternatives.

To achieve these aims, the following tasks were completed:

e Improved statistical measures were developed in Chapter 3, for optimising
and comparing control chart performance over a domain of step shifts. The

results as summarised in Section 7.1.1.

e Software was created to derive control chart properties where existing
analytical methods and software were inadequate, as described in Chapter 4.

A high level review of the software is given in Section 7.1.2.
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e Composite control chart configurations were optimised (Chapter 6, Section
6.3) using the simulation software and newly developed statistical control

chart performance measures; and

e In Chapter 6, the composite control charts were optimised (Section 6.3) and
compared (Section 6.5) satisfying Aim 1 of the thesis, as summarised in

Section 7.1.3.

Also in Chapter 6, composite control charts were explored in some depth
completing the secondary aims of the thesis. Sections 6.4 explored the effect of
the number of components for two- and three-component schemes satisfying Aim
2; Section 6.6 investigated the comparative performance for ramped location
shifts, satisfying Aim 3. Section 6.7 investigated an idea for Hierarchical
Monitoring which demonstrated a special capability of composite control charts,

thus satisfying Aim 4.

7.1.1 Develop Improved Methods of Control Chart Performance
Measurement

Historically, much control chart statistical and economic optimisation has been
completed for a specific step shift (say in increase of one standard deviation to the
mean). Control chart design configurations and design heuristics have also been
recommended for good performance over a domain of step shifts. To
quantitatively optimise a control chart for a domain of step shifts a suitable
performance measure is required. No satisfactory performance measure had
previously been defined for a domain of step shifts. In this thesis, new measure
MRLOCV and MRL have been defined. MRL and MRLOCV are true
performance measures which permit optimisation. Performance comparison
measures, such as relative loss efficiency (RLE), destabilise an optimisation
routine as every performance value changes as each new performance response
vectors is measured and incorporated. A new performance comparison measure
was also developed in this thesis, Average Difference Relative to the Average
(ADRA), for comparing the performance of two control charts across a domain of

step shifts. ADRA is easier to interpret than RLE, and gives consistent values.
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7.1.2 Create Software to Derive Control Chart Properties

Insights from this study into the performance of optimised composite control
charts are unique owing to the large amount of data simulated. Over 10,000
control charts configurations were simulated in total completing several full
factorial experimental lattices with replicates. A computer program called
“Composite Monitoring Schemes” was developed by the student as part of the
thesis. The software applied a novel algorithm based on the secant method to
solve the control chart configuration achieving certain performance specifications.
Historically, control chart configurations were solved manually by trial and error
(in the case of simulation studies). Simulating data points for an experimental
design is labour intensive in the absence of code to solve specifications. Creation
of the software was essential to completing this large study in the student’s

remaining worklife.

7.1.3 Optimise and Compare Composite Schemes (Aim 1)

Optimised three-component CMA, CEWMA and CCUSUM schemes were
compared. An optimised CCUSUM3 scheme proved to be the best composite by
a significant amount and was 5.0% faster (ADRA) relative to the optimum
CEWMAZ3 design. Performance advantages were most notable in the lower and

middle portions of the assessment domain.

7.1.4 Determine the Benefit of using Three Components over Two (Aim 2)

The performance of composite schemes as a function of the number of
components was investigated. Two-component and three-component CEWMA
schemes (CEWMA2, CEWMAZ3) were optimised and compared. A reasonable
reduction in detection times of 5.2% (ADRA) was achieved by employing the
third EWMA component in a CEWMA scheme, although with a smaller marginal

benefit than with an addition of the second component.
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7.1.5 Compare the Performance of the Control Charts for Ramped
Location Shifts (Aim 3)

CEWMAZ3 perform better than CCUSUM3 and CMA3 schemes. However, the
difference in performance between CEWMA3 and CCUSUM3 was insignificant.

7.1.6 Identify other Opportunities of Composite Control Charts (Aim 4)

Hierarchical monitoring, using exception reports based on composite control
charts, was described for process and business monitoring at increasingly elevated
ranks within a manufacturing organisation. Components of composite control
charts may be deselected to reduce the flux of information presented to plant area
and operations managers. The components which have the most sensitivity to
small step shifts were recommended for de-selection in the reports viewed by

plant area and operations managers.
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7.2 Interpretations and Limitations

7.2.1 Nominated Assumptions

Optimisation of designs required certain assumptions. Parameters were estimated
from in-control samples to ensure that the performance comparisons were
meaningful in real situations. Assessment domain boundaries have been
nominated. These selections have been made without broad consultation with the
manufacturing industry. Unfortunately, any particular sample size assumption or
selection of assessment domain boundaries is hardly appropriate for applications
universally.  Never-the-less, this study has demonstrated that CCUSUM3
performs the best of the composite schemes compared on a 0.56 to 4.0c step shift
assessment size domain. Furthermore, there is no apparent reason suggesting that
the superior performance of CCUSUM3 will not persist when schemes are
optimised for broader or narrower assessment domains. In fact, the CCUSUM3
performs better than CMA3 and CEWMAZ3 at these boundaries. Regardless, our
results would be more relevant to an end user if the research applied assumptions

specific to their particular application.

Weightings for the relative frequency of various step shift sizes and for the
economic business consequence of the various step shift sizes also need to be
considered in practice. Using MRL, which has a weighting of unity for economic
and frequency parameters, may not be optimal for a specific application.
Regardless of this fact, all composite schemes were optimised using a common
performance measure. Therefore, it has been demonstrated in this thesis that
CCUSUM3 schemes are superior to CEWMA3 and CMA3 schemes under at least
one criterion. It seems likely that CCUSUM3 schemes will also be superior to
CEWMA3 and CMA3 schemes when optimised for a specific application with

known economic and frequency parameters.
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7.2.2 Algorithm Complexity

Difficulty of control chart setup and interpretation are important considerations
for the end user. Algorithm complexity should not be allowed to harm adoption of
good control chart tools; interpretability at the user interface is paramount. This
raises the question of whether it is practical to use a CCUSUMS3 in preference to
CEWMAZ3 based purely on statistical superiority. CUSUM transformations of
data do not appear as similar to the original data as does EWMA smoothing.
However, with a small amount of experience using CUSUM “trends”, it is
expected that process engineers and control room operators will find the
CCUSUMS3 chart informative and not confusing. With the 5.0% advantage
(ADRA) has over CEWMA3, CCUSUM3 should be adopted in preference to
CEWMA3 and CMA3 composite control charts. If any training is required to

make the tool effective, the cost is expected to be viable.

The practicality of adopting composite schemes warrants further scrutiny at this
juncture. A relevant anonymous aphorism states: ‘“simplicity is efficiency.”
Simplicity in statistical monitoring tools may be considered in two parts:
simplicity in presentation of the user interface, and simplicity of the algorithm.
The appearance of control charts at the user interface needs to be simple for easy
interpretation by control room operators. Composite schemes are complex in
terms of the number of different transforms of the raw signal that are created and
the associated control limits which must be designed. Simplicity is a less critical
issue for specialist software designers than it is for general users. The level of
complexity is acceptable for the control systems engineers who would implement
the technology. When using the control charts, computers would automatically
execute the calculations upon receipt of new data, thus there is little of this

complexity passed onto the control room operator.

Control charts offer benefit to a user only when combined with follow-up
activities. Uniformity of process plant operations is influenced by factors other
than increasing the efficiency of control charts. In series with detecting a
disturbance to operational uniformity, identifying the assignable cause and

correcting the process are also needed to regain uniform operation. Both
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identification and correction activities need to be done efficiently to reduce out-
of-control durations. Ultimately, the method described in this thesis for control
chart performance measurement, comparison and optimisation of composite
control charts, may make a contribution to producing cheaper, higher quality
products. However, the contribution will be relatively limited where there is low

performance in cause determination and correction.

7.3  Justification and Significance of the Research

With recent control chart publications covering topics such as generalisation of
advanced multivariate, non-parametric and data mining techniques, one might
wonder if research into performance measures and composite control chart
optimisation is justifiable. = Multivariate, non-parametric and data mining
techniques offer increased (or decreased) power as required for decision making;
however, those techniques are not the only option for improving detection
performance. Until now research into multivariate techniques, for example, has
not facilitated process monitoring in a typical hierarchical organisational
structure. Composite schemes offer good detection efficiency across a domain of
step shift sizes, and can be used in a way to support monitoring from different
levels within a company. Furthermore, composite control charts may also be
used in conjunction with multivariate, non-parametric and data mining
techniques. Thus, the research of this thesis was well justified, potentially

stimulating further research in hierarchical monitoring.

Massive amounts of simulated data were required to optimise these control charts.
Optimisation was previously considered to be practically impossible, most likely
due to the manual nature of designing control chart configurations to meet
performance specifications. Development of the software “Composite
Monitoring Schemes” was a significant change as compared to the approach used
by previous researchers of composite control charts. The software used a novel

robust secant-method algorithm automating much of the previous manual work.
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Creation of the software thus permitted compilation of the significant quantity of

simulated data hence the findings of this thesis.

Composite control charts are not necessarily widely used. As described above,
they have been difficult to design and optimise in the past. However, unrestricted
use of the freeware computer program (accessible via the internet — see Chapter 4)
may promote increased usage of composite control charts. It is likely that the
future impact of this thesis will largely depend on developments in hierarchal

monitoring which may be based on composite control charts.

There is inherent complexity in the setup of a composite control chart. Despite the
amount of underlying detail, composite control charts may be presented in a
moderately simple form applying sensible interface design standards. Given
typical manufacturing process plant software, it is argued that simplicity is no
longer a dominating control chart design requirement if the scheme can be
presented simply. Therefore, the data and methods of this study have potential for

significant outcomes in industry.

Considering the costs of implementing a system of control charts, Wu and Wang
(2007) suggested that it is less easy to implement composite schemes as compared
to single component schemes. It is argued here that the overhead cost per variable
would be small when implementing a large system of control charts. Potentially,
process information management system (PIMS) software could be configured to
efficiently “build” composite schemes. Additionally, the builder tools could also:
1) provide control chart designs which are scaled to achieve a net false alarm rate
specification; 2) adjust detection sensitivity according to the risk level; and 3)
achieve specified ICATS performance for different levels of management
audience. The reduction in the rate of false alarms, for a given detection
efficiency, is likely to outweigh the cost of upgrading to composite schemes. It is
estimated that PIMS software is now possessed by the majority of manufacturing
companies. Hence adoption of a CCUSUM scheme having three or more
components is now very plausible, if not feasible. It is concluded that the
contributions of this thesis to manufacturing, and perhaps other industries, has

potential to be of immediate significant economic value if adopted.
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Chapter 8

Recommendations

After this research, a set of additional questions come to mind. Uncertainty
remains regarding composite scheme design parameters which are typically
appropriate for industry. One also wonders what hierarchical monitoring
methodologies would best benefit the manufacturing industry. Specifically, upon
commencement of this thesis the following information could not be found in
literature:

e What alternative assumptions (assessment domain, sample size for estimating
parameters) would best reflect the context in manufacturing? Discussed in
Section 8.1.

¢  What combination of tools and methods would best support monitoring from
several levels of management within an organisation? Discussed in Section
8.2.

e  What would be the most effective format for presenting CCUSUM3 schemes,

whether by graphics or exception reporting? Discussed in Section 8.3.

Additionally, the following opportunities are of interest to the author of this
thesis:

e Development of cause identification and correction tools, see Sections 8.4.

e Integration of composite control charts with advanced multivariate, non-

parametric and data-mining methods, as discussed in Section 8.5.

Further explanation of these opportunities is offered below.
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8.1 Optimisation for Alternative Assumptions

It is not known whether the assumptions applied in this thesis reflect conditions
typically found in industry. Besides the question of the assessment domain
definition, there is the question of model weightings. A model of the typical
frequencies of step shifts and business costs as a function of the step shift size
could be built from a random selection of industrial examples. It is
recommended that managers, engineers and process operators from continuous
manufacturing process plants be interviewed, and plant data examine to answer

these questions.

A composite control chart design dataset has been created for future consultancy
work, containing full SSATS profiles for various assumptions (see Appendix C
for a list of the assumption combinations available). A pre-simulated design
dataset is particularly useful for accelerating future studies. The design and
performance dataset may be used with frequency and cost parameters weightings
to find the optimum composite control chart configurations for a specific industry
application (economic design). Economic designs may be optimised quickly

without time consuming simulation of SSATS performance.

Further benefit may then arise from expanding the consultancy design dataset.
One such opportunity is to expand the sample sizes used to estimate the mean and
standard deviation. In particular, the student is interested in heterogeneous

sample sizes for estimation of the mean and standard deviation.
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8.2 Monitoring Needs within an Organisation

Control charts have traditionally been designed for monitoring from only one
level of an organisation, usually at the “factory floor” level. The following
question highlights why traditional control chart designs do not suit organisation-
high implementation: “What false alarm rate is acceptable at middle management
ranks?” Monitoring of many variables from several departments can lead to
exceptionally high net false alarm rates. At middle management levels, such a
system would be inoperable unless something is done to component out less

important events and false alarms.

To develop new control charts to function within a tailored monitoring system,

the following organisation needs need to be understood:

e Are periodic reviews of quality and process control preferred at middle
management level or a review of alarms as they are generated?

e Which monitoring schemes formats are considered desirable by various levels
of management within a typical organisation?

e Does use of common alarm criteria for all monitored variables significantly

enhance the effectiveness of a quality system?

These questions could be raised in a survey after trialling variations of

hierarchical monitoring methods at a number of manufacturing companies.
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8.3 Form of CCUSUM Presentation

It is recommended that the ease of interpreting CCUSUM3 schemes be verified.
Visual enhancement of CCUSUM3 schemes may be required to make the tool
effective. If the overlapping CUSUM components are confusing, allow the user
to choose which CUSUM statistic(s) and corresponding control limits are
displayed using graphical user interface buttons. The presence of an alarm from a
statistic which is not displayed can be indicated on the line plot by uniquely
colouring the raw data according to whatever component(s) are in alarm. A
separate real-time alarm list can be used to confirm the details of component(s) in
alarm. Alternatively, alarms can be reported in the form of an exception report,
avoiding the need for training control room operators to interpret CCUSUM3
graphics. It is recommended that combinations of the above ideas be trialled and
developed further with industry participants. The objective being, to maximise

the effectiveness of composite control charts.

8.4 Identification and Correction Tools

Statistical and/or rule based diagnostics might be used to analyse root causes and
automatically report out-of-control variables and corrective actions with the use
of a trouble-shooting database. Electronic automation of these tasks not only
reduces the labour intensiveness of managing quality, but also reduces the
required experience level of the process engineers and operators who are

employed for a given level of effectiveness.

8.5 Composite Control Charts for Multivariate Techniques

Several cooperating multivariate control charts such as principal component
scores, multivariate EWMA (MEWMA), multivariate (MCUSUM) or Hotellings
T? could simultaneously monitor a variable. The software used in this thesis can
easily be modified to simulate chi square and other distributions as required. See

Lowry and Montgomery (1995) for a review thesis on multivariate control charts.
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Appendices

Extra investigations were performed outside of the central theme of the thesis and

have been included in the appendices to enhance the flow of the central concepts.
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Appendix A - Error Analysis

The objective of this appendix is to determine error bars for simulation results to

describe a symmetrical 95% confidence interval surrounding each experimental

design lattice point.

Table A-1. CMA3 Error Analysis.

Data
nl n2 n3 hl h2 h3 Al% A2% A3% MRL

9 2 1 3.2035 3.1546 3.2011 20.0 40.0 40.0  -0.0491
9 2 1 3.2020 3.1542 3.2004 20.0 39.9 40.0  -0.0510
9 2 1 3.2037 3.1538 3.2004 19.9 40.0 40.0  -0.0496
9 2 1 3.2022 3.1548 3.2015 20.1 39.9 40.0  -0.0507
9 2 1 3.2043 3.1547 3.2017 20.0 40.0 40.0  -0.0490
9 2 1 3.2034 3.1540 3.2012 20.0 40.1 39.9  -0.0497
9 2 1 3.2016 3.1544 3.2015 20.1 40.0 39.9  -0.0493
9 2 1 3.2035 3.1548 3.2010 20.0 40.0 40.0  -0.0494
9 2 1 3.2034 3.1539 3.2006 20.0 40.0 40.1 -0.0499
9 2 1 3.2035 3.1544 3.2010 20.0 40.0 40.0  -0.0490
9 2 1 3.2031 3.1553 3.2013 20.1 39.9 40.0  -0.0504
9 2 1 3.2032 3.1544 3.2013 20.0 40.0 40.0  -0.0501
9 2 1 3.2033 3.1546 3.1999 20.0 40.0 40.0  -0.0499
9 2 1 3.2036 3.1535 3.2003 19.9 40.1 40.0  -0.0510
9 2 1 3.2028 3.1539 3.2005 20.0 40.0 40.0 -0.0511
9 2 1 3.2031 3.1542 3.2009 20.0 40.0 40.0  -0.0480
9 2 1 3.2035 3.1555 3.2014 20.0 39.9 40.0  -0.0497
9 2 1 3.2018 3.1541 3.2013 20.1 40.0 399  -0.0512
9 2 1 3.2032 3.1548 3.2019 20.0 40.0 39.9  -0.0488
9 2 1 3.2036 3.1545 3.2012 20.0 40.0 40.0 -0.0474
9 2 1 3.2039 3.1549 3.2011 20.0 40.0 40.0  -0.0493
9 2 1 3.2029 3.1540 3.2009 20.0 40.0 40.0  -0.0494
9 2 1 3.2036 3.1544 3.2010 20.0 40.0 40.0  -0.0504
9 2 1 3.2041 3.1541 3.2008 20.0 40.1 40.0  -0.0488
9 2 1 3.2028 3.1545 3.2005 20.0 39.9 40.1 -0.0488
9 2 1 3.2025 3.1539 3.2006 20.0 40.0 40.0  -0.0504
9 2 1 3.2019 3.1542 3.2004 20.1 39.9 40.0  -0.0502
9 2 1 3.2025 3.1553 3.2017 20.1 39.9 40.0  -0.0507
9 2 1 3.2027 3.1541 3.2001 20.0 40.0 40.0  -0.0509

Average 3.2031 3.1544 3.2009 -0.0498

Standard Deviation 0.00070  0.00048  0.00051 0.00095

Error Analysis

S.E +1.96*S.E.
For one observation of the MRL from each design 0.0013  0.0026
For two observations of the MRL from each design 0.0011 0.0021

For three observations of the MRL from each design
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Table A.2 CEWMA3 Error Analysis.
Data
k1 k2 k3 hl h2 h3 Al% A2% A3% MRL

0.12 0.48 0.93 3.2430 3.1002 3.1738 17.0 45.7 37.4 -0.0945
0.12 048 093 3.2422 3.1004 3.1740 17.0 45.6 37.3  -0.0946
0.12 048 093 3.2417 3.0992 3.1728 17.0 45.7 37.3  -0.0967
0.12 0.48 0.93 3.2445 3.1005 3.1742 16.9 45.7 37.4 -0.0943
0.12 0.48 0.93 3.2410 3.0991 3.1739 17.1 45.7 37.3 -0.0971
0.12 048 093 3.2411 3.0995 3.1728 17.0 45.6 374 -0.0949
0.12 048 093 3.2430 3.1005 3.1736  17.0 45.6 374 -0.0949
0.12 0.48 0.93 3.2427 3.1001 3.1747 17.0 45.7 37.3 -0.0958
0.12 0.48 0.93 3.2425 3.0999 3.1738 17.0 45.7 37.4 -0.0957
0.12 048 093 3.2413 3.1004 3.1751  17.0 45.7 37.3  -0.0947
0.12 048 093 3.2407 3.0991 3.1735 17.0 45.6 37.3  -0.0964
0.12 0.48 0.93 3.2420 3.0997 3.1731 17.0 45.6 37.4 -0.0964
0.12 0.48 0.93 3.2418 3.1000 3.1742 17.0 45.6 37.3 -0.0966
0.12 048 093 3.2423 3.0996 3.1738 17.0 45.7 37.3  -0.0948
0.12 048 093 3.2424 3.0998 3.1738 17.0 45.7 374 -0.0962
0.12 048 093 3.2416 3.0995 3.1728 17.0 45.6 37.4  -0.0955
0.12 0.48 0.93 3.2420 3.1000 3.1735 17.0 45.6 37.4 -0.0954
0.12 048 093 3.2421 3.0990 3.1731 169 45.7 37.3  -0.0949
0.12 048 093 3.2434 3.1004 3.1754 170 45.7 37.3  -0.0941
0.12 048 093 3.2415 3.0992 3.1739  17.0 45.7 37.3  -0.0950
0.12 0.48 0.93 3.2403 3.0994 3.1725 17.1 45.6 37.3 -0.0945
0.12 048 093 3.2426 3.1005 3.1741 170 45.6 374 -0.0944
0.12 048 093 3.2415 3.0997 3.1739  17.0 45.6 37.3  -0.0962
0.12 0.48 0.93 3.2422 3.1005 3.1739 17.0 45.6 37.4 -0.0941
0.12 0.48 0.93 3.2417 3.0986 3.1737 17.0 45.7 37.3 -0.0958
0.12 048 093 3.2429 3.0999 3.1734  17.0 45.6 374 -0.0964
0.12 048 093 3.2427 3.1006 3.1740 17.0 45.6 374 -0.0952
0.12 0.48 0.93 3.2425 3.1002 3.1740 17.0 45.7 37.4 -0.0953
0.12 0.48 0.93 3.2422 3.1001 3.1737 17.0 45.6 37.4 -0.0951

Average 3.2421 3.0998 3.1738 -0.0954

Standard Deviation 0.00086  0.00055  0.00065 0.00085

Error Analysis

S.E +1.96*S.E.

For one observation of the MRL from each design
For two observations of the MRL from each design

For three observations of the MRL from each design
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Table A-3  CCUSUM3 Error Analysis.
Data
k1 k2 k3 hl h2 h3 Al A2 A3 MRL

0.35 1 1.75 8.7892 2.7224 1.4386 13.0 43.5 43.6 -0.1391
0.35 1 175 87856  2.7233 1.4395 13.0 43.5 43,5  -0.1388
0.35 1 175 87843  2.7229 1.4393 13.0 43.5 435  -0.1389
0.35 1 1.75 8.7835 2.7231 1.4390 13.0 43.5 43.5 -0.1400
0.35 1 1.75 8.7861 2.7252 1.4395 13.1 434 43.5 -0.1393
0.35 1 175 87804  2.7235 1.4385 13.0 434 435  -0.1394
0.35 1 175 87865  2.7226 1.4384 13.0 434 435  -0.1387
0.35 1 1.75 8.7881 2.7231 1.4386 13.0 43.5 43.5 -0.1398
0.35 1 1.75 8.7785 2.7223 1.4394 13.1 43.5 434 -0.1394
0.35 1 175 87831 27227 1.4389 13.0 434 43.6  -0.1397
0.35 1 175 87830  2.7226 1.4389 13.0 43.5 43,5  -0.1398
0.35 1 1.75 8.7888 2.7221 1.4386 12.9 43.6 43.5 -0.1393
0.35 1 1.75 8.7909 2.7228 1.4389 13.0 43.5 43.5 -0.1395
0.35 1 175 87868  2.7232 1.4390 13.0 43.5 43,5  -0.1388
0.35 1 175 87878  2.7235 1.4391 13.0 43.5 435  -0.1378
0.35 1 1.75 8.7839 2.7223 1.4385 13.0 43.5 43.5 -0.1400
0.35 1 1.75 8.7870 2.7233 1.4390 13.0 43.5 43.5 -0.1386
0.35 1 175 87860  2.7230 1.4388 13.0 43.5 435  -0.1377
0.35 1 175 87940  2.7228 1.4393 13.0 43.5 43.6  -0.1372
0.35 1 1.75 8.7849 2.7230 1.4390 13.0 43.5 43.5 -0.1381
0.35 1 1.75 8.7871 2.7237 1.4393 13.1 43.5 43.5 -0.1406
0.35 1 175 87825 27222 1.4386 13.0 43.5 43,5  -0.1395
0.35 1 175 87862 2.7234 1.4392 13.0 43.5 435  -0.1399
0.35 1 1.75 8.7880 2.7239 1.4395 13.0 434 43.5 -0.1374
0.35 1 1.75 8.7898 2.7245 1.4398 13.0 434 43.5 -0.1389
0.35 1 175 87896  2.7244 1.4397 13.0 43.5 435  -0.1393
0.35 1 175 87858  2.7233 1.4391 13.0 43.5 435  -0.1397
0.35 1 1.75 8.7813 2.7219 1.4384 13.0 43.5 43.5 -0.1387
0.35 1 1.75 8.7872 2.7228 1.4383 13.0 43.5 43.6 -0.1405

Average 8.7861  2.7231 1.4390 -0.1391

Standard Deviation 0.00329  0.00075  0.00041 0.000855

Error Analysis

+1.96*S.E.

For one observation of the MRL from each design
For two observations of the MRL from each design

For three observations of the MRL from each design
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Appendix B - MA and EWMA ATS Profiles

This appendix contains the tables for MA and EWMA ATS profiles discussed in
Chapter 3. Population parameters are assumed to be known and comparisons are

made for ICATS = 400. The comparison domain was 6,= 0.5 to 5,= 4 for all

measures.
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Table B-1. ATS profiles and MRLMC comparison of MA control charts for a selection of designs from MA(1) to MA(30).

Span, n
30 28 12 8 7 5 4 3 2 1
o ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC ATS RLMC
0.00 400. 0.001 _ 400. 0.002 400. 0.002 400. 0.001 400. 0.002 400. 0.001  400. 0.000 400. 0.001  400. 0.000 400. 0.001
0.25 80.4 82.0 0.020 115.7 0.439 139.6 0.736 148.4 0.845 1728 1.149 190.4 1.368 213.5 1.655 247.4 2.076 302. 2.755
0.50 27.18 0.005 27.05 0.000 32.66 0.208 40.12 0.483 43.57 0.611 54.29 1.007 63.35 1.343 77.57 1.868 103.9 2.841 165.3 5113
0.75 16.76 0.135 16.37 0.108 14.77 | 0.000 | 16.60 0.124 17.69 0.198 21.58 0.461 25.28 0.712 31.85 1.157 45.40 2.074 85.51 4.791
1.00 12.63 0.375 12.29 0.338 9.234 0.005 9.184 | 0.000 9.391 0.023 10.72 0.167 12.27 0.336 15.15 0.649 21.88 1.382 45.52 3.957
1.25 10.12 0.646 9.845 0.601 6.968 0.133 6.225 0.012 6.149 6.387 0.039 6.961 0.132 8.214 0.336 11.66 0.896 25.30 3.115
1.50 8.403 0.920 8.177 0.868 5.726 0.308 4834 0.104 4626 0.057 4.377 4.491 0.026 5.039 0.151 6.736 0.539 14.67 2.351
1.75 7.166 1.202 6.966 1.141 4.858 0.493 4.029 0.238 3.802 0.168 3.362 0.033 3.254 3.366 _0.034 4.188 0.287 8.882 1.730
2.00 6.229 1.533 6.058 1.464 4214 0.714 3.472 0.412 3.246 0.320 2771 0127 2.562 0.042 2.459 | 0.000 2.777 0.129 5522 1.246
2.25 5483 1.834 5.329 1.754 3.694 0.909 3.036 0.569 2.841 0.468 2.387 0.234 2.145 0.109 1.935 | _0.000 1.955 0.010 3.558 0.839
2.50 4.890 2.347 4765 2.261 3.281 1.246 2.690 0.841 2511 0.719 2.098 0.436 1.857 0.271 1.607 0.100 1.461 | 0.000 2.347 0.606
2.75 4402 2.805 4285 2.704 2.936 1.538 2400 1.074 2.246  0.941 1.864 0.611 1.638 0.416 1.385 0.197 1.157 | 0.000 1.546 0.336
3.00 4.000 3.162 3.886 3.044 2.657 1.765 2.161 1.249 2.008 1.089 1.666 0.734 1.464 0.523 1.216 0.265 0.961 | 0.000 1.089 0.081
3.25 3.652 4.255 3.541 4.095 2412 2.471 1.959 1.819 1.825 1.626 1.503 1.163 1.310 0.885 1.086 0.563 0.833 0.199 0.695| 0.000
3.50 3.362 6.261 3.255 6.030 2.207 3.767 1.786 2.857 1.657 2.579 1.363 1.944 1.182 1.553 0.973 1.102 0.734 0.585 0.463 | 0.000
3.75 3.102 9.104 3.011 8.808 2.025 5.596 1.630 4.309 1.511 3.922 1.235 3.023 1.07 2.485 0.879 1.863 0.650 1.117 0.307 | 0.000
4.00 2.872 13.579 2.790 13.162 1.867 8.477 1.500 6.614 1.384 6.025 1127 4.721 0.971  3.929 0.796  3.041 0.575  1.919 0.197] 0.000
MRLMC 3.211 3.092 1.842 1.381 1.250 0.980 0.851 0.755 0.799 1.611
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Table B-2. ATS profiles and MRLMC comparison of EWMA control charts for a selection of designs from EWMA(0.02) to EWMA(1), page

172.
A
0.02 0.055 01 013 0.2 0.25 0.3 0.35 0.4
o ATS  FRLMC  ATS  HRLMC  ATS  HLMC  ATS  RLMC  ATS  RLMC  ATS  RALMC ATS HRLMC ATS  HLMC  ATS RLMC
0.00 400 0.001 400, 0.001 400, 0.000 400 0.001  400. 0.002  400. 0.001 400 0.001 400 0.001  400. 0.002
025  BEET 7519 0135 91.34 0378 1022 0.541 1265 0909 1423 1146 157.3 1.373 1714 1.586 1842 780
0.50 2r850 0078 2550 m 2750 0078 2961 0481 3807 0415 4144 0De25 4733 0856 B3REBE 1112 B0 1.365

0.75 16.93 023 1417 0033 1373 1401 0021 1562 0138 17.22 0254 1927 0404 2160 0573 2424 0.766
1.00 12.09 0410 9.585 0.118 711 0.E 8.5?4m 8.806  0.027 9282 0.083 9987 0165 1083 0269 1194 0.393
1.25 9.319 0.603 7141 0229 6.241 0.074 5.9v2 0.028 E.BIEM 5912 0.017 6129 0.055 6479 015 6922 0191
1.50 7557 0.816 5.638 0355 4792 015 4.512  0.084 4210 0.2 ‘“EEM 4200 _0.009 4313 0036 4499 0.081

1.75 6.328 1.047 4.628 0497 3.846 0244 3.576  0E7 2238 0.048 2125 0,01 3.091m 3102 0.004 3154 0.020
2.00 5414 1316 3.894 0666 3182 0381 2.922 0250 2580 0104 2452  0.049 2375 0e 2.338 2342 .oz
2.25 4717 1631 3.344  0.865 2.690 0500 2.451  0.367 216 0180 1.981 0,105 1.888 0052 1.836 0.024 1802  0.005
2.50 4161 2.000 2914 1101 2314 0.6E8 2.088 0505 A7 0.278 1637 0,180 1538 0.110 1476 0.064 1428 0.030
2.75 3715 2508 2573 1430 2018 0.908 1.808 0707 1506 0422 1.375  0.298 1277 0.206 1.207 0.140 1158 0.089
3.00 3.345 3176 2.291  1.880 1778 1.220 1.577  0.969 1297 0.619 1170 0.461 1.072 0338 0.998 0.245 0.940 0174
3.25 3.031 4155 2.055 2495 1.578  1.684 1.393  1.368 1125 0913 1.000 0.7 0.907 0.542 0838 0425 0779 0.325
3.50 2765 5.640 1.856  3.451 1413 2.388 1.239  1.971 0979 1.348 .86 1.077 0775 0.888 0704 0GBS 0.640  0.535
375 2543 7861 1.691 4.892 1.268 3418 1.108  2.861 DBey  2.021 0753 1.624 DEE3 1.210 0.590 1.056 0527 0.836
4.00 2.348 11423 1.540 7.148 1146 5.063 0.991 4243 0764 3.042 D.656  2.471 0566  1.995 0493 1.608 0420 1.275
MBLMS 2860 1.676 1.1148 0.913 0638 0.530 0461 0.424 0.406
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Table B-2. ATS profiles and MRLMC comparison of EWMA control charts for a selection of designs from EWMA(0.02) to EWMA(1), page
2/2.

A
0.45 0.5 0.6 0.64 0.8 0.85 0.9 0.95 Shewnhart
J ATS  RILMG  ATS RLMC ATS RLME  ATS RLMCE  ATS RLMC  ATS RLMC  ATS  RLME  ATS HRMC  ATS  ALMOC
0.00  400. 0.000 400. 0.002  400. 0,001 400. 0.001  400. 0002 400. 0.001 400 0.001  400. 0.001 400, 0.00
0.25 197.6 1981 2085  2.1468 221, 2.491 239. 2610 270. a.070 278, 3207 286 3.326 294, 3.437 302, 3.556

050 E7.22  1.636 7455 18923 90256 2539 964 2796 1254 3.918 1362 4302 1453 4.698 1546 B.0EZ2 1652 5.478
075 2708 08973 3046 1219 3806 1773 4154 2026 5784 3221 6415 3674 TOF2 4152 7785 4672 BL5E3 b.229
1.00 1320 0539 1471 0715 1824 1127 1995 1327 2874 2382 3236 2774 3621 3223 4057 3732 4548 4.305
1.25 7475 0.286 8158 0.404 9.867 0698 1077 085E 1541 165 17.45 2002 1967 2385 2229 2836 2532 3357
1.50 474 0139 5.0458 0213 5906 0.419 £.332 0.521 8.879 1123 10,01 1406 1133 1721 1290 2.099 1469 2529
1.75 3.249 0.081 3.389 0.098 3.823 0.237 4.045 0.309 5466 0.7E68 6.094 0972 E.840 1.213 7.745 1.506 £8.868  1.8E9
2.00 237 _0.014 2426 0.038 2.627 0124 2753 0178 3.505 0.499 3.870 DEBS 4319 0.847 4.872 1.084 5.545 1.572

2.25 1.?93 1.804 0.006 1.895 0.059 1.938 0.081 2.356 0.314 2575 0436 2833 0.580 3.158 0.761 3.559 0985
2.50 1402 0.01 1.38? 1405 0.013 1428 0.030 1632 0T 1755 0.265 1.895 0.366 2.089 0.506 2.328  0.E78
2.75 1115 0.053 1.086 0.025 1.D59 1.064 0.005 1.159 0.094 1.219 0.151 1299 0227 1.409 0.331 1.544 0458

3.00 0.899 0122 0.859 0.072 0811 oz D.Bml 0.000 | 0.830 _0.026 0.852 0.0&4 0.89: 0.119 0963 0.202 1.038  0.292
3.25 0.727 0.236 0.683 0162 0.630 0.071 0.614 0.044 CL5E!E| 0.000 | 0.602 0024 0618 0.051 0.655 0.114 0.e82 0477
3.50 0.587 0408 0547 0D.312 0.475 0,145 0460 0103 0.421 0.010 D.tﬂ?l 0.000 | 0.424 0.017 0.442 0.060 0.462 0108
a7h 0.474 0.652 0428 0.491 0.363 0.265 0.344 0199 0.294 0.024 0.288 0003 0287 0.000 0.295 0.028 0.305  0.083
4.00 0.378 1.000 02334 0767 0.268 0.418 0247 0.307 0199 0.053 0192 0016 0.189) 0.000 0191 0.0 0194 0.026

MBLMC  0.408 0430 0.527 0.585 0.950 1.11E 1.307 1.534 1.796
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Appendix C - Composite Scheme Design Dataset

The designs dataset generated to date contain the quantity of designs as listed

below in Table C-1. These designs are not available publicly but are intended for

use in consultancy work.

Table C-1. Scope of composite control chart design and performance dataset.

dNcompo ) . .
dICATS dICBoundary . dNestim dEstimMthd #Designs
nents
CCcCusum
1200 0 3 200 SD 136
1200 0 3 100 SD 12
400 0 3 200 MR 2486
400 0 3 200 SD 1161
400 0 3 100 SD 786
400 0 2 200 MR 397
400 0.25 3 200 SD 1099
400 0.25 3 200 MR 1209
200 0 3 200 MR 1025
200 0 3 100 MR 1076
CEWMA
400 0 3 200 MR 929
400 0 2 200 MR 220
CMA
400 0 3 200 MR 347
Total 10883
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Appendix D - Validation of the Software

The raw data for validation tests of the software are described in this appendix.

The thesis software was validated against ARL profiles published by authors such
as Sparks (2000, 2003), Quesenberry (1993), and Lucas and Saccucci (1990). All
validation is based on steady-state simulation as this is the only form of
simulation for which the software is currently configured. All functions of the
code relating to simulation and determination of run length performance for each

of the three statistics were validated via the following simulation runs:

e EWMA on step shift with known parameters
o (CMA on step shifts with known parameters
e CMA on ramp shift with known parameters
e CCUSUM with known parameters

e Shewhart chart based on estimated parameters

Results were generally within 1% with some minor exceptions. Descriptive
statistics were also used to confirm that the data was distributed normally. In the
following validation results tables, the relative difference between the results from

the thesis software, and that of the published data are calculated:

Thesis Result-Other Result)
Thesis Result

Rel Diff = (

Validation results are shown below in Tables D-1 to D-5.
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Table D-1. Validation of EWMA ATS on known parameters by comparsion

against Lucas and Saccucci (1990).

o ATS Rel diff

0.00 482279  -0.008

0.25  80.187 -0.006

0.50  26.873 -0.005

0.75  15.028 0.002

1.00  10.163 -0.004

1.50  6.026 -0.001
200 4.134 -0.011
250  3.138 -0.001
3.00 2.468 -0.005
350  1.999 -0.011

4.00 1.690 0.006
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Table D-2. Validation of CMA step and ramp ATSs on known parameters by
comparsion against Plan 5 (Sparks 2003).

0 ATS Rel diff K ATS Rel diff
0.00 397.697 0.001 0.000  396.295 -0.007
0.25 123.073  0.001 0.005  82.757 0.003
0.50  33.738  0.004 0.010  53.766 0.002
0.75 14.717 -0.002 0.025  29.728 0.023
1.00  8.672 -0.005 0.050 18.918 -0.004
1.50  4.456 0.001 0.075 14.593 0.001
200 2777 0.000 0.100  12.153 0.002
2.50 1.802 0.008 0.200  7.623 -0.006
3.00 1.200 -0.001 0.250 6.613 -0.003

3.50  0.888 -0.018

4.00 0.733 -0.003
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Table D-3. Validation of two sided CUSUM ATSs on known parameters by
comparsion against Sparks (2000).

o ATS Rel diff

0.00 393.254  0.005

0.25 124.015 0.012

0.50 33.549  -0.006

0.75 14.447  -0.003

1.00 8.359 0.002

1.50 4.143 0.003

2.00 2.545 -0.006

2.50 1.766 -0.014

3.00 1.310 -0.008

Table D-4. Validation of estimated parameters results for individuals Shewhart

Chart ATSs with negim = 100, by comparsion against Quesenberry (1993).

o ATS Rel diff

0.00 586.100 0.023

1.00 58.762  -0.001

2.00 6.270 0.018

3.00 1.101 0.001

4.00 0.205 0.026

5.00 0.020 -0.080
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Table D-5. Validation of normally distributed data created using the C++ class

StochasticLib class (Fog, 2003) which is based on the Mersenne Twister
algorithm.

Descriptive Statistics

N Mean Std. Skewness Kurtosis
Statistic | Statistic | Std. Error | Statistic | Statistic | Std. Error | Statistic | Std. Error
Vi 999960 -.0008 .00100 1.00160 -.007 .002 .074 .005
Valid N (listwise)] 999960

Comments on the Descriptive Statistics
e Slight Kurtosis is noted.
e Standard deviation is approximately equal to zero.

e Mean is well within two standard errors distance from zero.

Decision

Accept as valid pseudo normal random number generation as mean and standard

deviation are as specified and the skewness and kurtosis are acceptable.
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Appendix E - Software Details

E.1 Seeking to Specification Block Diagram

Start the 1C targets

seeking algorithm

Calculate the size of the simulation
at the final level of seeking

Size isbased on the standard
deviation of IC alarm and |C-
ATS values.

Start a level of seeking characterised by
a certain simulation size and tolerances

ee{ 5, ]

From Node D
Cwer-page

Calculate the size of simulation for
this level of seeking, |

Size for this level is found
using a power relationship to
the size of the simulate
determined for the final level,

v

level 1 equals 10,000 runs.

Determineg 1C-Alarm% tolerance, and
|CATS Tolerance forthis level of the
search, |

From Mode C
Over-page

Y

First pass

Y

Start seeking iteration
within this seeking level

Perturb the ICATS adjusting factor, L2, by X%,
Perturb the IC alarm adjusting factors by +- ¥%

Are
Alarm Yes
within tol

Calc next gset of alarm

adjustment parameters:
k3[i1= (btarget[i]- c3[i¥m3[i]

of the first
level?

Y

Perurbation methodfar
K2(0), L2

Calculate
h{iy=hirt (i k2(i)12

Simulation run for
control limits hii)

Calculate gradients
for seeking to ATS, and
Alarm% targets.”

s ATS Y
within tol
n
Calculate next  ATS

adjustment parameter
I3 = (target - cim1

I

Determine next vector
of control limits
hii} = hinit{i*13*k3(i}

¥
Simulation run for
control limits h{i}

v

* Calculation of gradents for each filter to find
the nesvcontral limit coefiicients based on the
ICATS and |C alarm adjusting factors, e

for darm (i) wer . W
m3{i] = (pont2(i] - portliTik2(il-1;
c3[i] = pont2[i] - m ik AT,

for ATS wert. L
m1 = (ATE2-ATS1WL241]
c=ATS2 -m1H2,

Figure E-1. Specification seeking algorithm. Page 1 of 2.
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Return ta
MNode A of
the Seeking
alGioliLang Shuffle back ATS, and
A Alarm%ii) histary
Retumn to mafi] = (pent3[i] - pont2[iNAk3[IR2[])
Mode B of C3[i]= pent3fi] - m3fTk3[]
me S%Ekmg YWere the
GREILIT Alarm% search
A parameters

adjusted?

Calculate Alarm®(i) seeking
gradients, intercepts

¥

Shuffle back the Alarma(i)
seeking gradient history

Was the ATS
search

parameter

adjusted?

L

Calculate ATS seeking
gradient, intercept

¥
Shuffle back the ATS seeking
Calculate accuracy of gradient history
convergence to targets

mi = (MRL3-MRLZ)/(13-12)
£=MRL3 - m1*3

Are allof
alarm%(i) and
ATE values
within tolerance
for this seeking
level ?

i

Endthe |C targets
seeking algorithm

Figure E-1. Specification seeking algorithm. Page 2 of 2.
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E.2 C++ Class Inheritance Structure

The inheritance structure and the specification seeking flow sheet are contained in
this appendix. The graphical user interface class creates an instance of class Tune
upon the “Simulate” mouse Onclick event. Tune draws on member variables and
member functions of the parent classes stdev and ATS. Simulator is the highest
level in the inheritance structure created in this thesis. Simulator includes
StochasticLib and MS Visual C™" Windows utility classes. The algorithms for
seeking to ICATS targets; indexing through ramp and step location shifts;
indexing through experimental design lattices; validation; comparison and
preparation of MRL data output, are performed from the member functions of
Tune. stdev is used to calculate the standard deviations of ICATS and component
loading values “IC Alarm Contributions [%]”. The standard deviations are used
to size the simulations sufficiently to achieve convergence with user tolerance
specifications. The class inheritance structure is shown in block diagram in

Figure E-2.
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C++ Class Inheritance Structure

Class provided by Fog for generation of RMD.

StochasticLib(seed)

Y

. A class which provides the basic simulation
S' m U|at0r activities broken down into member functions such
as:

Reset

Processrun

Cale

Alarmtally

il
-

A small class which coordinates execution of the

AECT basic simulation activities.

This class returns T which is a

arameter used by Tune:Tuner
float Stdev Fo size the simulatairon
sufficiently large to be able to
converge on the results. SDEVT
is the standard deviation of the
ICATS, and SDEV3 is the
standard deviation of the
proportion of alarms from fiter
1, ie. ALTIC %,

Returns trueffalse confirmation that the search has
bool Tu ne(SDEV1 ,SD EV3) cohverged to the targets,

Output files from this class include MRL_Output txt
and AnalysisFile. txt

Mernber functions include:

Functions to let the GUl initialise this class.

Tuner to search for contral limits that satisfy the
target ICATS and 1C-Alarm% loadings.

Body to drive the simulation through the step and
ramp location shifts damain.

Yalidation.

Functions such as CEVWMA_ Latticed to design and
then drive the experimental lattice.

Figure E-2. C++ class inheritance structure.
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Appendix F - Comparison of Designs for Different
Assessment Domains

The objective of this appendix is to understand the performance of an optimal
three-component CCUSUM scheme in the context of un-optimised schemes
published in literature. A three-component CCUSUM design published by Sparks
(2000) was used for comparison. Sparks’ design used nearly equal loadings on the
three components, between 30% and 35% each. Unfortunately, the design by
Sparks has an ICATS = 422 when parameters are estimated from 200
observations using the absolute moving range formula, 5% larger than the
optimized CCUSUM3 scheme which was designed for ICATS = 400. A new
CCUSUM3 design, CCUSUM3a (parameters given in Table F-1) was simulated

with the same k; values and loadings as the optimum design, but for a

specification of ICATS=422. Strictly speaking, CCUSUM3a has not been

optimised, but it is unlikely to be too dissimilar from the optimum configuration.

Table F-1. Comparison of Sparks’ CCUSUM3 scheme relative to the optimum
CCUSUMS3 scheme, CCUSUM3a.

Sparks CCUSUM3a

ADRA 21.5%
k, 0.375 0.35

k, 0.5 1

ky 0.75 1.8

h, 6.6758 8.8981

h, 5.2851 2.754

h, 3.6848 1.3993

ALIC [%] 34.19 12.95
ALIC:ALIC 0.867 1
ALIC[%] 30.57 43.46
ALIC [%] 35.24 43.59
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Examining the ATS profiles in Figure F-1, Sparks’ design was up to 17% faster
(DRA) for step shifts from 0.5 6 to 1.75 o, but up to 170% slower at larger step
shifts of 46. Overall, CCUSUM3a was 21.5% faster (ADRA) relative to Sparks’
plan.

1000

100

ATS
10

0.1

0 1 2 3 4
Step Shift Size [Sandard Deviations)

— - — - -Sparks CCUSUMEa

Figure F-1. ATS profiles for CCUSUM3a and a CCUSUM3 scheme by Sparks
(2000).

It should be acknowledged that Sparks’ plan was designed for a domain of 0.75¢
to 1.50, and not 0.56 to 4.0 as was our CCUSUM3 design, so it is hardly a fair
comparison. The comparison does demonstrate, however, how sensitive scheme
performance is to the selection of reference values and loadings, and to the
assessment domain. A comparison of Sparks’ plan relative to the optimised
CCUSUM3 scheme (ICATS = 400, described in Chapter 6) scheme was also
conducted and it is noted that the findings were similar values despite the

differing ICATS specifications.
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Appendix G - Four-Component CEWMA Designs for
Various ICATS Targets

The objective of this appendix is to provide a set of CEWMA designs for range of
ICATS specifications. From the designs, users may assess how sensitive ICATS
responses are to changes in control limit coefficients. CEWMA4 designs based
on known parameters with ICATS = 100 to 1000 and their ATS profiles are
shown below in Table G-1. The ATS profiles of individual components are also

investigate in this appendix.

Table G-1. Designs for CEWMAA4A schemes with ICATS = 100 to 1000, for

known parameters.

ICATS Specifications
100 200 400 700 1000
Parameters Control Limit Coefficients, & ;
M 0.055 2.4092 2.7081 2.9849 3.1893 3.3115
A 0.3 2.7464 2.9969 3.2286 3.4006 3.5065
A3 0.55 2.8351 3.0683 3.2841 3.4481 3.5485
A 1.0 2.8940 3.1177 3.3259 3.4845 3.5824
o ATS
0.00 99.8 199.8 400.2 700.1 999.8
0.25 45.1 69.3 104.8 145.18 178.6
0.50 18.68 24.62 31.49 37.71 42.14
0.75 10.24 12.92 15.83 18.20 19.79
1.00 6.429 8.010 9.694 11.09 11.96
1.25 4.341 5.383 6.482 7.408 8.004
1.50 3.076 3.793 4.567 5.196 5.609
1.75 2.240 2.757 3.308 3.766 4.069
2.00 1.658 2.059 2.470 2.812 3.038
2.25 1.246 1.554 1.880 2.138 2.314
2.50 0.934 1.178 1.439 1.647 1.787
2.75 0.698 0.900 1.106 1.273 1.393
3.00 0.516 0.675 0.840 0.983 1.077
3.25 0.374 0.500 0.637 0.753 0.832
3.50 0.264 0.361 0.475 0.572 0.631
3.75 0.182 0.260 0.346 0.424 0.476
4.00 0.120 0.177 0.243 0.305 0.349
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In Table G-1, loadings for all designs were specified such that: ALLIC = 20%,
ALIC = 27.5%, ALIC = 27.5%, Al4IC = 25%. These loadings have not been
optimized. Rather, the designs reflect the low loadings on fine and coarse
components mimicking the configuration of the optimum CEWMA3 design, as

determined in Chapter 6.
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