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Abstract. In the Journal of Cryptology (vol 20, no. 3), Blundo, D’Arco, De Santis and Stinson pro-
posed a general model for unconditionally secure distributed oblivious transfer (DOT), where a sender
has n secrets and a receiver is interested to one of them.
We show that their ”t-private weak one-round (k,m)-DOT

(
n
1

)
” protocol cannot prevent a receiver

who attempts to obtain more than one secret. We present a modification to Blundo et al.’s protocol
that fixes this problem.
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1 Introduction

Oblivious transfer (OT) protocols [6, 2] allow two interacting parties, Alice as a sender and Bob
as a receiver, to exchange a secret message in an oblivious way. Execution of these OT protocols,
however, requires the availability of the unique sender. Naor and Pinkas [5] introduced the concept
of 1-out-of-2 distributed oblivious transfer (DOT), where Alice is replaced with m servers. In [1],
Blundo, D’Arco, De Santis, and Stinson generalize Naor and Pinkas’s 1-out-of-2 DOT protocol to
a 1-out-of-n DOT protocol.

A fundamental requirement of every OT protocol is to guarantee that the receiver cannot learn
anything about the secrets that he is not supposed to learn. We show that Blundo et al.’s t-private
weak one-round (k,m)-DOT

(n
1

)
protocol cannot prevent a receiver who attempts to obtain more

than one secret. We present a modification to their protocol that fixes this problem.

2 A Brief Review of Blundo et al.’s DOT Protocols

In a 1-out-of-n DOT protocol, the sender has n secrets, w0, . . . , wn−1, and the receiver is interested
in one of them, say wi, where i ∈ {0, . . . , n− 1}. The protocol has two phases: (i) the set-up phase
and (ii) the oblivious transfer phase. In the set-up phase of the protocol, the sender provides some
information to each server. Then, in the oblivious transfer phase, the receiver needs to communicate
with at least k servers in order to obtain the desired secret, where k < m. In [1], such a protocol is
called a (k,m)-DOT-

(n
1

)
.

Blundo et al. have claimed that a (k,m)-DOT-
(n
1

)
protocol must satisfy the following properties:

1. Correctness. Using the information acquired during the protocol execution (that involves inter-
action with k out of m servers), the receiver can compute the chosen secret wi.

2. Receiver’s privacy. No coalition of less than k servers can determine which secret the receiver has
recovered.



3. Sender’s privacy with respect to k − 1 servers and the receiver. A coalition of the receiver with
k − 1 dishonest servers does not learn any information about the secrets.

4. Sender’s privacy with respect to a “greedy” receiver. Given the transcript of the interaction with k
servers, the receiver should gain information about at most a single secret, and no information
about the others. This property should be satisfied even if the receiver colludes with k − 1
dishonest servers once he has computed a secret.

In [1], Blundo et al. proposed a one-round protocol based on polynomial interpolation that
satisfies the first three properties. They have stated that in DOT protocols with only one round of
interaction it is impossible to achieve the fourth property. However, they have proposed a t-private
one-round (k,m)-DOT-

(n
1

)
for achieving sender’s privacy with respect to a coalition among the

receiver and a subset of t servers, where t < k − 1. This protocol is shown in Figure 1.

A sub-protocol for t-private weak one-round (k,m)-DOT-
(
n
1

)
(see [1])

Let w0, w1, . . . , wn−1 ∈ FP be the sender’s secrets, and let i ∈ {0, . . . , n− 1} be the receiver’s choice.
Set-up Phase

– Let dx, dy and dz be integers such that dx +dzdy(n−1) = k−1. The sender generates r0, r1, . . . , rn−1 ∈R FP ,
and sets up an n-variate polynomial with values in FP :

Q(x, y1, . . . , yn−1) = Σdx
j=0Σ

dy
`1=0 . . . Σ

dy
`n−1=0aj,`1,...,`n−1x

jy`11 . . . y
`n−1

n−1 ,

where a0,...,0 = r0w0, for i = 1, . . . , n − 1, Σ
dy
`i=0a0,...,`i,...,0 = riwi, and all other coefficients are chosen

uniformly at random. It follows that Q(0, 0, . . . , 0) = r0w0, Q(0, 1, 0, . . . , 0) = r1w1, . . ., Q(0, 0, . . . , 0, 1) =
rn−1wn−1.

– Then the sender constructs Shamir (k,m)-threshold scheme [7] for the secret r`, where ` = 0, . . . , n− 1. Let
rj` , for j = 1, . . . ,m, be the corresponding shares. For j = 1, . . . ,m, the sender sends the (n − 1)-variate
polynomial Q(j, y1, . . . , yn−1) and the shares rj0, . . . , r

j
n−1 to the server Sj .

Oblivious Transfer Phase

– The receiver chooses n−1 random polynomials Z1(x), . . . , Zn−1(x) of degree dz such that (Z1(0), . . . , Zn−1(0))
is an (n − 1)-tuple of zeros if i = 0 or an (n − 1)-tuple of zeros and a single one at the position i, if
i ∈ {1, . . . , n− 1}.

– The receiver chooses a subset X ⊆ {0, . . . , n − 1} of k indices, and for every j ∈ X, the values
Z1(j), . . . , Zn−1(j) are sent to the server Sj . He then receives the values V (j) = Q(j, Z1(j), . . . , Zn−1(j)),
and all the shares rj0, . . . , r

j
n−1.

– After receiving the k values V (j), for j ∈ X, the receiver interpolates a univariate polynomial V (x) =
Q(x, Z1(x), . . . , Zn−1(x)) of degree k − 1, and computes V (0)/ri where ri is constructed through the shares
rji .

Fig. 1. A sub-protocol for t-private weak one-round (k,m)-DOT-
(
n
1

)

3 Analysis of Blundo et al.’s DOT Protocol

In the sub-protocol of a t-private weak one-round (k,m)-DOT-
(n
1

)
protocol, the receiver is required

to choose n − 1 random polynomials, Z1(x), . . . , Zn−1(x), of degree dz such that Z1(0) = Z2(0) =
. . . = Zn−1(0) = 0 if i = 0 or Zi(0) = 1 for a single value i ∈ {1, . . . , n − 1} and Zj(0) = 0



for all values j 6= i. In their paper, Blundo et al. state that if the receiver contacts k servers, he
obtains one and only one secret, wi, of his choice. This is because if the receiver chooses polynomials
Z1(x), . . . , Zn−1(x) of degree dz, the polynomial V (x) = Q(x, Z1(x), . . . , Zn−1(x)) interpolated by
the receiver will be of degree k−1, and therefore can be reconstructed from the information obtained
from k servers.

We observe that, if the chosen polynomials Z1(x), . . . , Zn−1(x) are of degree less than dz, then
polynomial V (x) will be of degree less than k− 1, and thus can be interpolated using fewer than k
points. For example, if dz = 0, the resulting polynomial V (x) will be of degree dx, and therefore can
be interpolated with information obtained from dx + 1 servers. This is because the response of each
server provides information about one point associated with the V (x) polynomial. The following
example illustrates a possible attack by the receiver on the sender’s privacy, in the t-private weak
one-round (k,m)-DOT-

(n
1

)
protocol.

Example 1. Assume that the sender has four secret values, w0, w1, w2, w3, and she chooses the
integers dx = dy = dz = 2. Therefore, dx + dzdy(n− 1) = k− 1 = 18, thus the receiver is allowed to
contact 19 servers in order to learn one and only one of the secret values w0, w1, w2, w3. However, if
the receiver chooses polynomials Z1(x), Z2(x), Z3(x) of degree 0, the interpolated polynomial V (x)
will be of degree dx = 2, which can be reconstructed from the responses of only three servers. As a
result, the receiver learns all secrets.

Remark – Generating polynomials of exact degree dz = dx, although prevents the receiver from
learning more than one secret, breaches the receiver’s privacy (see below).

Theorem 1. [4, 3] Given a Shamir (k, n) threshold scheme, if the degree of the associated polyno-
mial f(x) = S + a1x + . . . + ak−1x

k−1 is known to be k − 1 (i.e. ak−1 6= 0), then the scheme is not
perfect.

In the light of Theorem 1, if Blundo et al.’s protocol has a mechanism that forces the degree
of the polynomials chosen by the receiver be of degree dz, a coalition of dz servers may learn the
choice of the receiver. The following example demonstrates this threat.

Example 2. Let servers S1, . . . , Sdz collaborate in order to possibly learn the receiver’s choice. They
will construct polynomials Z ′j(x) (for j = 1, . . . , n−1) of degree at most dz−1. For each polynomial,
if Z ′j(0) = 1, they learn that wj is not the chosen secret (because the dz-degree polynomial Zj(x)
chosen by the receiver must satisfy Zj(0) = 0). However, if one of the interpolated polynomials
Z ′`(x), for ` ∈ {1, . . . , n−1}, satisfies Z ′`(0) = 0, the collaborating servers learn that w` is the choice
of the receiver. This breaches the privacy of the receiver, since it is claimed (see page 355 of [1])
that the protocol satisfies the property of receiver’s privacy against a coalition of dz servers.

Note that for all indices j ∈ {1, . . . , n − 1}, if Z ′j(0) 6∈ {0, 1}, the collaborating servers learn
nothing about the choice of the receiver regarding wj .

We acknowledge that Blundo et al.’s protocol states the randomness of Zj(x) polynomials, and
thus privacy of the receiver is guaranteed.

4 A Modified t-private Weak One-round (m, k)-DOT-
(
n

1

)
Protocol

Our analysis show that in the t-private weak one-round (k,m)-DOT-
(n
1

)
protocol, achieving privacy

of the receiver implies the polynomials Zj(x) chosen by the receiver be of degree at most dz (not



exactly of degree dz). In the meantime, the receiver must not be able to utilize the lower degree
polynomials Zj(x) for learning more secrets. Both requirements can be satisfied if Zj(x) polynomials
are chosen randomly, such that neither the servers nor the receiver know their exact degrees. A
possible solution is as follows:

1. In the set-up phase, in addition to existing steps, the sender generates n−1 random polynomials
uj(x) of degree at most dz, subject to uj(0) = 0 (for all j = 1, . . . , n− 1), and gives each server,
Sj , a vector Uj = (u1(j), . . . , un−1(j)).

2. In the oblivious transfer phase, each contacted server, Sj , instead of responding

V (j) = Q(j, Z1(j), . . . , Zn−1(j)),

responds
V (j) = Q[j, (Z1(j) + u1(j)), . . . , (Zn−1(j) + un−1(j))].

This minor modification, which adds a zero polynomial to every Zj(x) polynomial chosen by the
receiver, guarantees the truly randomness required by Blundo et al.’s protocol. It maintains the
privacy of the receiver, and prevents the above-mentioned attack by the receiver.
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