Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide

Bennett, Craig L., Chen, Yingzhang, Vignali, Marissa, Lo, Russell S., Mason, Amanda G., Unal, Asli, Saifee, Nabiha P. Huq, Fields, Stanley, and La Spada, Albert R. (2013) Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide. PLoS ONE, 8 (11). pp. 1-10.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: http://dx.doi.org/10.1371/journal.pone.0...
 
8
27


Abstract

Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia type 2 (AOA2), and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4). Senataxin contains an amino-terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between senataxin and ubiquitin–SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular pathology in ALS4.

Item ID: 31789
Item Type: Article (Refereed Research - C1)
Additional Information:

© 2013 Bennett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN: 1932-6203
Funders: National Health and Medical Research Council (NHMRC)
Projects and Grants: R01 GM094384, NHMRC grant APP105520
Date Deposited: 26 Feb 2014 09:56
FoR Codes: 11 MEDICAL AND HEALTH SCIENCES > 1101 Medical Biochemistry and Metabolomics > 110106 Medical Biochemistry: Proteins and Peptides (incl Medical Proteomics) @ 100%
SEO Codes: 92 HEALTH > 9201 Clinical Health (Organs, Diseases and Abnormal Conditions) > 920111 Nervous System and Disorders @ 33%
92 HEALTH > 9201 Clinical Health (Organs, Diseases and Abnormal Conditions) > 920199 Clinical Health (Organs, Diseases and Abnormal Conditions) not elsewhere classified @ 34%
97 EXPANDING KNOWLEDGE > 970111 Expanding Knowledge in the Medical and Health Sciences @ 33%
Downloads: Total: 27
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page