Geospatial cluster tessellation through the complete order-k Voronoi diagrams
Lee, Ickjai, Pershouse, Reece, and Lee, Kyungmi (2007) Geospatial cluster tessellation through the complete order-k Voronoi diagrams. In: Lecture Notes in Computer Science (Proceedings of the Conference on Spatial Information Theory 2007) (4736) pp. 321-336. From: Conference on Spatial Information Theory 2007, 19-23 September 2007, Melbourne, Victoria, Australia.
PDF (Published Version)
Restricted to Repository staff only |
Abstract
In this paper, we propose a postclustering process that robustly computes cluster regions at different levels of granularity through the complete Order-k Voronoi diagrams. The robustness and flexibility of the proposed method overcome the application-dependency and rigidity of traditional approaches. The proposed cluster tessellation method robustly models monotonic and nonmonotonic cluster growth, and provides fuzzy membership in order to represent indeterminacy of cluster regions. It enables the user to explore cluster structures hidden in a dataset in various scenarios and supports “what-if” and “what-happen” analysis. Tessellated clusters can be effectively used for cluster reasoning and concept learning.