Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation

Seoane, L., Ramillien, G., Frappart, F., and Leblanc, M. (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrology and Earth System Sciences, 17 (12). pp. 4925-4939.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
View at Publisher Website: http://dx.doi.org/10.5194/hess-17-4925-2...
 
35
1296


Abstract

Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE) solutions have been computed from 2003 to 2011 with a 10-day resolution by using an energy integral method over Australia (112° E–156° E; 44° S–10° S). This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K-band range rate (KBRR) residuals with a 1 µm s⁻¹ level of errors, to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north–south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented, as well as their ability to describe water mass change as a response of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage (TWS) maps shows spatial and temporal patterns that are consistent with independent data sets (e.g. rainfall, climate index and in situ observations). Regional TWS maps show higher spatial correlations with in situ water table measurements over Murray–Darling drainage basin (80–90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 Groupe de Recherche en Géodésie Spatiale (GRGS)) products and 400 km independent component analysis solutions as a linear combination of GRACE solutions provided by different centers.

Item ID: 31728
Item Type: Article (Research - C1)
ISSN: 1607-7938
Additional Information:

Copyright © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.

Funders: Australian Research Council (ARC) Discovery grant
Date Deposited: 26 Feb 2014 09:40
FoR Codes: 04 EARTH SCIENCES > 0499 Other Earth Sciences > 049999 Earth Sciences not elsewhere classified @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 100%
Downloads: Total: 1296
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page