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It is of fundamental significance, especially with regard to application, to fully understand the flow behavior
of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such
an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313
(2009)] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous
Newtonian fluid with Pr > 1 under isothermal heating was substantially extended for the case when the heating is
due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness,
the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary
layer, which are the major parameters representing the flow behavior, in terms of the governing parameters
of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn

of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the
ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and
at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the
governing equations with Ra, Pr, and fn in the ranges 106 � Ra � 109, 3 � Pr � 100, and 0.01 � fn � 0.1 and
were shown in general to provide an accurate description of the flow at different development stages, except for
high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted
by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature
of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage
also produce noticeable deviations from the numerical results when fn is reduced, indicating that there may be a
further fn dependence of the scalings which also cannot be accurately predicted by the current scaling analysis.
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I. INTRODUCTION

Scaling analysis has proven to be a very effective tool to
reveal the transient behavior of unsteady natural convection
flow since Patterson and Imberger [1] carried out a pioneering
scaling analysis of the transient natural convection boundary-
layer flow in a two-dimensional rectangular cavity with
differentially heated sidewalls. Numerous subsequent studies
have extended the scaling analysis to many different aspects
of transient natural convection boundary layers under various
configurations and flow conditions. The readers are referred
to our recent paper [2] for a detailed review of some of these
studies.

Unsteady natural convection boundary layers on a vertical
plate heated by a time-dependent heat flux are found in many
applications, such as in the Trombe wall system of a passive
solar house and in a solar chimney for electricity generation
(see, e.g., Refs. [3–8]). In the Trombe wall case, the wall,
which is usually painted black or with a solar selective coating,
absorbs solar radiation and converts it into heat, which is then
transported to the dwelling by the heated air via a natural
convection boundary-layer flow in the channel formed by the
glazing and the wall. A solar chimney operates in a similar
manner. For both cases, the time-dependent solar radiation,
which varies sinusoidally under a clear sky condition (only in
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the first half of the sinusoidal cycle), serves as the heat flux for
the natural convection boundary-layer flows.

Although there have been numerous studies on natural
convection boundary layers on a vertical plate heated by a
heat flux, the majority of these studies have been on the cases
where the applied heat flux is either uniformly constant or
spatially varied but not time dependent.

In the uniformly constant heat flux case, for example, Cheng
[9] obtained solutions for the steady natural convection heat
transfer in a saturated porous medium adjacent to heated
surfaces with a prescribed constant heat flux based on the
boundary-layer approximations. Carey and Mollendorf [10]
measured variations of thermal boundary-layer thickness with
Pr in the range from 0.703 (air) to 8940 (silicone oil)
for the steady natural convection from a vertical uniform-
heat-flux surface and found that their experimental results
were in general in very good agreement with the similarity
solutions obtained by Sparrow and Gregg [11], although
large disagreement was also observed for the highest-Pr
fluid, which was attributed to the non-boundary-layer nature
of the velocity field. Bejan [12] solved the steady natural
convection boundary-layer flow in a fluid-saturated porous
media with a prescribed uniform heat flux. Bark, Alavyoon,
and Dahlkild [13] carried out a theoretical study on the
unsteady natural convection boundary-layer flow in a vertical
slot driven by prescribed fluxes of heat or mass at the
vertical walls of the slot and showed that the boundary-layer
thicknesses scale with Ra1/5, in good agreement with the
available experimental results. Alavyoon [14] extended this
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study to the unsteady double-diffusive natural convection in
a rectangular fluid-saturated vertical porous enclosure subject
to prescribed fluxes of heat and mass for a wide range of
the Rayleigh-Darcy number, inverse of buoyancy ratio, Lewis
number, and enclosure aspect ratio. Imadojemu and Johnson
[15] obtained experimentally the correlation between the
Nusselt number and Ra for the natural convection boundary-
layer flow on a vertical plate in water heated by a constant
heat flux with Ra in the range from 104 to 1013. Sundström
and Vynnycky [16] performed a linear stability analysis of
natural convection flows in an arbitrarily inclined rectangular
enclosure driven by prescribed heat or mass fluxes along
two opposing walls. Aydin and Guessous [17] carried out a
dimensional analysis to develop fundamental correlations for
laminar and turbulent natural convection from a uniformly
heated vertical plate and introduced a dimensionless parameter
to quantify the relevant heat transfer characteristics, which
were found to be dependent on Pr and the modified Ra.
Armfield, Patterson, and Lin [18] carried out a scaling analysis
to obtain the scalings for the unsteady natural convection
boundary layer on an evenly heated semi-infinite plate with
isoflux heating in ambient fluids with Pr > 1, whereas Lin,
Armfield, and Patterson [19] developed the scaling for the
similar flow configuration but with Pr < 1 fluids. Bednarz,
Lei, and Patterson [20] conducted a numerical study on the
unsteady natural convection induced by isoflux surface cooling
in a reservior model and examined the flow response to random
perturbations of different amplitudes. Following a similarity
analysis of the transport equations, Khan and Aziz [21]
investigated numerically the steady natural convection flow
of a nanofluid over a vertical plate with a constant surface heat
flux and showed that velocity, temperature, and concentration
profiles in the respective boundary layers depend on the
Prandtl and Lewis numbers, a Brownian motion parameter,
a thermophoresis parameter, and a buoyancy ratio parameter.
Capobianchi and Aziz [22] conducted a scaling analysis
for the natural convection flow on a vertical plate under a
constant surface heat flux. Saha, Brown, and Gu [23] obtained
the scalings via scaling analysis for the unsteady natural
convection boundary layer adjacent to a downward-facing
inclined plate with a uniform heat flux. Buonomo and Manca
[24] carried out a numerical study on the transient natural
convection in a vertical microchannel heated at a uniform heat
flux and proposed a composite correlation to estimate average
Nusselt number in terms of Ra and the Knudsen number.
Merkin [25] obtained similarity solutions for steady natural
convection boundary-layer flow in a heat-generating porous
medium with a constant surface heat flux.

There have also been some studies on the natural convection
boundary-layer flows on a vertical plate heated by spatially
varied but time-independent surface fluxes. For example, Dutta
and Seetharamu [26] obtained solutions for steady natural
convection in a saturated porous medium adjacent to a vertical
impermeable wall subjected to a nonuniform heat flux that is
an arbitrary function of the distance along the surface. Kou
and Huang [27] developed similarity solutions for the steady
natural convection boundary-layer flows on a vertical wall
embedded in porous media with prescribed power-law and
exponential heat fluxes that vary with the location on the plate,
and Wright, Ingham, and Pop [28] carried out a similar study

but with a different form of the prescribed power-law heat
flux. Ganesan and Rani [29] studied numerically the unsteady
natural convection boundary-layer flow over a semi-infinite
vertical cylinder subjected to power-law surface heat and mass
fluxes. A numerical study was also conducted by Tashtoush
and Abu-Irshaid [30] for the steady natural convection flow
from a wavy surface subjected to a power-law variable heat
flux and it was found that the wavelength of the local Nusselt
number and surface temperature variation was equal to the
wavy surface but the average Nusselt number was only
half of the wavy surface. Similarly, Shalini and Kumar [31]
undertook a numerical investigation of a power-law variable
heat flux for the steady natural convection flow along a
corrugated vertical wall in porous media. Tsai and Huang
[32] obtained the solutions for heat and mass transfer from
steady natural convection flow along a vertical surface with
variable heat fluxes embedded in a porous medium due
to thermal-diffusion (Soret) and diffusion-thermo (Dufour)
effects. Mustafa, Asghar, and Hossain [33] studied the effects
of steady natural convection flow of a viscoelistic second-grade
fluid along vertical plate with a spatially varied heat flux. Palani
and Kim [34] carried out a numerical study to examine the heat
transfer characteristics of the unsteady natural convection past
a vertical cone subjected to variable surface heat flux under
the combined effects of magnetic field and thermal radiation.

Although important due to the significance in applications,
the studies on the unsteady natural convection boundary layers
on a vertical plate heated by a time-dependent heat flux are
scarce. To our best knowledge, only a few relevant studies
exist in the literature. One study was done by Fohr and Moussa
[35], who carried out an experimental and numerical study on
the heat and mass transfer in a cylindrical grain silo driven by
unsteady natural convection boundary-layer flow when the silo
was submitted to a time-dependent periodical wall heat flux
which represented the periodic and meteorologic influences
of solar radiation, ambient air temperature, and wind. They
identified two distinct flow configurations: During the first
half period, when the heat flux is high, the main part of the
heat and mass transfer takes place in the natural convection
boundary layer at the wall and this layer is fed with fresh air
from the bottom and from the top through a central aspiration;
during the second half period, when the heat flow is low,
the stored heat provides a convective flux of a chimney type.
Another study was carried out by Wang, Zeng, and Wang [36],
who conducted a numerical study on the three-dimensional
unsteady natural convections in an inclined porous cavity with
time-dependent sinusoidal oscillating temperature boundary
conditions and examined the combination effects of inclination
angles and temperature oscillation frequency on the natural
convection characteristics with Ra = 106 and 107. They also
carried out experimental measurements of the transient heat
flux for the natural convection in an inclined enclosure with
time-periodically varying wall temperature [37].

From the literature analysis, it is evident that our current
understanding of the unsteady natural convection boundary
layers on a vertical plate heated by a time-dependent heat flux,
in particular quantifying the flow dynamics and heat transfer
characteristics in terms of the governing parameters such as Ra,
Pr, and the frequency of the time-periodically varying heating
flux on the plate, is lacking. This motivates the current study to
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use scaling analysis to develop scalings for the unsteady natural
convection boundary layer of a homogeneous Newtonian fluid
with Pr > 1 adjacent to a vertical plate evenly heated with a
time-varying sinusoidal heat flux and to carry out a series of
direct numerical simulation (DNS) to validate the developed
scalings.

The remainder of this paper is organized as follows. The
scaling analysis is carried out in Sec. II to develop the scalings
for the flow. These scalings and the governing equations are
made dimensionless in Sec. III and then validated and analyzed
with a series of DNS results in Sec. IV. Finally, conclusions
are made in Sec. V.

II. SCALINGS

Under consideration is the unsteady natural convection
boundary layer of a homogeneous Newtonian fluid with Pr > 1
adjacent to a vertical plate of height H (m) evenly heated with
a time-varying sinusoidal heat flux in the form of

dT

dX
= −�w(t) = −�wmsin(2πf t), (1)

where T (◦C) is temperature, X (m) is the horizontal
coordinate, �w(t) (◦C/m) is the transient temperature gradient
across at the plate at time instant t (s), �wm (◦C/m) is the
maximum temperature gradient across at the plate, and f (Hz)
is the natural frequency of the time-varying flux applied to
the plate. The flow is assumed to be two dimensional and the
fluid is initially at rest. The plate lies at X = 0 with the origin
at Y = 0 [Y (m) is the vertical coordinate], with the plate
boundary conditions

U = V = 0,

dT

dX
= x − �wmsin(2πf t) at x = 0 for Y > 0, t � 0, (2)

where �wm and f are assumed to be constant for a specific
time-varying flux condition.

The governing equations of motion are the Navier-Stokes
equations with the Boussinesq approximation for buoyancy,
which together with the temperature equation can be written
in the following two-dimensional forms:

∂U

∂X
+ ∂V

∂Y
= 0, (3)

∂U

∂t
+ ∂(UU )

∂X
+ ∂(V U )

∂Y
= − 1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+ ∂2U

∂Y 2

)
,

(4)

∂V

∂t
+ ∂(UV )

∂X
+ ∂(V V )

∂Y

= − 1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
+ gβ(T − Ta), (5)

∂T

∂t
+ ∂(UT )

∂X
+ ∂(V T )

∂Y
= κ

(
∂2T

∂X2
+ ∂2T

∂Y 2

)
, (6)

where U (m/s) and V (m/s) are the horizontal (X direction)
and vertical (Y direction) velocity components; P (Pa) is

pressure, g (m/s2) is the acceleration due to gravity; Ta (◦C)
is the initial temperature of the ambient fluid; and β (1/K),
ν (m2/s), and κ (m2/s) are the thermal expansion coefficient,
kinematic viscosity, and thermal diffusivity of the fluid at the
temperature Ta , respectively. Gravity acts in the negative Y

direction.
For the unsteady natural convection boundary-layer flow

considered here, the major governing parameters are the
Rayleigh number Ra and the Prandtl number Pr, defined as

Pr = ν

κ
, Ra = gβ�wH 4

νκ
, (7)

where �w (◦C/m) is the time-averaged temperature gradient
across the plate thickness which is calculated by

�w = 1

ttotal

∫ ttotal

0
�wmsin(2πf t)dt = 2

π
�wm, (8)

in which ttotal (s) is the total heating time of the time-varying
flux applied to the plate. In this paper, it is assumed that
2πf ttotal = π , i.e., f = 0.5/ttotal (hence, only the first half,
heating cycle, is considered, which is in line with the time-
dependent solar radiation model under a clear sky condition,
although the scalings developed here are not limited to the
cases driven by time-dependent solar radiation). Apparently,
Ra defined above is the time-averaged global Rayleigh number
for the unsteady natural convection boundary layer over the
duration of heating under the time-varying flux applied to the
plate, which is calculated in terms of �wm by

Ra =
(

2

π

)
gβ�wmH 4

νκ
. (9)

The vertical boundary layer that develops adjacent to the
plate after the initiation of the flow will experience a start-up
stage dominated by one-dimensional conduction, a transitional
stage involving traveling waves caused by the leading edge
effect and a transition to two-dimensional convection, and
eventually a quasi-steady state [38–40]. This differs slightly
from the cases when the heating conditions are constant,
such as the constant isothermal heating case studied by
Ref. [41] where the boundary layer development mainly
involves two dominant stages, i.e., a start-up stage similar
to the current case and a steady state when the development
becomes independent of time. In the current case, however,
as the heating condition varies continuously with time only
a quasi-steady state can be attained at the later stage of the
development. The division between the start-up stage and
the transitional stage is represented by the transition time
scale ts (s, τs is its dimensionless form), as illustrated in
Fig. 1 where a typical numerically simulated time series of
the thermal boundary-layer thickness ΔT (m, δT = ΔT /H is
its dimensionless form) at height Y = 0.5H for the specific
case Ra = 108, Pr = 7, and fn = 0.1 is shown. ΔT is defined
as the horizontal distance between the plate and the location
where the fluid temperature reaches 0.01(Tw − Ta), where Tw

(◦C) is the plate temperature at height Y . Similar behavior
is also observed for the other parameters of interest to this
work, i.e., the plate temperature, Tw, the maximum vertical
velocity within the boundary layer, Vm (m/s), the inner viscous
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FIG. 1. The three distinct stages in the boundary-layer devel-
opment, seen in the typical numerically simulated time series of the
dimensionless local thermal boundary-layer thickness δT = �T /H at
height Y = 0.5H for the specific case Ra = 108, Pr = 7 and fn = 0.1,
where time τ is made dimensonless by H/V0, fn is the dimensionless
natural frequency of the time-varying flux applied to the plate as
defined by (43), and τs (= ts/(H/V0)) is the dimensionless transition
time scale representing the end of the start-up stage and the beginning
of the transitional stage.

boundary-layer thickness, Δvi (m), and the outer viscous
boundary-layer thickness, Δv (m).

The scaling analysis is carried out by examining in detail
the various balances in the governing equations by following
the same procedures as used by Ref. [41] for the constant
isothermal heating case and employing the same three-region
structure originally proposed by Refs. [41,42], as depicted by
Fig. 1 in Ref. [41], but modified and expanded appropriately
by taking into account of the time-varying nature of the flux
applied to the plate. To minimize the duplication of Ref. [41],
only new and modified or expanded steps and equations of the
scaling analysis will be presented below for the time-varying
flux case studied by this work. The readers are referred to
Ref. [41] for the details that are the same as the current case.

A. Scalings at the start-up stage

At the start-up stage, it is found that the scalings for ΔT ,
Δvi , Δv , and Vm have the same forms as those obtained in
Ref. [41] for the constant isothermal heating case, i.e.,

ΔT ∼ κ
1
2 t

1
2 , (10)

Δvi ∼ 1

1 + Pr−
1
2

ΔT ∼ 1

1 + Pr−
1
2

κ
1
2 t

1
2 , (11)

Δv ∼ Pr
1
2 ΔT ∼ Pr

1
2 κ

1
2 t

1
2 , (12)

Vm ∼ gβ�T

ν

(
1

1 + Pr−
1
2

)2

κt, (13)

although in the case of Ref. [41], the temperature difference
between the heated plate and the ambient fluid, �T (◦C), is

constant, while in the current case, �T changes with time as
follows:

�T = Tw − Ta = �w(t)ΔT = �wmsin(2πf t)ΔT . (14)

The temperature on the plate is then

Tw = �wmsin(2πf t)ΔT + Ta ∼ �wmsin(2πf t)κ
1
2 t

1
2 + Ta,

(15)

which is the scaling for Tw at the start-up stage.
With the time-averaged global Rayleigh number defined for

the current time-varying flux case, as shown by (9), the above
scaling for Vm at the start-up stage, i.e., (13), becomes

Vm ∼
(

π

2

)
κ5/2Ra

H 4

(
1

1 + Pr−
1
2

)2

sin(2πf t)t3/2. (16)

B. Scalings at the transition time scale ts

At the end of the start-up stage, the heat transferred in
through the plate by conduction within the boundary layer
will be approximately balanced by the heat carried away by
the convection of the flow, and the transitional stage starts. At
a height Y , by following a similar scaling analysis as that in
Ref. [41] for the constant isothermal heating case, this balance
leads to the following scaling for the transition time scale
ts , which represents the ending of the start-up stage and the
beginning of the transitional stage for the current case,

ts ∼
(

2

π

)2/5
H 2(Y/H )2/5(1 + Pr−

1
2 )4/5

Ra
2
5 κ[sin(2πf ts)]2/5

. (17)

Correspondingly, the scalings for the maximum velocity,
thermal boundary-layer thickness, inner viscous boundary-
layer thickness, outer viscous boundary-layer thickness, and
plate temperature, all at height Y and at the transition time
scale ts , from (16), (10), (11), (12), and (15), respectively,
become

Vm,s ∼
(π

2

) κ5/2Ra

H 4

sin(2πf ts)

(1 + Pr−1/2)2
t3/2
s

∼
(π

2

)2/5 κRa2/5

H

(
Y

H

)3/5 [sin(2πf ts)]2/5

(1 + Pr−1/2)4/5
, (18)

ΔT,s ∼ κ1/2t1/2
s

∼
(

2

π

)1/5
H

Ra1/5

(1 + Pr−1/2)2/5

[sin(2πf ts)]1/5

(
Y

H

)1/5

, (19)

Δvi,s ∼ 1

1 + Pr−
1
2

ΔT,s

∼
(

2

π

)1/5
H

Ra1/5

1

(1 + Pr−1/2)3/5[sin(2πf ts)]1/5

×
(

Y

H

)1/5

, (20)

Δv,s ∼ Pr
1
2 ΔT,s

∼
(

2

π

)1/5
H

Ra1/5

Pr1/2(1 + Pr−1/2)2/5

[sin(2πf ts)]1/5

(
Y

H

)1/5

, (21)
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Tw,s ∼ �wmsin(2πf ts)ΔT,s + Ta

∼
(

2

π

)1/5
H

Ra1/5

(
Y

H

)1/5

�wm(1 + Pr−1/2)2/5

× [sin(2πf ts)]
4/5 + Ta. (22)

C. Scalings at the quasi-steady stage

The mechanisms governing the behavior of the boundary
layer during the transitional development stage become quite
complicated due to traveling waves caused by the leading
edge effect, and it is speculated that no simple scalings can
be developed for this stage. Subsequent to the passage of the
leading edge waves the boundary layer is at the quasi-steady
stage due to the time-varying nature of the flux. At any time
instant t at the quasi-steady stage, the convection of heat
carried away by the flow again approximately balances the
conduction of heat transferred in through the plate. This is
similar to the steady state of the constant isothermal heating
case and therefore the scaling analysis steps used by Ref. [41]
are also applicable for the current case, although appropriate
modifications and expansions must be made to take into
account of the time-varying nature of the flux, as demonstrated
below.

At the height Y , the following balance, which was obtained
in Ref. [41] from the convection-conduction balance, still holds
in the quasi-steady stage of the current case,

Vm�T

Y
∼ κ

�T

Δ2
T

. (23)

In the vertical momentum equation (5), over �T , buoyancy
balances viscosity. This leads to the following scaling for Vm

in region I,

Vm ∼ gβ�T

ν
Δ2

vi , (24)

while in region II, the balance leads to the following scaling:

Δvi ∼ 1

1 + Pr−
1
2

ΔT . (25)

Both these scalings are the same as those obtained in Ref. [41]
for the constant isothermal heating case.

Using (25) and (14), the scaling (24) becomes

Vm ∼ gβ�w(t)Δ3
T

ν
(1 + Pr−

1
2 )−2. (26)

Combining scalings (23) and (26) gives

κY

Δ2
T

∼ gβ�w(t)Δ3
T

ν
(1 + Pr−

1
2 )−2, (27)

which leads to the following scaling for the thermal boundary-
layer thickness at any time t in the quasi-steady state,

ΔT,qs ∼
[

κνY

gβ�w(t)

]1/5

(1 + Pr−1/2)2/5

∼
(

2

π

)1/5
H

Ra1/5

(1 + Pr−1/2)2/5

[sin(2πf t)]1/5

(
Y

H

)1/5

. (28)

With (28), the scaling (26) becomes

Vm,qs ∼ gβ�w(t)Δ3
T ,qs

ν
(1 + Pr−

1
2 )−2

∼
(π

2

)2/5 κRa2/5

H

(
Y

H

)3/5 [sin(2πf t)]2/5

(1 + Pr−1/2)4/5
, (29)

which is the scaling for the maximum vertical velocity within
the boundary layer at any time in the quasi-steady state.

It is apparent that the scaling for the plate temperature at
height Y at any time in the quasi-steady stage, with (15) and
the scaling (28), becomes

Tw,qs ∼ �wmsin(2πf t)ΔT,qs + Ta

∼
(

2

π

)1/5
H

Ra1/5

(
Y

H

)1/5

�wm(1 + Pr−1/2)2/5

× [sin(2πf t)]4/5 + Ta. (30)

The scaling for the inner viscous boundary-layer thickness
at height Y at any time t in the quasi-steady stage, from (25),
is

Δvi,qs ∼ 1

1 + Pr−
1
2

ΔT,qs

∼
(

2

π

)1/5
H

Ra1/5

1

(1+Pr−1/2)3/5[sin(2πf t)]1/5

×
(

Y

H

)1/5

. (31)

The scaling for the whole viscous boundary-layer thickness
at height Y at any time t in the quasi-steady stage, from (12),
is

Δv,qs ∼ Pr
1
2 ΔT,qs

∼
(

2

π

)1/5
H

Ra1/5

Pr1/2(1 + Pr−1/2)2/5

[sin(2πf t)]1/5

(
Y

H

)1/5

. (32)

It should be noted that, although the scalings (28)–(32) at
the quasi-steady stage are seen to be in the same form as their
respective counterparts at the transition time scale ts , i.e., (19),
(18), (22), (20), and (21), these scalings apply for any time t

in the quasi-steady stage, whereas the scalings (18)–(22) are
only valid at ts .

III. NONDIMENSIONAL FORMULATION

To facilitate the numerical validation of the scalings
obtained above, the dimensionless forms of the governing
equations and the scalings are used. For the natural convection
boundary-layer flows considered here, it is natural to choose
H , the height of the plate, as the characteristic length scale.
From (18), it is also natural to choose V0 = κRa2/5/H (m/s) as
the characteristic velocity scale. Hence, the characteristic time
scale for the flows is apparently (H/V0) and the characteristic
pressure scale is ρV 2

0 , where ρ (kg/m3) is the density of
fluid. It is also apparent that T w = �wH = 2�wmH/π is the
appropriate characteristic temperature difference scale.

With these characteristic scales, the governing equations
(3)–(6) can be written in the following nondimensional

063013-5



WENXIAN LIN AND S. W. ARMFIELD PHYSICAL REVIEW E 88, 063013 (2013)

forms:
∂u

∂x
+ ∂v

∂y
= 0, (33)

∂u

∂τ
+ ∂(uu)

∂x
+ ∂(vu)

∂y
= −∂p

∂x
+ Pr

Ra
2
5

(
∂2u

∂x2
+ ∂2u

∂y2

)
,

(34)

∂v

∂τ
+ ∂(uv)

∂x
+ ∂(vv)

∂y

= −∂p

∂y
+ Pr

Ra
2
5

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ PrRa

1
5 θ, (35)

∂θ

∂τ
+ ∂(uθ )

∂x
+ ∂(vθ )

∂y
= 1

Ra
2
5

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
, (36)

where x, y, u, v, τ , p, and θ are, respectively the dimensionless
forms of X, Y , U , V , t , P , and T , which are made
dimensionless by their respective characteristic scales, i.e.,

x = X

H
, y = Y

H
, u = U

V0
, v = V

V0
, τ = t

(H/V0)
,

p = P

ρV 2
0

, θ = T − Ta

T w

. (37)

The origin of the coordinate system is located at the leading
edge of the heated plate, at x = 0, y = 0.

A. Dimensionless scalings at the start-up stage

The scalings at the start-up stage obtained above, i.e., (10),
(15), (11), (16), and (12), are made dimensionless as follows:

δT = ΔT

H
∼ κ1/2t1/2

H
∼ κ1/2[(H/V0)τ ]1/2

H

∼
(

κ

V0H

)1/2

τ 1/2 ∼ τ 1/2

Ra1/5
, (38)

θw ∼ Tw − Ta

T w

∼ �wmsin(2πf t)ΔT

(2/π )�wmH
∼

(
π

2

)
sin(2πf t)δT

∼
(

π

2

)
sin(2πfnτ )τ 1/2

Ra1/5
, (39)

δvi = Δvi

H
∼ 1

1 + Pr−1/2

κ1/2t1/2

H
∼ 1

1 + Pr−1/2 δT

∼ 1

(1 + Pr−1/2)

τ 1/2

Ra1/5
, (40)

vm = Vm

V0
∼

(
π

2

)
Raκ5/2

H 4

sin(2πf t)

(1 + Pr−1/2)2

t3/2

V0

∼
(

π

2

)
Raκ5/2

H 4

sin(2πf [τH/V0])

(1 + Pr−1/2)2

(τH/V0)3/2

V0

∼
(

π

2

)
Raκ5/2

H 5/2

sin(2πfnτ )

(1 + Pr−1/2)2

τ 3/2

(κ/HRa2/5)5/2

∼
(

π

2

)
sin(2πfnτ )

(1 + Pr−1/2)2
τ 3/2, (41)

δv = Δv

H
∼ ν1/2t1/2

H
∼ Pr1/2δT ∼ Pr1/2τ 1/2

Ra1/5
, (42)

where fn is the dimensionless natural frequency of the time-
varying flux applied to the plate which is defined as

fn = f

V0/H
= 0.5/ttotal

V0/H
= 0.5

τtotal
, (43)

in which τtotal = ttotal/(H/V0) is the dimensionless total
heating time of the time-varying flux applied to the plate.

B. Dimensionless scalings at the dimensionless
transition time scale τs

The scaling for the transition time scale ts , (17), is
nondimensionalized as follows:

τs = ts

(H/V0)
∼

(
2

π

)2/5 (1 + Pr−
1
2 )4/5y2/5

[sin(2πfnτs)]2/5
, (44)

and the scalings (18) to (22) are written in the following
dimensionless forms:

vm,s = Vm,s

V0
∼

(π

2

)2/5 [sin(2πfnτs)]2/5y3/5

(1 + Pr−1/2)4/5
, (45)

δT,s = ΔT

H
∼

(
2

π

)1/5 (1 + Pr−1/2)2/5y1/5

[sin(2πfnτs)]1/5Ra1/5
, (46)

δvi,s = Δvi,s

H
∼

(
2

π

)1/5
y1/5

(1 + Pr−1/2)3/5[sin(2πfnτs)]1/5Ra1/5
,

(47)

δv,s = Δv,s

H
∼

(
2

π

)1/5 Pr1/2(1 + Pr−1/2)2/5y1/5

[sin(2πfnτs)]1/5Ra1/5
, (48)

θw,s = Tw,s − Ta

T w

= Tw,s − Ta

�wH
∼

(π

2

)4/5

× (1 + Pr−1/2)2/5[sin(2πfnτs)]4/5y1/5

Ra1/5
. (49)

C. Dimensionless scalings at the quasi-steady stage

At the quasi-steady stage, the scalings (28)–(32) are made
dimensionless as follows:

δT,qs = ΔT,qs

H
∼

(
2

π

)1/5
y1/5(1 + Pr−1/2)2/5

Ra1/5[sin(2πfnτ )]1/5
, (50)

vm,qs = Vm,qs

V0
∼

(π

2

)2/5 y3/5[sin(2πfnτ )]2/5

(1 + Pr−1/2)4/5
, (51)

θw,qs = Tw,qs − Ta

T w

= Tw,qs − Ta

�wH
∼

(π

2

)4/5

× y1/5(1 + Pr−1/2)2/5[sin(2πfnτ )]4/5

Ra1/5
, (52)
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δvi,qs = Δvi,qs

H
∼

(
2

π

)1/5

× y1/5

Ra1/5(1 + Pr−1/2)3/5[sin(2πfnτ )]1/5
, (53)

δv,qs = Δv,qs

H
∼

(
2

π

)1/5
y1/5Pr1/2(1 + Pr−1/2)2/5

Ra1/5[sin(2πfnτ )]1/5
. (54)

Scalings (38)–(42) clearly show that at the start-up stage,
the boundary-layer development is one-dimensional and inde-
pendent of y due to the dominance of pure conduction. How-
ever, beyond the start-up stage, it becomes two-dimensional
and y dependent as the flow is now dominated by convection,
as demonstrated by the scalings (45)–(48) at the transition time
scale τs and (50)–(54) at the quasi-steady stage.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the scalings obtained above are validated
and analyzed by comparison to a series of DNS results. From
the scalings, it is clear that the major parameters that govern
the behavior of the unsteady natural convection boundary layer
studied in this work are Ra, Pr, and fn. To examine the effects
of these three parameters on the scalings obtained above, 10
DNS runs were performed: Four runs are at varying Ra (Ra =
106, 107, 108, and 109, respectively) with the fixed Pr = 7
and fn = 0.1 for the Ra dependence, 5 runs are at varying
Pr (Pr = 3, 7, 20, 50, and 100, respectively) with the fixed
Ra = 108 and fn = 0.1 for the Pr dependence, and 3 runs are
at varying fn (fn = 0.1, 0.025, and 0.01, respectively) with
the fixed Ra = 108 and Pr = 7 for the fn dependence.

All simulations were conducted in a dimensionless 2 × 2
computational domain with a mesh of 399 × 396 nodes. This
mesh was chosen after a detailed mesh dependence test which
ensures the simulation results obtained with it are mesh inde-
pendent. The same code used in Refs. [2,18,19,40,41,43–46]
was used for these simulations. As the numerical methods,
the construction and dependence test of the computational
meshes, and the benchmarking of the code against the known
theoretical results were well detailed in Refs. [19,40], and [43],
and these will not be repeated here.

In the whole stage of the boundary-layer development, it
was found that no unique and distinct values can be determined
for δv , δv,s , and δv,qs at any height for any DNS runs, due to
the flow in region III (i.e., in the outer viscous boundary layer)
being driven solely by diffusion of momentum as discussed
in Sec. II. Hence, the scalings (42), (48), and (54) cannot
be compared with the DNS results. The remaining scalings
for δT , δT,s , δT,qs, θw, θw,s , θw,qs, δvi , δvi,s , δvi,qs, vm, vm,s ,
vm,qs, and τs , i.e., (38)–(41) at the start-up stage, (44)–(49)
at the dimensionless transition time τs , and (50)–(53) at the
quasi-steady stage, will be validated by the DNS results in the
subsequent sections.

A. Validation of the scalings at the start-up stage

As shown by the above obtained scalings (38)–(41), the
boundary-layer development on the vertical plate at the start-up
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10   , 7, 0.025, 0.7
10  , 7, 0.01, 0.9
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FIG. 2. (Color online) (a) Time series of numerically obtained
δT and (b) δT plotted against τ 1/2/Ra1/5 at the start-up stage for the
10 DNS runs, each at different heights. The orange dash line in (b)
represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The notation in the legend in (a),
e.g., 108, 7, 0.1, 0.5, represents the DNS run of Ra = 108, Pr = 7,
and fn = 0.1 at the height of y = 0.5.

stage is one dimensional and y independent. This behavior is
clearly confirmed by the DNS results, as described below.

The scaling (38) shows that at the start-up stage the
dimensionless thermal boundary-layer thickness, δT , grows
as δT ∼ τ 1/2/Ra1/5 and demonstrates no dependence on Pr, y,
and fn. This is confirmed by the numerical results, as shown in
Fig. 2, where the time series of δT at the start-up stage and δT

plotted against τ 1/2/Ra1/5 are presented for the 10 DNS runs,
each at a different height. From Fig. 2(a), it is very evident that
the development of δT at the start-up stage is independent of
Pr, fn, and y, which supports the scaling (38), as all seven time
series at Ra = 108 with different Pr, fn, and y are essentially
the same before they approach their respective ends of the
start-up stages. The remaining three time series at different Ra
clearly show that the development of δT at the start-up stage
is Ra dependent, which is apparently in agreement with the
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FIG. 3. (Color online) (a) Time series of numerically obtained θw

and (b) θw plotted against (π/2)sin(2πfnτ )τ 1/2/Ra1/5 at the start-up
stage for the 10 DNS runs, each at different heights. The orange
dash line in (b) represents the linear correlation obtained by a linear
curve-fitting based on the scaled data presented. The legend and its
notations are the same as those in Fig. 2.

scaling (38). The results presented in Fig. 2(b) further show
that the relation δT ∼ τ 1/2/Ra1/5 collapses all 10 time series
at the start-up stage onto a single straight line represented by

δT = 2.676τ 1/2/Ra1/5, (55)

which clearly confirms the scaling (38).
At the start-up stage, the dimensionless wall tem-

perature, θw, is expected to grow following θw ∼
(π/2)sin(2πfnτ )τ 1/2/Ra1/5, as predicted by the scaling (39),
and has no dependence on Pr and y. The DNS results
validate this scaling, as demonstrated in Fig. 3, where the
time series of θw at the start-up stage and θw plotted against
(π/2)sin(2πfnτ )τ 1/2/Ra1/5 are presented for the 10 DNS runs,
each at a different height. Figure 3(a) clearly shows that the
development of θw at the start-up stage is independent of
Pr and y, as all five time series at Ra = 108 and fn = 0.1
with different Pr and y are basically the same before they

appraoch their respective τs . The four time series at different
Ra and the three time series at different fn demonstrate
that the development of θw at the start-up stage is Ra and
fn dependent. These observations are in agreement with the
scaling (39). This scaling is more evidently validated by the
results presented in Fig. 3(b), which show that the relation
θw ∼ (π/2)sin(2πfnτ )τ 1/2/Ra1/5 collapses all 10 time series
at the start-up stage onto the same straight line represented by

θw = 0.767(π/2)sin(2πfnτ )τ 1/2/Ra1/5, (56)

confirming that the scaling (39) is the correct scaling for θw at
the start-up stage.

From the scaling (40), it is seen that at the start-up stage
the dimensionless inner viscous boundary-layer thickness, δvi ,
grows like δvi ∼ τ 1/2/(1 + Pr−1/2)/Ra1/5 and does not depend
on fn or y. The raw data presented in Fig. 4(a), where the time
series of δvi at the start-up stage are presented for the 10 DNS
runs, each at a different height, show that the development of
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FIG. 4. (Color online) (a) Time series of numerically obtained
δvi and (b) δvi plotted against τ 1/2/(1 + Pr−1/2)/Ra1/5 at the start-up
stage for the 10 DNS runs, each at different heights. The orange
dash line in (b) represents the linear correlation obtained by a linear
curve-fitting based on the scaled data presented. The legend and its
notations are the same as those in Fig. 2.
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δvi at the start-up stage is indeed independent of fn and y, as all
three time series at Ra = 108 and Pr = 7 with different fn and
y are in fact the same before their respective start-up stages
come to the end. The remaining time series at different Ra and
Pr clearly show that the development of δvi at the start-up stage
is Ra and Pr dependent, which is again in agreement with the
scaling (40). Figure 4(b), which plots the time series of δvi

at the start-up stage against τ 1/2/Ra1/5/(1 + Pr−1/2) for the
10 DNS runs, each at a different height, shows that the relation
δvi ∼ τ 1/2/Ra1/5/(1 + Pr−1/2) collapses all time series, except
those with Pr > 7, onto the same straight line represented by

δvi = 1.251τ 1/2/(1 + Pr−1/2)/Ra1/5, (57)

which confirms the dependence of the scaling (40) on Ra
and fn and its independence of y. The noticeable deviations
of the three time series with Pr larger than 7, although each
of which is a straight line after scaling which confirms the
τ 1/2 dependence for each Pr value, indicate that in addition
to the Pr dependence predicted by the scaling (40), i.e., δvi ∼
(1 + Pr−1/2), δvi must have a further, although relatively weak,
dependence on Pr that the current scaling analysis, obtained
using the simple three-region structure for the unsteady natural
convection boundary layer adjacent to the vertical plate for
Pr > 1 fluids, is unable to predict. A similar behavior was also
observed for δvi for the case of the unsteady natural convection
boundary layer adjacent to the vertical plate with constant
isothermal heating, as discussed by Lin and Armfield [2]. As
argued by Carey and Mollendorf [10] for the uniform heat
flux case, large disagreement with the experimental results
at very high Pr can be attributed to the non-boundary-layer
nature of the velocity field. Hence, it is reasonable to speculate
that the deviations observed above for δvi are caused by some
approximations made in the scaling analysis in Sec. II. In
particular, the approximations (∂V/∂X)ΔT ∼ Vm/(Δv − Δvi)
and

∫ ΔT

Δvi
�T dx ∼ �T (ΔT − Δvi) used in (10) of Ref. [41]

are believed to be the major causes for the deviations from the
scalings for �vi and Vm (as shown below). However, a further
study will be needed to find better approximations, which is
beyond the scope of the current investigation.

The dimensionless maximum vertical velocity within the
viscous boundary layer, vm, at the start-up stage, is expected to
grow like vm ∼ (π/2)sin(2πfnτ )τ 3/2(1 + Pr−1/2)2, as shown
by the scaling (41), and is expected to be independent of Ra and
y. The DNS results also validate this scaling, as demonstrated
in Fig. 5, where the time series of vm at the start-up stage
and vm plotted against (π/2)sin(2πfnτ )τ 3/2/(1 + Pr−1/2)2 are
presented for the 10 DNS runs, each at a different height.
From Fig. 5(a), it is seen that the development of vm at the
start-up stage is clearly independent of Ra and y, as all four
time series at Pr = 7 and fn = 0.1 with different Ra and y

fall onto the same curve before they attain the ends of their
respective start-up stages. The distinctively different curves
of the remaining time series with different Pr and fn clearly
confirm that the development of vm at the start-up stage is
Pr and fn dependent. Figure 5(b) shows that the relation
vm ∼ (π/2)sin(2πfnτ )τ 3/2/(1 + Pr−1/2)2 collapses all time
series, except the two time series with smaller fn values (i.e.,
fn = 0.025 and fn = 0.01), roughly onto a single straight line
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FIG. 5. (Color online) (a) Time series of numerically obtained vm

and (b) vm plotted against (π/2)sin(2πfnτ )τ 3/2/(1 + Pr−1/2)2 at the
start-up stage for the 10 DNS runs, each at different heights. The
orange dash line in (b) represents the linear correlation obtained by
a linear curve-fitting based on the scaled data presented. The legend
and its notations are the same as those in Fig. 2.

represented by

vm = 0.261(π/2)sin(2πfnτ )τ 3/2(1 + Pr−1/2)2, (58)

confirming the dependence of the scaling (41) on Pr and its
independence of Ra and y. The two time series with fn =
0.025 and 0.01 also scale to straight lines, confirming the time
dependence for each fn value. The deviations of the scaled
results at these fn indicate that in addition to the predicted
vm ∼ sin(2πfnτ )τ 3/2 relation, vm must have a further, weak,
dependence on fn, not captured by the current analysis, similar
to δvi as discussed above.

B. Validation of the scalings at the transition time scale τs

At the transition time scale τs , the scalings (45)–(49) show
that the boundary layer becomes two dimensional and y

dependent as the flow is dominated by convection, as stated
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FIG. 6. Numerically obtained τs,T plotted against (2/π )2/5(1 +
Pr−1/2)4/5y2/5/[sin(2πfnτs,T )]2/5 for the 10 DNS runs. The solid line
represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The notation in the legend, e.g.,
108, 7, 0.1, represents the DNS run of Ra = 108, Pr = 7, and fn = 0.1.

in Sec. III C. These scalings are also confirmed by the DNS
results, as detailed below.

Although the DNS results demonstrate that the start-up
stages terminate at different time instants for δT , θw, δvi ,
and vm (i.e., the transition time τs has different valus for
these parameters); nevertheless, all these parameters should
have, from the scaling perspective, the same time scale τs to
quantify this critical, termination time instant of the start-up
stage. Hence, for convenience and simplicity the time scale
representing the termination instant of the start-up stage for
δT , i.e., τs,T , which is also the transition time scale for δT , is
selected as the time scale to quantify the termination time of
the start-up stage for all these parameters, δT , θw, δvi , and vm.

The scaling for τs,T is (44), which states that τs ∼
(2/π )2/5(1 + Pr−

1
2 )4/5y2/5/[sin(2πfnτs)]2/5, indicating that τs

depends on Pr, fn, and y but is independent of Ra. This
is validated by the DNS results as shown in Fig. 6 where
the numerically obtained τs,T is plotted against (2/π )2/5(1 +
Pr−1/2)4/5y2/5/[sin(2πfnτs,T )]2/5 for the 10 DNS runs. For
each run, the τs,T data at four different heights (i.e., at y = 0.3,
0.5, 0.7, and 0.9, respectively) are included in the figure. It is
observed that the scaled data roughly fall onto a straight line
represented by

τs,T = −0.282 + 2.598

(
2

π

)2/5 (1 + Pr−
1
2 )4/5y2/5

[sin(2πfnτs)]2/5
, (59)

which was obtained by a linear curve fitting. The regression
coefficient of this best-fit line is 0.9907, indicating that it is
a reasonably good correlation and, hence, the scaling (44)
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FIG. 7. Numerically obtained δT,s plotted against (2/π )1/5(1 +
Pr−1/2)2/5y1/5/Ra1/5/[sin(2πfnτs,T )]1/5 for the 10 DNS runs. The
solid line represents the linear correlation obtained by a linear
curve-fitting based on the scaled data presented. The legend and its
notations are the same as those in Fig. 6.

for τs,T at the transition time scale is confirmed by the DNS
results. It was also found that close to the leading-edge of the
plate (i.e., close to y = 0) noticeable deviations of the DNS
results from the prediction by the scaling are observed due to
the fact that in this region the boundary-layer assumption (i.e.,
δT � y, δvi � y, and δv � y) is not sufficiently satisfied. The
deviation observed for the higher-Pr results indicates a further
Pr dependency not fully captured by the scaling, as discussed
above.

At the transition time scale τs,T , the scaling for the dimen-
sionless thermal boundary-layer thickness, δT,s , is (46), which
shows that δT,s depends on all three governing parameters
Ra, Pr, and fn, as well as being y dependent. This scaling is
well validated by the DNS results, as shown in Fig. 7 where
the numerically obtained δT,s is plotted against (2/π )1/5(1 +
Pr−1/2)2/5y1/5/Ra1/5/[sin(2πfnτs,T )]1/5 for all 10 runs, with
each run containing four sets of data at the heights y = 0.3,
0.5, 0.7, and 0.9. The figure demonstrates that the scaled data
fall very well onto the same straight line quantified by the
following best-fit line,

δT,s = 3.906

(
2

π

)1/5 (1 + Pr−1/2)2/5y1/5

[sin(2πfnτs)]1/5Ra1/5
, (60)

with a regression coefficient of 0.9992, indicating that the DNS
results are in excellent agreement with the scaling (46). The
δT,s ∼ Ra1/5 obtained above is apparently in agreement with
the theoretical prediction of Ref. [13], although this theoretical
prediction was obtained for the case with constant prescribed
fluxes of heat or mass at the vertical walls.
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FIG. 8. Numerically obtained δvi,s plotted against (2/π )1/5y1/5/

Ra1/5/(1 + Pr−1/2)3/5/[sin(2πfnτs,T )]1/5 for the 10 DNS runs. The
solid line represents the linear correlation obtained by a linear curve-
fitting based on the scaled data presented. The legend and its notations
are the same as those in Fig. 6.

Similarly, (47), which is the scaling for the dimensionless
inner viscous boundary-layer thickness at transition time scale,
δvi,s , demonstrates that δvi,s also depends on Ra, Pr, fn, and
y. This is again validated by the DNS results, as shown in
Fig. 8, in which the numerically obtained δvi,s is plotted against
(2/π )1/5y1/5/Ra1/5/(1 + Pr−1/2)3/5/[sin(2πfnτs,T )]1/5 for all
10 runs. The figure demonstrates that all data, except the data
for the case of Ra = 108, Pr = 100, and fn = 0.1, fall well
onto the same straight line quantified by

δvi,s = 0.002 + 1.775

(
2

π

)1/5

× y1/5

(1 + Pr−1/2)3/5[sin(2πfnτs)]1/5Ra1/5
, (61)

which was obtained by a linear curve-fitting. The regression
coefficient of this best-fit line is 0.9899, indicating the DNS
results are also in good agreement with the scaling (47). The
noticeable deviations produced by the Pr = 100 case is due
to the same reason as discussed above for the scaling for
δvi at the start-up stage, i.e., the scaling must have a further,
although weak, dependence on Pr, in addition to that predicted
by the scaling (47), which the current scaling analysis using
the simple three-region structure is unable to predict.

The scaling for the dimensionless maximum verti-
cal velocity within the boundary layer at the transi-
tion time scale, vm,s , is (45), which shows that vm,s ∼
(π/2)2/5[sin(2πfnτs)]2/5y3/5/(1 + Pr−1/2)4/5, indicating that
vm,s depends on Pr, fn, and y but not on Ra. This scaling
is also confirmed by the DNS results as demonstrated in
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FIG. 9. Numerically obtained vm,s plotted against (π/2)2/5

[sin(2πfnτs,T )]2/5y3/5/(1 + Pr−1/2)4/5 for eight DNS runs (No unique
and distinct values for vm,s can be identified for the DNS runs with
Pr = 50 and Pr = 100). The solid line represents the linear correlation
obtained by a linear curve-fitting based on the scaled data presented.
The notations in the legend are the same as those in Fig. 6.

Fig. 9, where the numerically obtained vm,s is plotted against
(π/2)2/5[sin(2πfnτs)]2/5y3/5/(1 + Pr−1/2)4/5 for eight DNS
runs, with each run including data at several heights. The
figure does not contain the data for the high-Pr runs (i.e.,
Pr = 50 and Pr = 100 runs) as no unique and distinct values
can be identified from the DNS results for vm,s at any height
for these two cases. It is observed that all data presented in
Fig. 9 fall reasonably well onto a straight line represented by

vm,s = 0.032 + 1.053
(π

2

)2/5 [sin(2πfnτs)]2/5y3/5

(1 + Pr−1/2)4/5
, (62)

which was obtained by a linear curve fitting. The regression
coefficient of this best-fit line is 0.9971, confirming that it
is a reasonably good correlation and, hence, the scaling (45)
for vm,s at the transition time scale is confirmed by the DNS
results.

At the transition time scale, similarly to δv and δv,s , no
unique and distinct values can be determined for θw,s at any
height for any DNS runs, and, hence, the scaling (49) cannot
be validated directly by the DNS results. However, scaled
horizontal temperature profiles, presented in Sec. IV D, will
provide validation for this scaling.

C. Validation of the scalings at the quasi-steady stage

The scalings at the quasi-steady stage, i.e., (50)–(53), are
also found generally to be in good agreement with the DNS
results.
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FIG. 10. Numerically obtained δT,qs plotted against (2/π )1/5(1 +
Pr−1/2)2/5y1/5/Ra1/5/[sin(2πfnτ )]1/5 for the 10 DNS runs. The solid
line represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The notation in the legend, e.g.,
108, 7, 0.1, 0.5, 4.0 represents the DNS run of Ra = 108, Pr = 7, and
fn = 0.1 at the height of y = 0.5 and at the time instant τ = 4.0.
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FIG. 11. Numerically obtained δvi,qs plotted against (2/π )1/5y1/5/

Ra1/5/(1 + Pr−1/2)3/5/[sin(2πfnτ )]1/5 for the 10 DNS runs. The solid
line represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The legend and its notations are
the same as those in Fig. 10.

The scaling for the dimensionless thermal boundary-layer
thickness at the quasi-steady stage, δT,qs, is (50), which shows
that δT,qs depends not only on all three governing parameters
Ra, Pr, and fn but is also y dependent. Figure 10 presents
the numerically obtained δT,qs plotted against (2/π )1/5(1 +
Pr−1/2)2/5y1/5/Ra1/5/[sin(2πfnτ )]1/5 for all 10 runs, with each
run at one of three heights of y = 0.5, 0.7, and 0.9 and at a
range of τ , all in the predicted quasi-steady stage. It is seen that
the scaling (50) collapses all data well onto the same straight
line quantified by

δT,qs = −0.0027 + 2.9879

(
2

π

)1/5 (1 + Pr−1/2)2/5y1/5

[sin(2πfnτ )]1/5Ra1/5
,

(63)

which was obtained by a linear curve fitting, with a regression
coefficient of 0.9974.

Similarly, (53), which is the scaling for the dimensionless
inner viscous boundary layer-thickness at the quasi-steady
stage, δvi,qs, shows that δvi,qs also depends on Ra, Pr, fn,
and y, which is again validated by the DNS results, as
demonstrated in Fig. 11. This figure presents the numeri-
cally obtained δvi,qs plotted against (2/π )1/5y1/5/Ra1/5/(1 +
Pr−1/2)3/5/[sin(2πfnτ )]1/5 for the same 10 cases as those for
Fig. 10. It is shown that the scaling (53) collapes all data well
onto the same straight line quantified by

δvi,qs = 0.0011 + 1.6402

(
2

π

)1/5

× y1/5

(1 + Pr−1/2)3/5[sin(2πfnτ )]1/5Ra1/5
, (64)
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FIG. 12. Numerically obtained vm,qs plotted against (π/2)2/5

[sin(2πfnτ )]2/5y3/5/(1 + Pr−1/2)4/5 for the 10 DNS runs. The solid
line represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The legend and its notations are
the same as those in Fig. 10.
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which was obtained by a linear curve fitting. The regression
coefficient of this best-fit line is 0.9929, also confirming that
the scaling (53) is in good agreement with the DNS results.

The scaling for the dimensionless maximum verti-
cal velocity within the boundary layer at the quasi-
steady stage, vm,qs, is (51), which shows that vm,qs ∼
(π/2)2/5[sin(2πfnτ )]2/5y3/5/(1 + Pr−1/2)4/5, indicating that
vm,qs depends on Pr, fn, and y, but not on Ra, similar to the
scaling (45) for vm,s , which is the dimensionless maximum
vertical velocity within the boundary layer at the transition
time scale. The numerical verification of this scaling is
demonstrated in Fig. 12, where the numerically obtained vm,qs

is plotted against (π/2)2/5[sin(2πfnτ )]2/5y3/5/(1 + Pr−1/2)4/5

for the same 10 cases as those for Fig. 10 and Fig. 11. It is
seen that all data presented in Fig. 12 fall reasonably well onto
a straight line represented by

vm,qs = 0.1136 + 1.0393

(
π

2

)2/5 [sin(2πfnτ )]2/5y3/5

(1 + Pr−1/2)4/5
,

(65)

with the regression coefficient of 0.9492. It is observed that
the DNS results at higher Pr (Pr = 50 and 100) and fn =
0.025 and 0.01 have noticeable deviations from the correlation
represented by (65), due to the same reason as discussed in the
above section.

The scaling for the dimensionless plate temperature at the
quasi-steady stage, θw,qs, is (52), which shows that θw,qs ∼
(π/2)4/5y1/5(1 + Pr−1/2)2/5[sin(2πfnτ )]4/5/Ra1/5, indicating
that θw,qs depends on Pr, fn, y, and Ra. This scaling is
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FIG. 13. Numerically obtained θw,qs plotted against (π/2)4/5(1 +
Pr−1/2)2/5y1/5[sin(2πfnτ )]4/5/Ra1/5 for the 10 DNS runs. The solid
line represents the linear correlation obtained by a linear curve-fitting
based on the scaled data presented. The legend and its notations are
the same as those in Fig. 10.

also found to be verified by the numerical results, as shown
in Fig. 13, where the numerically obtained θw,qs is plotted
against (π/2)4/5y1/5(1 + Pr−1/2)2/5[sin(2πfnτ )]4/5/Ra1/5 for
the same 10 cases as those for Figs. 10–12. It is seen that all
data presented in Fig. 13 fall reasonably well onto a straight
line represented by

θw,qs = 0.0034 + 1.6842

(
π

2

)4/5

× y1/5(1 + Pr−1/2)2/5[sin(2πf t)]4/5

Ra1/5
, (66)

with the regression coefficient of 0.9906. It is observed that the
DNS results at fn = 0.025 and 0.01 have noticeable deviations
from the correlation represented by (66).
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FIG. 14. (Color online) Numerically obtained horizontal temper-
ature profiles at different heights for the 10 DNS runs at the start-up
stage: (a) raw data and (b) scaled data, where θ is scaled by the scaling
(39) and x is scaled by the scaling (38), which are the scalings for θw

and δT at the start-up stage, respectively. The notation in the legend
in (a), e.g., 108, 7, 0.1, 0.5, 0.5 represents the DNS run of Ra = 108,
Pr = 7, and fn = 0.1 at the height of y = 0.5 and at the time instant
τ = 0.5.
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D. Scaled horizontal temperature and vertical velocity profiles

The scalings (39) and (38) for θw and δT at the start-up
stage can also be validated in terms of the scaled horizontal
temperature profiles, as demonstrated in Fig. 14, where the raw
data of the horizontal temperature profiles at different heights
for the 10 DNS runs at the start-up stage, and their scaled
forms, are presented. In Fig. 14(b), θ is scaled by the scaling
(39) and x is scaled by the scaling (38). From this figure,
it is very evident that these two scalings collapse all scaled
horizontal temperature profiles at the start-up stage onto the
same curve.

Similar validations can also be made in terms of the scaled
horizontal temperature profiles for the scalings for θw,s and
δT,s at the transition time scale τs . As shown in Fig. 15, where
the raw data of the horizontal temperature profiles at different
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FIG. 15. (Color online) Numerically obtained horizontal temper-
ature profiles at different heights for the 10 DNS runs at the transition
time scales: (a) raw data and (b) scaled data, where θ is scaled by the
scaling (49) and x is scaled by the scaling (46), which are the scalings
for θw and δT at the transition time scales, respectively. The notation
in the legend in (a), e.g., 108, 7, 0.1, 0.5, 2.0 represents the DNS run
of Ra = 108, Pr = 7, and fn = 0.1 at the height of y = 0.5 and at the
time instant τ = 2.0.
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FIG. 16. (Color online) Numerically obtained horizontal temper-
ature profiles at different heights for the 10 DNS runs at the
quasi-steady stage: (a) raw data and (b) scaled data, where θ is scaled
by the scaling (52) and x is scaled by the scaling (50), which are
the scalings for θw and δT at the quasi-steady stage, respectively. The
notation in the legend in (a), e.g., 108, 7, 0.1, 0.5, 4.0 represents the
DNS run of Ra = 108, Pr = 7, and fn = 0.1 at the height of y = 0.5
and at the time instant τ = 4.0.

heights for the 10 DNS runs at the transition time scale τs and
their scaled forms are presented, the two scalings (49) and (46)
bring all scaled horizontal temperature profiles almost into the
same curve.

Figure 16 presents the raw data of the horizontal
temperature profiles at different heights for the 10 DNS runs at
the quasi-steady stage and their scaled forms. In Fig. 16(b), the
temperature θ and x are scaled by (π/2)4/5y1/5(1 + Pr−1/2)2/5

[sin(2πfnτ )]4/5/Ra1/5 and (2/π )1/5(1 + Pr−1/2)2/5y1/5/

Ra1/5/[sin(2πfnτ )]1/5, respectively, the scalings for θw,qs and
δT,qs at the quasi-steady stage, i.e., (52) and (50). It is apparent
that the scaling (50) is in very good agreement with the
numerical results as it brings all scaled temperature profiles
together in the outer thermal boundary-layer region. Although
the scaling (52) is found to be in a reasonable agreement
with the numerical results, it does produce quite noticeable
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FIG. 17. (Color online) Numerically obtained horizontal profiles
of vertical velocity at different heights for the 10 DNS runs at the
start-up stage: (a) raw data and (b) scaled data, where v is scaled by
the scaling (41) and x is scaled by the scaling (40), which are the
scalings for vm and δvi at the start-up stage, respectively. The notation
in the legend in (a), e.g., 108, 7, 0.1, 0.5, 0.5 represents the DNS run
of Ra = 108, Pr = 7, and fn = 0.1 at the height of y = 0.5 and at the
time instant τ = 0.5.

deviations for higher-Pr cases (Pr = 50 and 100) and smaller
fn cases (fn = 0.025 and 0.01), in the region close to the
plate. The deviations for the higher-Pr cases are most likely
due to the nonboundary nature of the flow, as discussed
above.

Likewise, the scalings for vm and δvi at the start-up stage,
at the transition time scale τs , and at the quasi-steady stage,
i.e., (41), (40), (45), (47), (51), and (53), can also be validated
by the scaled horizontal profiles of vertical velocity within the
inner viscous boundary layer (i.e., within region I), as shown in
Fig. 17 for the start-up stage, in Fig. 18 for the transition time
scale τs , and in Fig. 19 for the quasi-steady stage. In Fig. 17,
where the raw data of the numerically obtained horizontal
profiles of vertical velocity at different heights for the 10 DNS
runs at different time instants at the start-up stage and their
scaled forms are presented, it is found that the scalings (41)
and (40), for vm and δvi at the start-up stage, respectively,
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FIG. 18. (Color online) Numerically obtained horizontal profiles
of vertical velocity at different heights for the 10 DNS runs at the
transition time scales: (a) raw data and (b) scaled data, where v is
scaled by the scaling (45) and x is scaled by the scaling (47), which
are the scalings for vm and δvi at the transition time scales,
respectively. The notation in the legend in (a), e.g., 108, 7, 0.1, 0.5,
1.0 represents the DNS run of Ra = 108, Pr = 7, and fn = 0.1 at the
height of y = 0.5 and at the time instant τ = 1.0.

collapse all scaled profiles onto the same curve within the
inner viscous boundary layer (region I), which confirms these
scalings. Similarly, in Fig. 18, where the raw data of the
numerically obtained horizontal profiles of vertical velocity
at different heights for the 10 DNS runs at their respective
transition time scales τs and their scaled forms are presented,
it is found that the scalings (45) and (47), for vm and δvi ,
also collapse all scaled profiles onto the same curve within the
inner viscous boundary layer (region I), which again confirms
that these two scalings are correct. In Fig. 19, where the raw
data of the numerically obtained horizontal profiles of vertical
velocity at different heights for the 10 DNS runs at different
time instants in the quasi-steady stage, and their scaled forms,
are presented, it is found that the scalings (51) and (53), for vm

and δvi at the quasi-steady stage, respectively, also collapse all
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FIG. 19. (Color online) Numerically obtained horizontal profiles
of vertical velocity at different heights for the 10 DNS runs at the
quasi-steady stage: (a) raw data and (b) scaled data, where v is scaled
by the scaling (51) and x is scaled by the scaling (53), which are the
scalings for vm and δvi at the quasi-steady stage, respectively.
The notation in the legend in (a), e.g., 108, 7, 0.1, 0.5, 4.0 represents
the DNS run of Ra = 108, Pr = 7, and fn = 0.1 at the height of
y = 0.5 and at the time instant τ = 4.0.

scaled profiles onto the same curve within the inner viscous
boundary layer (region I), which again confirms that these two
scalings are the correct. All these three figures show that the

scalings have quite noticeable deviations when Pr is higher
than 7, due to the same limitations experienced by the current
scaling analysis using the simple three-region structure as
discussed above, and when fn is reduced, which again requires
a further investigation into the possible additional dependence
on fn.

V. CONCLUSIONS

In this paper, it was found that the transient and quasi-steady
flow behavior of the unsteady natural convection boundary
layer of a homogeneous Newtonian fluid with Pr > 1 adjacent
to a vertical plate evenly heated with a time-varying sinusoidal
heat flux is controlled by the Rayleigh number Ra, the
Prandtl number Pr, and the dimensionless natural frequency
fn of the sinusoidal heat flux and is well represented by
parameters such as the thermal boundary-layer thickness, the
plate temperature, the viscous boundary-layer thickness, and
the maximum vertical velocity within the boundary layer.
Scalings were developed using a simple three-region structure
proposed by Refs. [41,42] for the flow and were compared with
a series of direct numerical simulation, which clearly shows
that these scalings in general predict the flow behavior very
well, no matter at the start-up stage, the transition time scale
which represents the end of the start-up stage and the beginning
of the transitional stage of the boundary-layer development, or
the quasi-steady stage. However, noticeable deviations were
observed for high-Pr fluids which indicates that a further,
although weak, Pr dependence is present and is speculated
to be caused by the non-boundary-layer nature of the velocity
field for high-Pr fluids. Some scalings at the transition time
scale and at the quasi-steady stage also show additional fn

dependence for small fn. Better and more accurate scaling
approximations should be investigated to predict such a further
Pr dependence in high-Pr fluids and any possible further fn

dependence for the flow; however, this is beyond the scope of
the current study.
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