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ABSTRACT 

Determination of stress distribution, giving due consideration to arching mechanism within 

minefill stopes, is of great importance because of its influence on the ground stability, ore 

recovery and cost effectiveness. Most previous studies on stress determination and arching 

effects have been applied to vertical stopes, whereas research is lacking on inclined stopes. The 

objective of this study is to investigate the effect of inclination on arching action on stress 

distributions, with particular interest on the stress distribution at the base and on the side walls 

of the stope. Three separate modeling techniques are carried out to achieve the goal of the 

study, which are numerical, analytical and experimental methods.   

The studies develop analytical solutions from Marston‟s theory for inclined stopes with parallel 

and non-parallel walls, incorporating arching effects within the backfill, and propose a new 

analytical method developed from Pascal‟s triangle and binomial series for vertical stress 

determination in vertical and inclined minefill stope. Good agreement is seen between the two 

analytical methods for vertical and inclined stopes. The results show that with the same 

overburden pressure z and base width B, the stress magnitude experienced by fill material can 

vary significantly with wall inclination. It is shown that lateral earth pressure coefficient, K and 

interfacial friction angle,  has significant influence on vertical stress profile. K and  should 

be taken as either K = K0 and  = 2/3  or K = Ka and  =   to better describe the state of stress 

within the minefills in underground stopes.   

A laboratory model is designed to simulate mine backfilling in an inclined stope and determine 

the average vertical stress at any depth within the fill. Stope inclination, wall roughness, 

relative density and aspect ratio are varied independently to study their influence on the stress 

distribution and arching effects. The highest vertical stress is observed at inclination about 80

 

to the horizontal and shear stress experienced by the footwall increases with increasing stope 

inclination and wall roughness. The average interfacial friction angle can be used in analytical 

expression to predict the vertical stress within a stope with dissimilar wall characteristics.  

The study undertaken has also developed approximate solutions for the stress distribution 

within inclined stopes based on FLAC simulation. Three separate models are conducted in the 

simulation. They are laboratory model stope, a prototype minefill stope, and laboratory stope 

incorporated into rock mass to simulate minefill environments. There is good agreement 

among the analytical, numerical and the laboratory model results. Lateral earth pressure 

coefficient, K is better described by Ka for inclined minefill stopes.  
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Chapter 1 Introduction 

1.1 General 

Mining is a multibillion dollar industry in Australia, Brazil, Canada, Chile, China, South 

Africa and the United States of America (Rankine et al. 2007). While open cut mining 

methods are used for recovering minerals from shallow ore bodies, underground mining is 

the only way to recover minerals from large depths. In the process of underground mining, 

ore is removed from deep rectangular underground voids in the form of right prisms, known 

as stopes. Ore is removed through horizontal access tunnel located at various levels. Once 

the minerals are extracted, the crushed waste rocks, in the form of tailings, are returned to 

the ground to backfill these voids. Backfilling of the stopes improves the regional stability 

within the mine, so that ore can be removed from the adjacent stopes. It is also an effective 

means of tailing disposal.  

The voids that are created and need to be backfilled can be seen as approximately vertical or 

inclined rectangular prisms, with the base dimensions in the order of 30-70 m, and heights 

as much as 200 m. To ensure safety within the access tunnels and other regions of the mines, 

appropriate barricades are used to block the horizontal access drives while filling the empty 

stopes with minefills (Rankine et al. 2006). The barricade is designed to resist the horizontal 

stress exerted on it by the backfill and allow the drainage of the free water from the fill. The 

failure of barricade may result in fatalities and damage to equipment and machineries. Due 

to the failure of barricades, accidents take place in the mining environment worldwide every 

year (Christopher et al. 2007). Therefore, it is necessary to understand the stress 

developments in the stope, particularly within the access drives. 

Before understanding the loadings on the barricades for their safe and economical design, it 

is necessary to understand the stress developments within the mine stopes adequately. It has 

been established that a substantial stress reduction takes place due to arching, and it is 

therefore necessary to determine the vertical stresses within the minefills more realistically 

with due consideration to arching.  

1.2 Arching within minefills 

Arching is a universal phenomenon observed in granular materials including soil masses. It 

involves a stress redistribution process in which differential straining mobilizes shear 
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strength and transfers part of the pressure of yielding mass to relatively stable neighboring 

zones. Arching has been observed in many geotechnical applications as well as storage of 

bulk solids through experimental studies, mathematical analyses, and in-situ measurements, 

which include:  

 Earth pressure on retaining structures (Dalvi and Pise 2008; Goel and Patra 

2008; Handy 1985; Harrop-williams 1989; Ono and Yamada 1993; Paik and 

Salgado 2003; Take and Valsangkar 2001); 

 Pressure from the soil mass lying over buried structures or conduits  (Handy 

1985; Marston 1930; Marston and Anderson 1913; Spangler and Handy 1982; 

Terzaghi 1943) 

 Pressure acting on piles or piled embankments (Bosscher and Gray 1985; Sabiti 

et al. 2007; Shelke and Patra 2008); 

 Earth pressure on underground openings or tunnels (Ladanyi and Hoyaux 1969; 

Ono and Yamada 1993; Potts and Zdravkovic 2008; Terzaghi 1943); 

 Stress distribution within mine backfilling (Aubertin et al. 2003; Caceres 

Doerner 2005; DeSouza and Dirige 2002; Knutsson 1981; Li and Aubertin 

2008, 2009; Li et al. 2005, 2007; Pirapakaran and Sivakugan 2006, 2007a, 

2007b); and 

 Stress distribution in a storage vessel of bulk solids such as grain, cement and 

coals (Barrette and Sayed 2007; Drescher 1991; Janssen 1895; Walters 1973). 

A comprehensive review on arching study can be found in Tien (1996). 

In a backfilled stope, arching occurs when the fill tends to move down relative to the 

surrounding stiffer rock walls, while the shear resistance along the rock-fill interface tends 

to keep the fill in its original position. This phenomenon, in effect, transfers part of the 

overburden weight of fill material by shearing stresses to the adjacent rock walls as shown 

in Fig. 1.1.  In contrast, if the fill is surrounded by a softer material that can settle relative to 

the fill, reverse arching may occur where the load is transferred from the surroundings to the 

backfill and stresses within the backfill will increase. Udd and Annor (1993) concluded from 

their site monitoring on backfill behavior that “There is a definite tendency for backfill to be 

self-supporting and to arch within the stope. Most of the earth-pressure cells indicated 

pressures that were significantly less than the overburden pressures expected from backfill”.  
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Therefore, it is important to investigate the actual stress distribution in a stope for more 

effective backfill design.  

 

Figure 1.1.  Schematic diagram of arching within mine stopes (Reproduced from 

Pirapakaran (2008)) 

Figures. 1.2 and 1.3 show the stress profiles obtained by Pirapakaran and Sivakugan (2007a) 

in a 2-D vertical stope. It is clearly shown in the figures that the stress magnitude along the 

walls is smaller than the central part of stope at any elevation, which indicates the 

occurrence of arching. The results obtained from these studies also show that vertical stress 

can be 40-60% less than overburden pressure, that is defined as the product of unit weight of 

the fill and depth.  If the wall is smooth, there will be no arching and hence the vertical 

stress at any depth will be the same as the overburden pressure. 

 

Figure 1.2. Vertical stress distribution contours within backfill and rock surroundings as 

obtained from FLAC (Pirapakaran and Sivakugan 2007a) 
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Figure 1.3. Comparison of vertical normal stress from analytical, numerical and overburden 

stress along the vertical centre line (Pirapakaran and Sivakugan 2007a) 

1.3 Current State-of-the-Art 

Various studies were carried out by researchers to understand stress distribution and arching 

mechanisms within a vertical stope (Aubertin et al. 2003; Li and Aubertin 2008; Li et al. 

2003, 2005; Mitchell et al. 1982; Pirapakaran and Sivakugan 2006, 2007a, 2007b).  

However, in reality, not all the mine stopes are vertical. Some of the mine stopes are 

inclined, where the backfill is bounded between the footwall (FW) and hangingwall (HW) as 

shown in Fig. 1.4. In mining, hangingwall (HW) is referred to the rock lying above the ore 

body, and footwall (FW) is referred to the rock lying below the ore body. Due to the 

geometry of the stope, the convergence of HW may induce additional stresses within the 

backfill, and part of the pressure of backfill may transfer to FW due to gravity, which 

subsequently may alter the stress profiles from vertical to inclined stope.  The observation of 

Caceres Doerner (2005), Hassani et al. (2008) and Li and Aubertin (2009), from numerical 

modeling, have shown that the load distribution and arching formation are different between 

the vertical and inclined stopes. 
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Figure 1.4.  Schematic showing the components of an inclined backfilled stope and the 

stress field distribution (Belem and Benzaazoua 2004) 

The current design approach for an inclined stope is based on the results obtained from a 

vertical stope by incorporating some minor modifications. In 1960, Jahns and Brauner (vide 

Robertson et al. 1986) suggested that, when the inclination is less than 30
o
 to vertical, the 

error in vertical stress due to stope inclination is less than 10%.  Shukla et al. (2009b) 

suggested that analytical expressions developed for vertical walls can be used to estimate the 

active stress coefficient for wall inclination less than 15
0
 without compromising the 

accuracy of the results.  Li and Aubertin (2009) suggested that the analytical solution 

developed for vertical stopes in Aubertin et al. (2003) can be used to estimate the vertical 

and horizontal stresses of an inclined stope with inclination less than 10
o

 to vertical, 

however, a stope inclination of more than 10
0
 will induce a significant difference when 

compared to the vertical stope situation. Their observation from the numerical modeling has 

also shown that the load distribution profile is different between the vertical and inclined 

stopes, and the arching is less well developed for the inclined stopes.  

It can be concluded from the above findings that the analytical solutions developed for 

vertical stopes are applicable only for an inclined stope with inclination less than 10
o
 to 

vertical; beyond that, the solutions provided are unreliable.  Therefore, to ensure the 

viability of mines and workforce safety, it is important for miners to have a good 

understanding of stress distribution and development for inclined stopes and to develop a 

rational methodology to account for stope inclination in the stress analysis within mine fills.    

HW FW
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1.4 Objectives and scope of research 

The primary goal of this dissertation is to investigate the effect of inclination on arching 

action on stress distributions, with particular interest on the normal stress distribution at the 

base of stope and the shear stress on the side walls of stope.  The scope of study includes the 

following: 

 To identify the mechanism of arching action in inclined stopes containing 

granular backfills through laboratory, numerical and analytical approaches. 

 To develop analytical solutions that can be used to evaluate the stress 

distributions within a stope having parallel and non-parallel walls.  

 To develop a laboratory model for inclined stope and investigate the 

effect of arching mechanism and stress distribution within a granular 

backfill.  

 To develop 2-dimensional plane strain numerical models using FLAC that can 

accurately predict the stress distributions by incorporating arching mechanism 

in inclined stopes containing granular backfills. 

There are three independent techniques that will be undertaken in this study. They are: 

1. Analytical Method 

2. Experimental Method 

3. Numerical Method 

 All three techniques are performed concurrently and the outcomes of each technique are 

compared to verify that the results are in close agreement in order to fully understand the 

theory behind the arching mechanism on stress development within an inclined model.  The 

research will result in 

 Better understanding of the arching mechanism that will improve the current 

state-of-the-art. 

 A rational methodology to account for stope inclination in the stress analysis 

within granular backfills contained within inclined stopes. 

 Simple design procedures and design charts derived from sound fundamentals, 

supported by numerical models and experimental data.  
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1.5 Relevance of the research 

From the observations of the numerical modeling for an inclined stope by Caceres Doerner 

(2005), Hassani et al. (2008), Li and Aubertin (2009) and Li et al. (2007), the stress profiles 

and arching formation for an inclined stope are different from that of a vertical stope. They 

have shown that the vertical stress decreases as the inclination of the stope increases. The 

maximum vertical stress tends to be located near the stope‟s footwall and the horizontal 

stress along the hangingwall is higher than along the footwall. These results illustrate that 

the existing analytical expression and design approach for horizontal and vertical stress 

evaluation may not be appropriate when wall inclination is involved. As numerical analysis 

is not routinely used in practice and simple analytical expressions remain the principal tool 

among practicing engineers, analytical solutions by considering different wall inclinations 

for an inclined stope are developed in this study.   In addition, most of the analytical 

expressions available in the literature are developed based on shear plane method or 

equilibrium considerations. A new analytical method for determining the vertical stresses in 

a long container or mine stopes, assuming plane strain condition is introduced.   

The numerical results of Caceres Doerner (2005), Li and Aubertin (2009) and Li et al. 

(2007) as mentioned above also reveal that stope inclination may affect the load distribution 

between hangingwall and footwall. The load transferred to the walls due to arching for 

vertical stope can be assumed to be equally distributed, assuming wall characteristics are 

identical. However stope inclination may results in unequal load distribution to the walls. 

Therefore, this study will examine the influence of stope inclination on load distribution 

between hangingwall and footwall. 

In soil mechanics, earth pressure coefficient or lateral stress ratio, K is defined as the ratio of 

horizontal to vertical normal stress when they are both principal stresses. The theoretical 

value of K may vary from passive state to active state depending on wall displacement. For 

vertical stope, as very little lateral deformation of stope wall may occur, at-rest condition 

may be appropriate to consider in stress analysis.  However, for an inclined stope, dipping 

hangingwall and footwall may induce additional stresses on backfills or on footwalls under 

gravity or wall convergence, which may change the state of stress within the backfill.  

Therefore, it is important to investigate the effect of inclination on stress state experienced 

within backfill in order to produce an effective design criterion. 

Most of the past studies on inclined stopes are based on numerical modeling, and there is a 

lack of research effort involving laboratory or in-situ work. A laboratory model is developed 

in this dissertation to simulate mine backfilling in an inclined stope. The model is expected 
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to serve as a verification tool for numerical and analytical models and to enable 

determination of the average vertical stress at any depth within the fill.  Therefore, it is not 

necessary to use minefill in the laboratory model. Instead, river sand is used in the entire 

laboratory testing program.  The geotechnical parameters of the same sand are used in the 

analytical and numerical model. 

1.6 Thesis overview 

Chapter 1 introduces the research work presented in this thesis, objectives and the relevance 

of the research. Chapter 2 provides an overview of previous research that has been 

conducted in estimating stress distribution within mine stopes, both vertical and inclined, 

which includes analytical, numerical and laboratory/field works. Chapter 3 extends 

Marston‟s theory to the development of analytical expression for estimating stress 

distribution within an inclined stope with parallel and non-parallel walls. A parametric study 

is conducted to examine the effects of inclination, aspect ratio and fill properties on the 

vertical normal stress distribution.  In addition, an analysis on vertical stress optimization for 

an inclined stope is carried out in order to support the findings observed in Chapter 5.  

Chapter 4 describes the development and application of a new and simple analytical method 

to determine vertical stresses within a granular material contained in right vertical or 

inclined containment. Chapter 5 gives the details of the development of a small-scale plane 

strain laboratory model for inclined stope. A parametric study on stope aspect ratio, 

inclination and wall roughness is also presented in this chapter. Chapter 6 describes the 

simulation of numerical models using FLAC for laboratory model (described in Chapter 5) 

and a prototype underground mine stope. A comparison among the three major techniques 

(numerical, analytical and experimental) is discussed in this chapter. Chapter 7 provides a 

summary and conclusions of the research and some recommendations for future research.      
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Chapter 2 Literature review 

There are two major types of mines: open cut mines and underground mines. Open cut 

mining is used when the overburden is relatively thin and the mineral of interest is located 

near the surface.  For ore deposits deep below the surface, underground mining techniques 

are used to extract the mineral to the surface through tunnels and shafts. Both mining 

methods result in the creation of voids. For open cut mines, the large voids or mine area 

must undergo rehabilitation or sometimes are converted to landfills for disposal of solid 

wastes. In underground mining, backfilling the mine void is a standard practice in managing 

the large void created after mining is completed.   

Backfilling helps in limiting the amount of wall convergence using minefill as mass support 

and reducing the relaxation of rock mass within the walls, which in turn retains the load-

carrying capacity of the rock mass and improves regional stability of the mine. Backfilling is 

also one of the most effective tools for providing ground support for mining operation, 

reducing mine waste created on the earth surface after ore extraction, and maximizing the 

ore recovery.  This chapter gives a broad overview of current backfill practice used in 

underground mining with emphasis on the techniques used to investigate the stress 

distribution within the stope. 

2.1 An overview of mine backfill 

The backfilled process commences when the full stope area has been mined out.  The voids 

are backfilled with tailings or waste rocks. Backfills are the rock mass that remains after ore 

extraction. They are crushed and graded into aggregate of different sizes before they are 

used to backfill the stope, which includes waste rock, deslimed and whole mill tailings, 

quarried and crushed aggregate, and alluvial or aeolian sand (Grice 1998).  The most 

common backfilling method is to place mill tailings in the form of slurry by adding a 

substantial amount of water to the fills and deliver through boreholes and pipelines to the 

stope under gravitational effects (Grice 1998). The filling rate of the slurry depends on 

drainage conditions, fill and barricade permeability.  Slow and progressive filling is 

preferred for a large open stope.  For example, the filling of a typical 40 m x 200 m stope 

takes more than fifty pours over a six-month period (Barrett et al. 1978). The current state of 

backfill usage, operational practices and costs associated in Canadian mines has been 

reported through two comprehensive surveys by DeSouza and Dirige (2003). 
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Depending on the addition of cement (binding agent), two basic ways of backfilling 

strategies are used; cemented backfilling and uncemented backfilling (Sivakugan et.al. 

2006). Uncemented backfill can be used as a void filler where only sufficient strength is 

required to prevent it from remobilisation whereas cemented backfill can be used as an 

engineering material where sufficient strength is required to enable it to be exposed by ore 

pillar mining or undercuts (Grice 1998).  Therefore, it is important to know the material 

properties and their constituents to produce reliable, consistent quality and cost optimized 

fill materials.  Researches into various types of backfills have been discussed in detail 

elsewhere (Belem and Benzaazoua 2004; Grice 1998; Potvin et al. 2005; Rankine et al. 

2007; Udd 1989; Udd and Annor 1993). Only a brief summary of the different types of 

minefills will be presented here. 

Backfills are non-uniform with a wide range of size distribution. They can vary from very 

coarse aggregates to very fine-grained tailings and their properties vary with the fill type. A 

small amount of binding agent (e.g. Portland cement or any pozzolanic material), of between 

3% and 6% by weight, can be added to the filling materials to improve the strength of fill 

and also to eliminate the risk of liquefaction.  

Depending on the function of backfill, whether it is used as void filler or as an engineering 

material, it can be divided into two broad categories (Grice 1998). The first category is bulk 

backfill, where the fill materials are disposed into stopes to provide confinement to 

surrounding rock walls. The second category is exposable backfill, which serves as an 

engineered material and enables the fill to be exposed on one or more sides or to withstand 

the blasting of adjacent pillar ore. In this case, a small amount of binder is added to provide 

sufficient strength to the fill.  The most common backfills used in mine industry today are 

hydraulic fill, paste fill and rock fill which will be discussed below.   

Hydraulic fill  

Hydraulic fill is the product resulting from the partial dewatering and desliming of tailings 

and has less than 9% by weight of size fraction less than 10 m, to ensure acceptable 

permeability of the fills. The pulp density is maintained at 50-70% solids by weight (Potvin 

et al. 2005). In other words, hydraulic fills have no clay fraction and can be seen as silty 

sand or sandy silts that are classified as SM or ML respectively (Qiu and Sego 2001; 

Rankine 2005). When served as an exposable backfill, binders such as cement, flyash, or 

crushed slag are added to produce cemented hydraulic fill. The production of hydraulic 

backfill is relatively simple and very low in cost. The main disadvantages of hydraulic 
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backfill are the management of water in the fill and at the retaining barricades.  The 

barricades are supposed to be free draining and are made of special porous concrete.  

Draining pipes are placed through the barricades which are shotcreted. The fill placement 

rate and the control of slurry density have to be monitored to ensure that no excessive water 

ponding occurs in the stope to avoid the development of erosion piping and barricade 

failures. 

Paste fill 

Paste fill is a high density, non-segregating and low plastic mixture of mine tailings with 

negligible excess water when placed. It contains at least 15% by weight of size fraction less 

than 20 m. The solids content of paste fill may vary from 75% to 85% by weight, with 

enough fines to inhibit particle settlement and segregation during pipeline transport. It 

contains significant clay fraction. In rheological terms, this slurry behaves as a non-

Newtonian fluid. The rate of binder addition depends on the type of binder and use of the fill 

to act as bulk or exposable material. Compared to hydraulic fill, the main advantage of paste 

fill is the early removal of water from the tailings stream, which will eliminate the need for 

engineered barricades and the problem of drainage water. However, the operating cost of 

paste fill is higher due to the expensive filter dewatering systems and paste fill operations 

require supervision to ensure no line plugging occurs. In addition, a minimum of 1.5% by 

weight of binder content is required to eliminate the risk of liquefaction, which adds a 

significant operating cost to the paste.   

Rock fill  

Rock fill is a loosely dumped, granular fill with fiction angle of between 35
o
 and 

55
o
depending on the relative density of the fill. The fills can be waste rock, quarried rock, or 

aggregate. Rock fill can be placed into the stope as it is to serve as bulk backfilling material. 

The performance of rock fill can be improved by adding a hydraulic component (cement 

slurry or cemented tailings) to produce cemented rock fill, which may increase the strength 

and enable the fill to be exposed. The amount of binder can be optimized by selecting 

appropriate grading of rock fill, which can be produced with graded rock fill and deslimed 

tailings fill. Care should be taken during the fill placement due to the material‟s high 

tendency toward segregation.  
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2.2 Techniques used to investigate the arching mechanism on stress 

distribution 

There are generally three major techniques that have been undertaken in the past to 

investigate the arching mechanism on stress distribution for backfill within vertical and 

inclined stopes; numerical modeling, analytical assessments and experimental/field 

measurement. A brief overview will be discussed in the following section. 

2.2.1 Numerical modeling 

As the mechanism of behaviour relating to mine geotechnical systems is complex, numerical 

computation appears to be a useful and reliable tool in predicting the stress-strain behaviour 

of backfill within a stope and the interaction between the fill and stope walls. Various 

influencing factors such as natural stress conditions, interface, excavation and backfilling 

sequence have been considered in the models (Aubertin et al. 2003; Barrett et al. 1978; 

Bloss et al. 1993; Caceres Doerner 2005; Li and Aubertin 2009; Li et al. 2003, 2007; 

Pakalnis et al. 1991; Pirapakaran and Sivakugan 2006, 2007a).  Table 2.1 summarizes some 

of the numerical modeling programs that have been used in studying the stress 

developments and stability of mine stopes.   

The results obtained from these studies reveal that stope geometry, fill properties (shear 

strength parameters, density, particle size distribution), and stope inclination are critical 

factors in predicting the stress distribution in mine stope (Caceres Doerner 2005; Li et al. 

2007; Pirapakaran and Sivakugan 2006, 2007a). Observation of Fahey et al. (2009), Li and 

Aubertin (2009) and Li et al. (2007) also shows that Poisson‟s ratio and dilatancy angle may 

have significant effects on the stress distribution. They show that the dilatancy angle may 

directly affect the value of earth pressure coefficient, K which is the ratio of horizontal stress 

to vertical stress.  On the other hand, the degree of arching is a function of stope geometry, 

wall roughness, fill properties,  fill placement method and wall closure (the relative inward 

movement of stope walls) (DeSouza and Dirige 2002; Take and Valsangkar 2001). 
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Table 2.1. Numerical modeling programs used in the investigation of stress distribution and 

stability of mine stope 

Program Descriptions References 

TNJTEP  and  

NONSAP 

Two and three dimensional finite-element 

program; used to analyse the stress developments 

and stability of exposed vertical walls for 

cemented fill. 

Barrett et al. 1978 

 

TVIS Three dimensional finite element program; used 

to assess the fill stability at Mount Isa mines. 

Bloss et al. 1993 

UTAH2 Two dimensional finite element program; used to 

investigate the interface between backfill and 

rock pillars. 

Boldt et al. 1993 

Phase
2 

A finite element code from RocScience; used to 

simulate the stress developments for vertical 

stopes with converging walls; and the load 

transferred along the interface between rock 

mass and mine fill.  

Aubertin et al. 2003 

CeMinTaCo 

and Minefill-

2D 

One and two dimensional finite element 

program; used to study the barricade stresses and 

the development of effective stresses during fill 

curing 

Fourie et al. 2007; 

Helinski 2007 

PLAXIS A finite element program; used to study the 

mechanisms of arching within backfilled stopes 

dealing with dry and saturated backfill. 

Fahey et al. 2009 

FLAC  and 

FLAC
3D

 

Two and three dimensional finite difference 

program; used to analyse stresses generated 

when an open stope is filled and the stability 

when the fill is exposed. 

Coulthard 1999; 

Pierce 2001; 

Sainsbury and Urie 

2007  

FLAC
3D

 

 

Used to investigate the arching mechanism in 

pastefill during a complete mining sequence. 

Rankine 2004 

 

FLAC  and 

FLAC
3D

 

 

Used to investigate the arching effects within 

mine fill stopes by incorporating interface 

elements between rock and backfill.  

Pierce 2001; 

Pirapakaran 2008; 

Pirapakaran and 

Sivakugan 2006  

FLAC 

 

Used to assess the stress stated in vertical and 

inclined backfilled stopes for a variety of 

conditions and parametric analyses. 

Caceres Doerner 

2005; Li and Aubertin 

2009; Li et al. 2003, 

2007 

FLAC Used to investigate the mechanism and 

behaviour related to backfill – rock mass 

interaction for an inclined stope. 

Hassani et al. 2008 
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In his simulation of vertical stress distribution on inclined sillmat design, Caceres Doerner 

(2005) reports that the vertical stress decreases as the stope dip decreases (i.e., increases 

inclination from vertical), and the maximum stress tends to be located near the stope‟s 

footwall as shown in Figure 2.1.   

 

Figure 2.1.  Vertical stress distribution along span at different stope dips (Caceres 

Doerner 2005) 

Similar observation is reported by Li and Aubertin (2009) and Li et al. (2007) where they 

state that the stress distribution in an inclined stope is asymmetric (Fig. 2.2). Vertical normal 

stress along the hangingwall (HW) in the lower part of the stope is smaller than that along 

the footwall (FW), and the horizontal stress along the HW is higher than that on the FW. 

These results illustrate that the stress distribution across the span of an inclined stope is 

neither uniform nor symmetrical, and differs from the stress profiles of a vertical stope (see 

Fig. 1.2) where the stress profile is symmetrical about the vertical centreline. 

Hassani et al. (2008) conducted a numerical modeling study of deep mining inclined stope 

to investigate the interaction between backfill and rock mass, considering a nonlinear 

behavior for both backfill and rock mass.  They showed that stress distribution for an 

inclined stope (see Fig. 2.3) was very complex and the arching formation had a different 

scenario from that of vertical stope (see Fig.1.2). They observed that, in inclined stopes, 

arching occurred at about mid height of the stope and the stresses (both vertical and 

horizontal) dropped below the arch level as shown in Figure 2.4, whereas arching occurred 

at the top portion for a vertical stope and no subsequent changes in stress occurred. 
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Comparing Figs.2.2 and 2.3, the results obtained were very different. Li et al. (2007) 

assumed a linear elastic rock mass and the backfill was assumed to follow Mohr Coulomb 

failure criterion. On the other hand, Hassani et al. (2008) considered post-peak strain 

softening behavior for rock mass and post-peak strain hardening behavior for backfill with 

interface elements in between the host rock and backfill. Therefore, a more in-depth 

research of the constitutive model is required in this field. 

 

Figure 2.2.  Numerical modeling results for (a) horizontal and (b) vertical stress distribution 

for inclined stope surrounded by rock mass (Li et al. 2007) 

 

Figure 2.3. Contours of (a) horizontal stress, and (b) vertical stress distribution within the 

backfill in an inclined stope (Hassani et al. 2008) 
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Figure 2.4.  Vertical stress distribution within backfill showing the formation of arch 

(Hassani et al. 2008) 

The observations of numerical modeling conducted by Caceres Doerner (2005), Hassani et 

al. (2008) and Li et al. (2007) for an inclined stope reveal that the stress profiles and arching 

formation within an inclined stope are different to that of a vertical stope. These results 

illustrate that the existing analytical expression and design approach for vertical stope may 

not be appropriate for an inclined stope, especially when there is significant tilt from 

vertical. 

2.2.2 Analytical Derivations 

Numerical analysis is not routinely used in practice, and simple analytical expressions 

remain the principal tool among practicing engineers. Depending on the confinement of 

surrounding boundaries and resulting arching action, theoretical derivations have been 

established for estimating vertical (v) and horizontal (h) stresses at any depth of a bin/silo 

structure or backfilled stope.  In most cases, the expressions are developed based on shear 

plane method which involves the equilibrium of forces acting on a differential layer across 

the stope width.  In these methods, the coefficient of lateral earth pressure, K is introduced 

as a critical input variable to relate the horizontal normal stress to vertical normal stress as:  

h=Kv     (2.1) 
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There are limited analytical expressions available in the literature to determine the vertical 

stresses considering arching effect within vertical stopes (Aubertin et al. 2003; Caceres 

Doerner 2005; Li and Aubertin 2008; Li et al. 2005; Marston 1930; Pirapakaran and 

Sivakugan 2007a; Terzaghi 1943).   Among these solutions, the expression of Marston 

(1930) appears to be the oldest and the simplest for determining the average stress variation 

with depth by considering arching effect. He developed an expression for vertical normal 

stress (z) within a narrow trench backfilled with granular soil, based on 2-dimensional 

plane strain analysis. The derivation is fairly straightforward, where he considered the 

equilibrium of an infinitesimally thin horizontal slice shown in Figs. 2.5(a) and 2.5(b), and 

integrated across the fill depth. Terzaghi (1943) extended this expression to incorporate 

cohesion as: 

    
     

       
        

        

 
                          (2.2) 

where B = breadth of the trench, z = height of the fill,  = unit weight of the fill, c = cohesion 

of the fill,  = friction angle between the fill and the wall, K = lateral earth pressure 

coefficient, x/z at the wall, and x = horizontal stress. The shear stress on the wall at depth 

z is Kz tan, as shown in Fig. 2.5. 

Pirapakaran and Sivakugan (2007a) further extended the expression to a 3-dimensional cross 

section. For a stope with rectangular cross section in plan (Fig. 2.5(c)), Eq. 2.2 becomes: 

    
     

       
 

 

   
         

        

 
 
   

  
                  (2.3) 

where L = length of the stope in plan. For L>>B, Eq. 2.3 becomes the same as Eq. 2.2. For 

square stope, Eq. 2.3 becomes: 

    
     

       
        

        

 
        (2.4) 

By following the Marston‟s procedure, it can be shown that the expression for the circular 

stope or silo of diameter B (Fig. 2.5(d)) is the same as that of a square one.   

A summary of analytical solutions developed to evaluate the vertical and horizontal stresses 

within minefill stope for vertical and inclined stopes are listed in Tables 2.2, 2.3 and 2.4.  

The common notation used in the tables to compute vertical stress z and horizontal stress x 

at depth z are:  = unit weight of the fill, c = cohesion of the fill, = friction angle of the fill, 

 = friction angle between the fill and wall, K = lateral stress ratio,  B = breath of the stope, 



Chapter 2 

18 

 

H = height of the stope ,  L= length of the stope in plan and  = stope inclination to the 

horizontal. 

As can be seen from the equations listed in the Tables 2.2, 2.3 and 2.4, most of the analytical 

expressions are developed based on uniformly distributed vertical stress across the span that 

varies with the depth of the stope. These equations differ mainly in the way K and  are 

assumed whereas the fundamental equation is the same. Lateral stress ratio, K is developed 

as a function of friction angle of the fill, which subsequently gives a constant value of K 

throughout the fill body of the stope. The results of these settings provide a constant vertical 

and horizontal stresses across the span, which differ from the observations in numerical 

modeling. In numerical simulations, it is clearly shown that the stress profiles are not 

uniform across the span. This outcome suggests that analytical solution with non-uniformly 

distributed vertical stress across the span is more realistic and should be considered in the 

design. Li and Aubertin (2008) modified Eq. 2.7 by adding some coefficients of curvature to 

allow for a non-uniform vertical stress distribution across the span (Eq. 2.8). An 

improvement is obtained with this modified solution, where the vertical stresses along the 

wall and across the span compare well with the results from numerical modeling using 

FLAC (Li and Aubertin 2008). 

 

  

 

 

 

                                                                (b) 

 

         

         (c) 

 

  

       (a)          (d)                       

Figure 2.5.   Equilibrium consideration of a thin horizontal layer within the granular 

material: (a) sectional elevation; (b) plane strain with L = ; (c) rectangular; (d) circular 
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Table 2.2.  Analytical solutions developed to evaluate the vertical and horizontal stresses of 

mine fill for 2-D vertical stope  

Eq. Analytical Expression 

2.5 Marston (1930):    

   
  

       
        

         

 
     

x= Kaz 

=  (0.33~ 0.67) 

Applicable for cohesionless backfill 

 

2.6 Terzaghi (1943): 

 

   
     

       
        

        

 
          

        

 
   

x = Kz ; q = surcharge at the top of the fill 

 

2.7 Aubertin et al. (2003): 

   
  

        
        

         

 
     

x = Kz 

  

 
 
 

 
          

                      

   
       

       
                           

   
       

       
                             

     

 

2.8 Li and Aubertin (2008): 

Vertical stress across the width of the stope at distance w:  

    
  

       
        

        

    
 

       
 
       

 

 
 
 
   

         where w =  distance from the centre line,       

Horizontal stress:  

   
  

      
        

        

    
 

       
 
    

   
   

 

 
 
                     

             

a, s,  control of the stress distribution curvature 
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Table 2.3.  Analytical solutions developed to evaluate the vertical and horizontal stresses of 

mine fill for 3-D vertical stope  

Eq. Analytical Expression 

2.9 Belem and Benzaazoua (2004) : 

Longitudinal pressure,    

 

   
        

      
        

       

 
   

Transverse pressure,  

 

   
              

   
        

       

 
   

Vertical pressure,    

z = y   ;             

zo = considered elevation point: zo = 0 at the floor or  zo = H at the top of the stope 

 

2.10 Li et al. (2005) : 

The vertical stress acting across the horizontal plane at depth z: 

     
       

       
   

    
        

  
              

       
       

 

The horizontal stress at depth z at wall i  

                    

where                                               

                                      

                                      

Ki, i, ci = lateral stress ratio, friction angle and cohesion at fill-wall interface i  

i = 0
o
 for at rest state; (/2-45

o
) for active state;  (45

o
+/2) for passive state 

(i = 1 to 4 in which 1 for left wall, 2 for front wall, 3 for right wall and 4 for 

back wall) 

 

2.11 

 
Pirapakaran and Sivakugan (2007a):     

   
     

       
 

 

   
           

   

  
             

x = Kz 

and  K = Ko
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Table 2.4.  Analytical solutions developed to evaluate the vertical stress of mine fill for 2-D 

Inclined stope 

Eq. Analytical Expression 

2.12 Caceres Doerner (2005): 

    
  

       
              

        

      
    

K=1.4 sin
2 - 2 sin + 1 

Applicable for cohesionless backfill with ranging from 0
0
 to 40

0
 

 

2.13 Singh (2009) & Singh et al. (2011):  

     
                 

                   
        

                        

                                
    

 

Most of the present studies on inclined stopes are based on numerical simulation and there 

are very limited analytical studies on inclined stopes. Caceras Doerner (2005) modified 

Marston‟s (1930) equation for inclined stope (Eq. 2.12) with lateral stress ratio, K estimated 

by analyzing the data from numerical simulation. Singh (2009) and Singh et al. (2011) 

developed an analytical equation (Eq. 2.13) for inclined stope based on Handy‟s (1985) 

approach, where a circular arch of principal stresses has been used to estimate the vertical 

stresses within an inclined stope. A method to estimate vertical stress distribution across the 

width of stope is also introduced in his PhD dissertation. 

Lateral stress ratio or lateral earth pressure coefficient, K appears to be an important 

parameter for analytical solution in evaluating stress distribution. Since the development of 

Janssen‟s (1895) theory, several semi-empirical and analytical expressions have been 

proposed for estimating lateral pressure coefficient (Marston 1930; Terzaghi 1943).   

Marston (1930) takes K as Ka , whereas Li and Aubertin (2008) compare Ko,  Ka and Kp in 

their numerical modeling and conclude that Ka is more appropriate to describe the stress 

state within  backfill, where Ko,  Ka and Kp  are defined as follows: 

                 (2.14) 

where Ko is the earth pressure coefficient at rest.  

   
      

      
                              (2.15) 

where Ka is the Rankine‟s active earth pressure coefficient.   
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                                (2.16) 

where Kp is the Rankine‟s passive earth pressure coefficient 

Terzaghi (1943) assumed an empirical constant K at every point of the fill. From 

experimental investigations, he showed that the value of K for sand could be increased from 

1 to a maximum of 1.5.  Krynine (1945) showed that, with wall roughness, the rotation of 

principal stresses gives horizontal wall pressure, h instead of 3. Therefore, the principle 

stress ratio, K is no more equal to 3/1 when there is wall friction (0) involved.  He 

proposed 

   
  

  
 

       

       
       (2.17) 

Handy (1985) defined a continuous compression arch for 3 for a partially supported soil in 

a state of plastic equilibrium where the slip is allowed to occur along directions defined by 

the slip lines.  From there, Handy derived an expression for K and the stress distribution for 

backfills contained within two parallel, unyielding, rough vertical walls retaining granular 

fill, where  

  
  

  
 

             
  

             
  

      (2.18) 

and   is the angle of minor stress plane with respect to the horizontal at the wall. 

Handy‟s approach remains a popular analytical technique in developing analytical solutions 

for lateral stress ratio and stress distribution when wall roughness and arching action are 

involved. It has been used by Dalvi and Pise (2008), Goel and Patra (2008) and Paik and 

Salgado (2003) in deriving the active lateral stress ratio at the wall, Kwall for a horizontally 

translating rigid vertical retaining wall.  

For vertical stope, as very little lateral deformation of stope wall may occur, at-rest 

condition may be appropriate to consider in stress analysis.  However, for an inclined stope, 

dipping hangingwall and footwall may induce additional stresses to backfill or to footwall 

under gravity or wall convergence, which may change the state of stress within the backfill. 

Caceres Doerner (2005) derived an empirical equation for K using numerical analysis, 

where  

     K=1.4 sin
2- 2 sin + 1  ;  where 0

o
 <  <40

o
 .         (2.19) 
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However, this equation is developed solely based on friction angle of fill mass, and K is 

assumed to be constant throughout the fill body without taking into consideration the effects 

of stope inclination and interfacial friction angle. Therefore, a better understanding of K can 

be obtained by considering the effect of stope inclination and interface behaviour in order to 

produce a more effective design criterion. 

The interface friction angle , is used to describe the shear resistance along the wall-fill 

interface. The rough wall surface of mine stope enables arching to take place at a few grains 

away from the wall. Therefore  should be taken as friction angle,  when dealing with 

stress distribution within a mine stope. In most cases listed in Tables 2.2, 2.3 and 2.4,  is 

taken as .  As the stiffness of the rock is about two orders of magnitude larger than the 

backfill material, the wall movement is expected to be small. With loose backfill, where c = 

0, Pirapakaran and Sivakugan (2007a) have shown that a combination of of  and K 

= Ko gives a reasonable estimation of the vertical stress when compared with the results 

from a numerical model of a mine stope. This result reveals that the combination of different 

values of K and  may have a significant effect on stress distribution as well as interface 

shear behaviour within a mine stope.   

2.2.3 Experimental and in-situ fill measurements 

Due to the difficulties in conducting in-situ tests within a mine, field records related to stress 

measurements demonstrating arching effect are very rare. The observation of Zahary et al. 

(1972) (vide Dhar et al. 1983) on fill measurement reported a 2% average strain in the fill at 

the end of two year period and an increase of wall convergence with width of the stope. Udd 

and Annor (1993) confirmed the occurrence of arching action in their monitoring of in-situ 

backfill behavior.  Based on Cayeli mine in-situ pressure monitoring test results, Yumlu 

(2007) concluded that staged filling will result in lower bulkhead pressure. The rest time 

stage between enables water pressure dissipation and enhances distribution of ongoing fill 

weight to the walls due to arching.     

Take and Valsangkar (2001) conducted centrifuge modeling of a narrow retaining wall 

supporting a granular fill bounded by vertical plane with dissimilar frictional characteristics.  

The results show that the governing factors for arching behavior are the geometry of model, 

interface friction angle and the coefficient of lateral earth pressure.  The results also reveal 

that a reasonable estimate of lateral earth pressure can be obtained with an average interface 

friction angle.  DeSouza and Dirige (2002) reported, in their centrifuge tests on sillmat 

behavior during undercut mining, that the degree of arching is a function of stope geometry, 
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wall roughness, fill cohesion, and wall closure. Udd and Annor (1993) conducted a 

centrifuge modeling for situations where a free-standing wall of fill was to be exposed. The 

results reveal that a free-standing inclined-fill wall is three times more stable than vertical-

fill wall, showing that significant operating cost can be reduced when dealing with inclined 

stopes.  Similar observations are reported by Mitchell (1989) that the fill confined between 

sloped walls is much more stable than fill between vertical rock walls. 

Laboratory work associated with arching action within a vertical hydraulic fill mine stope 

had been conducted by Pirapakaran and Sivakugan (2006, 2007b). A simple 1:100 scaled 

laboratory model as shown in Fig 2.6 was developed at James Cook University to 

investigate the stress development and to quantify arching effects within the fill in a vertical 

stope. Significant reduction of vertical stress was observed compared to that of overburden 

pressure, showing that arching took place in the model. The model successfully simulates 

the filling process within a vertical mine stope and serves as a useful tool in validating the 

solutions obtained from analytical and numerical modeling work.    

Many experimental studies have been carried out in investigating the influence of aspect 

ratio of stope geometry on stress distribution and arching mechanism. Terzaghi (1943), in 

his trap door experimental model, shows that the stress state of fill remains the same when 

the door is lowered more than 2.5 times of the span width. McNulty (1965) also concludes 

that the height, H to width, B ratio of model has a significant influence on the load 

distribution. Observation of Cowing (1977) (vide Li et al. 2003) suggests that when H is 

greater than (2-3)B,  pressure near the stope bottom is almost independent of the fill depth.  

Similar conclusion is drawn by Pirapakaran (2008) that the increment of vertical stress 

within a stope is insignificant when H/B is greater than 5. In terms of length, L to width, B 

ratio, Pirapakaran (2008), in his numerical modeling analysis, also shows that arching effect 

is reduced with the increase of L/B and remain approximately constant when L/B is greater 

than 5. Thus, any geometry with L/B 5 and H/B > 5 is suitable to model the plane strain 

condition and to study arching effect within a stope.  

 



Chapter 2 

25 

 

 

Figure 2.6.  Apparatus to measure arching within minefills (Pirapakaran and Sivakugan 

2006) 

2.3 Summary and conclusion 

A review of literature on techniques used to investigate the arching mechanism on stress 

distribution has been conducted, which includes analytical, numerical and laboratory/field 

modeling. Most of these researches are conducted with reference to vertical stope and there 

is limited research carried out for inclined stope. The current design approach for an inclined 

stope is based on the results obtained from vertical stope (allowing for some minor errors).  

Backfilling is becoming increasingly important in underground mining operations for safety 

considerations. As mines get deeper, the need for improved precision on ground stability 

control and maximum resources recovery become more important for safe and economic 

mine operations.  However, there is no universally recognized standard design practice in 

solving these problems. Generally, the mine operators have their unique set of engineering 

solutions to deal with ground stability and mine tailing disposal issues. A better 

understanding of the stress distribution within the minefill and a rational methodology to 

account for stope inclination with due consideration to arching will significantly improve the 

current state-of-the-art and design practices.  
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Chapter 3 Extension of Marston’s Theory 

3.1 General  

Determination of the stress distribution, giving due consideration to the arching mechanism 

within minefill stopes, is of great importance because of its influence on the ground stability, 

ore recovery and cost effectiveness.  

Simple analytical expression is very useful for the preliminary design and remains the 

principal tool among practicing engineers. Depending on the confinement of surrounding 

boundaries and the resulting arching action, some theoretical formulations have been 

developed for estimating vertical (z) and horizontal (x) stresses at any depth of a bin/silo 

structure or backfilled stope (Aubertin et al. 2003; Handy 1985; Li et al. 2003; Marston 

1930; Marston and Anderson 1913; Pirapakaran and Sivakugan 2007a; Shukla et al. 2009a; 

Sperl 2005; Terzaghi 1943).   

Most of these studies on the stress determination have been applied to vertical stopes, and 

there is a lack of research, especially analytical work, on inclined stopes. This chapter 

discusses the development of an analytical expression for calculating the stress distribution 

within an inclined backfilled stope, considering the arching effect along the interface 

between the rock wall and the fill. To validate the analysis, the proposed results are 

compared with existing solutions reported in the literature listed below. 

Caceres Doerner (2005) developed an analytical equation (Eq. 2.12) for an inclined stope 

based on the shear plane method which involved the equilibrium of forces acting on a 

differential element across the span width. Instead of using the conventional Jaky earth 

pressure coefficient, Ko and Rankine earth pressure coefficients, Ka and Kp, he developed an 

empirical equation for K using data from numerical modeling.    

        
  

      
               

        

       
     (2.12) 

where  K = 1.4 sin
2- 2sin+1 and        .   

Figure 3.1 shows the comparison of lateral stress ratio, K at different friction angles , for 

the cases of Ko, Kp, Ka and K determined by Caceres Doerner (2005). The value of K 

obtained by Caceres Doerner (2005) is consistent with Ka, until  = 30
o
 and then becomes 

effectively constant as increase from 30
o
 to 40

o
, which falls between Ko and Ka. 
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Figure 3.1.  Comparison of lateral stress ratio, K at different friction angle,  

Li and Aubertin (2009) developed a numerical model using FLAC without using interface 

elements between fill and rock mass. The backfill was assumed to follow the Mohr 

Coulomb failure criterion, surrounded by linear elastic rock mass. A multistep filling 

sequence was considered in the simulation. The results obtained were validated by Marston 

type equations and an experimental model (Li and Aubertin 2009). 

3.2 Analytical expression for vertical stress within an inclined mine stope with 

parallel walls 

The analytical formulation proposed herein is an extension of the classical arching theories 

proposed by Janssen (1895)(vide Sperl 2005), Marston (1930), Marston and Anderson 

(1913) and Terzaghi (1943) that consider a non-vertical or inclined wall in the trench 

situations, generally found in underground mines. The following assumptions are made in 

the analysis: 

 The backfill is bounded between two parallel inclined walls, 

 A two dimensional plane strain condition is assumed, 

 The vertical normal stresses are uniformly distributed laterally at any depth, and 

 The shear stresses along the interfaces of the backfill to hangingwall and footwall 

are considered the same at any depth. 
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Figure 3.2.  Schematic diagram of an inclined stope 

 

Figure 3.2 shows a schematic diagram of a two-dimensional inclined backfilled stope of 

height H and width B, inclined at an angle,  to the horizontal. V is the vertical force acting 

on a horizontal element of thickness dz at a depth z below the top surface of the stope. For 

clarity, the thickness of the element “dz” is exaggerated. The forces are considered per unit 

length of the stope.  Based on this diagram, a general plane strain equation as described 

below can be developed. 

Self weight of the element is given by:  

                 (3.1) 

Vertical force V acting on the layer at depth z is: 

                (3.2) 

wherez is the vertical stress at depth z. 
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Vertical force acting upward at the bottom of the element at position z + dz is: 

                      (3.3) 

Shear force acting at the backfill-rock interface at depth z is: 

                  (3.4) 

where  is the shear stress along the wall at depth z. 

The maximum shear stress () mobilized at the backfill-rock interface can be determined 

using the Mohr-Coulomb strength criterion as: 

                    (3.5) 

where c is the cohesion of the backfill, n is the normal stress acting on the plane and  is 

the interface friction angle. 

Using the stress transformation concept commonly used in engineering mechanics (Das 

1998), the normal stress on a plane can be found as 

   
     

 
 
     

 
                    (3.6) 

where z, x and zx are the vertical, horizontal and shear stresses respectively. The 

relationship between the vertical and the horizontal stresses can be expressed as 

               (3.7) 

where K is the lateral pressure coefficient or the ratio of horizontal stress to vertical stress.  

Substituting Eq.  3.7 and Eq. 3.5 into Eq. 3.6 gives 

      
   

 
 
   

 
                              (3.8)

 

Let   

   
   

 
 
   

 
                        (3.9) 

Substituting  Eqs. 3.8 and 3.9 into Eq. 3.5 gives 

                    (3.10) 
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where 

                        (3.11) 

The equilibrium of vertical forces acting on the element leads to 

                          

                     (3.12) 

Substituting Eqs. 3.1, 3.2, 3.4 and 3.10 into Eq. 3.12 gives 

               
              

       
  

 
 
         

 
     

                     (3.13) 

where   

    
  

 
           (3.14a) 

  
       

 
         (3.14b) 

At z = 0, z = q, Eq. 3.13 can be solved as 

 
   

     

  
 

    
 

 
  

               
 

 
                

which on substitution from Eq. 3.14 becomes 

    
     

       
     

       

 
      

       

 
 
         (3.15) 

 

where          . 

In non-dimensional form, Eq.3.15 can be expressed as: 

  

  
 

       

       
        

 

 
      

 

  
     

 

 
    

      (3.16) 



Chapter 3 

31 

 

The general expression for the vertical stress at any depth is given in Eq. 3.16. This equation 

can be further simplified as shown in Table 3.1 to address the special field situations as 

governed by the following criteria: 

 For vertical stope,  = 90
o
; 

 In the absence of surcharge, q = 0; and 

 For cohesionless soil, c = 0. 

 

Table 3.1.  Special cases of Eq. 3.16 for different field situations in terms of specific values 

of , q and c;  K’ for cases 5,6 and 7 is given by Eq. 3.9 

No  q c Expression Eq. 

1 90 0 0   

  
 

 

      
       

 

 
        (3.17) 

2 90 0 > 0   

  
 

       

      
       

 

 
        (3.18) 

3 90 > 0 0   

  
 

 

      
       

 

 
      

 

  
    

 

 
    

  

 

(3.19) 

4 90 > 0 > 0   

  
 

       

      
       

 

 
      

 

  
    

 

 
    

   (3.20) 

5 < 90 0 0   

  
 

 

       
        

 

 
        (3.21) 

6 < 90 0 > 0   

  
 

       

       
        

 

 
       (3.22) 

7 < 90 > 0 0   

  
 

 

       
        

 

 
      

 

  
     

 

 
    

    (3.23) 

 

Equation 3.17 in Table 3.1 is the same as the equation developed by Marston and Anderson 

(1913) and Aubertin et al. (2003), and Eqs. 3.18 and 3.20 are similar to the equations 

presented by Terzaghi (1943) in the absence of surcharge and when q is not equal to zero, 

respectively.  

Figure 3.3 shows a comparison of vertical stress along the centreline using different K 

values (Ko, Ka and Kp as defined in Chapter 2) in the expression with ⅔against the 

relevant solutions from the literature. The results shown here agree well with the observation 



Chapter 3 

32 

 

of Pirapakaran and Sivakugan (2007a) where the combination of ⅔ and K = Ko is 

appropriate in estimating the vertical stress.  In addition, considering that the wall is not 

yielding, it is reasonable to assume the backfill is at rest and hence K = Ko is a realistic 

assumption.  K = Kp grossly underestimates the vertical stress, and K = Ka overestimates the 

vertical stress. In design of retaining walls and piles, it is common to assume ⅔at the 

soil-concrete interface. Therefore, ⅔appears to be a realistic assumption. For these 

reasons, K = Ko and ⅔ have been adopted for presenting specific results and discussion 

in the following section.  

3.2.1 Comparison of results with solutions from literature 

The solutions obtained from the proposed analytical expression Eq. 3.21, where c = 0 and q 

= 0, have been compared with the numerical results obtained by Li and Aubertin (2009) and 

the analytical equation proposed by Caceres Doerner (2005) for an inclined stope. 

 

Figure 3.3.  Comparison of vertical stresses along centreline of the stope  (B = 6 m, H = 45 

m, =18 kN/m
3
 , c = 0,  = 30

o
, ⅔ q = 0,  = 90

o
) 
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Figure 3.4.  Comparison of vertical stresses along centreline of the stope  (B = 6 m, H = 45 

m, =18 kN/m
3
 , c = 0, = 30

o
, ⅔ q = 0,  = 80

o
) 

 
Figure 3.5.  Comparison of vertical stresses along centre line of the stope  ( B = 6 m, H = 45 

m, = 18 kN/m
3
 , c = 0,  30

o⅔ q = 0,  = 70
o
) 
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Figure 3.6.  Comparison of vertical stresses along centreline of the stope (B = 6 m, H = 45 

m,  18 kN/m
3
 , c = 0,  30

o⅔ q = 0,  = 60
o
) 

 

Figures. 3.3 to 3.6 show the comparison of vertical stresses along the centreline among the 

proposed solutions, Li and Aubertin‟s (2009) numerical results, and Caceres Doerner‟s 

(2005) analytical solutions for stope inclinations of 90
o
, 80

o
, 70

o
 and 60

o
 respectively.  

Overall, the proposed analytical solution gives lower values than the vertical stresses 

obtained from Li and Aubertin‟s (2009) numerical solution and a close agreement with 

Caceres Doerner (2005) for all three values of .  A close match of the results is observed 

among all three at = 60
o
.  

3.2.2 Parametric studies 

Now that the proposed solution with ⅔ and K = Ko has been validated against two 

other independent methods, it is used in this section to carry out a parametric study on the 

effects of: 

(a) Stope inclination, 

(b) Aspect ratio (height : width), and 

(c) Fill properties. 

The parameters used are stated below each graph. 
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Effects of Stope Inclination  

Figure 3.7 shows the vertical stresses estimated from the proposed analytical solution for 

narrow stopes with inclination from 60
o
 to 90

o
, to the horizontal. By comparing the 

estimated vertical stresses with the overburden pressure, significant reductions of about 65-

70% of vertical stresses are observed toward the base of the stope. This shows that arching 

is taking place in transferring most of the overburden pressure to the walls in the form of 

shear stresses.  In addition, it is clearly seen that vertical stress decreases with the increase in 

stope inclination. Vertical stresses reduce about 20% for = 70
o
 and 30% for = 60

o
 when 

compared to the case of vertical stope.   Jahns and Brauner (vide Robertson et al. 1986) 

stated that when the inclination was less than 30
o
 to vertical, the error in vertical stress due 

to stope inclination was less than 10%. They may have underestimated the influence of 

stope inclination on stress distribution especially for a narrow stope. The possible reason for 

this stress reduction may due to the effect of stope inclination which induces part of the 

overburden pressure being transferred directly to the footwall under gravity. 

Effects of Aspect Ratio 

The effect of aspect ratio (height to width ratio) is examined by keeping the height of stope, 

H constant at 45 m and varying the width of stope, B from 4.5 m to 22.5 m.   Fig. 3.8 shows 

the effect of arching with respect to different stope geometries for cases where  = 70
o
. The 

effect of arching is more significant in the case of narrow stopes with higher aspect ratio. 

Besides, at any depth where z is greater than 5B, the vertical stresses remain approximately 

constant down to the base of the stope. In other words, the pressure exerted at the bottom of 

the stope is almost independent of the fill depth when H > 5B.  This depth will be slightly 

different for the other values of . 
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Figure 3.7. Comparison of vertical stresses along centreline for different stope inclinations 

(B = 6 m, H = 45 m 18 kN/m
3
 , c = 0, =⅔q =0) 

 

Figure 3.8.  Comparison of vertical stresses along centreline for different aspect ratios (H = 

45 m= 18 kN/m
3
 , c = 0, = ⅔ q = 0

o
,  = 70

o
) 
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Effects of Fill Properties 

The effects of friction angle and cohesion, c, of the backfill on vertical stress distribution 

are shown in Figs. 3.9 and 3.10, respectively.  The results obtained are compared with Li 

and Aubertin‟s (2009) numerical results.  For the comparison of friction angle (see Fig. 3.9), 

similar trends are observed between the proposed solutions and Li and Aubertin‟s (2009) 

solutions.  In both cases, the stress decreases with an increase in friction angle and it does 

not vary significantly when  is greater or equal to 30
o
. This indicates that arching is almost 

insensitive to  for its practical range (30
o
 – 40

o
), which also has been reported by Singh et 

al. (2010).   

In comparison, the influence of fill cohesion on stress distribution is more pronounced than 

friction angle. Similar trends are observed for both the present study and Li and Aubertin„s 

(2009) solutions as shown in Fig. 3.10. The vertical stress reduces considerably with 

increasing fill cohesion, c and approaches zero when c > 40 kPa for the case of  = 18 kN/m
3
 

or when (B-2) tends to zero, in general.   

From Eqs. 3.11 and 3.15 where q = 0 and z  > 0, z = 0 when (B-2)  = 0.  Therefore, for z 

  0,          . 

        and                   

gives     
  

              
  

             
  

              
        (3.24) 

Therefore, if     
  

              
 , vertical stress becomes zero and the entire fill load is 

taken by the walls. The effect of cohesion can be also seen from Eq. 3.18, which clearly 

shows that increase in cohesion reduces the vertical stress within the fill, as more fill load is 

being transferred to the wall. 

Figure 3.11 shows the stress variation along the stope centerline for a cohesionless material 

by varying the unit weight from14 kN/m
3
 to 22 kN/m

3
. It is observed that the vertical 

stresses increase proportionally with increasing unit weight. Similar results are also reported 

in Pirapakaran and Sivakugan (2006) for a vertical stope. It can be seen for all cases in Table 

3.1 that z is proportional to the unit weight , which is reflected in Fig. 3.11. 
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Figure 3.9. Comparison of vertical stresses along centreline for different friction angles (H 

= 45 m, B = 6 m,  =18kN/m
3
 ,  K = Ko, c = ⅔ q = 0

o
, = 75

o
) 

 

Figure 3.10. Comparison of vertical stresses along centreline for different fill cohesions c ( 

H = 45 m, B = 6 m 18 kN/m
3
 ,  K= Ko, 

⅔ q = 0
o
, = 75

o
) 
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Figure 3.11.  Comparison of vertical stresses along centreline for different backfill unit 

weights  (H = 45 m, B = 6 m,  K = Ko, c = 0 30
o⅔ q = 0

o = 75
o
) 

 

3.2.3 Discussion 

As uniformly distributed vertical stress across the horizontal plane has been assumed in the 

analytical model proposed herein, the average vertical stress at any depth, z will be constant 

across the span of the stope. This assumption differs from the non-uniform and 

asymmetrical vertical stress profile obtained from numerical results, where a lower vertical 

stress is observed close to the hanging wall and footwall due to arching action.  Further 

analytical work is required to consider non-uniformly distributed load, across the span of the 

stope.   

In addition, K is estimated solely based on material properties without any consideration of 

the stress state experienced by the backfill across the span. As estimated from numerical 

results (Chapter 6), the difference in K value from hangingwall to footwall increases as the 

stope inclination increases. Higher value is observed at hangingwall. K value also influences 

the prediction of lateral stress significantly (x = Kz). For instance, a comparison of lateral 

stresses along the centreline of 6 m x 45 m stope of different inclinations is shown in Fig. 

3.12. The lateral stresses estimated from the proposed solution (x = Kz  where K = Ko ) are 

higher than results of Li and Aubertin (2009) and Caceres Doerner (2005). It decreases as 
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the inclination increases. Similar trends are observed in Caceres Doerner‟s (2005) solutions. 

However, as seen in Fig. 3.12, the lateral stresses obtained from numerical analysis of Li 

and Aubertin‟s (2009) are insensitive to inclination. The expression of K appears to be one 

of the important contributing factors to this variation. Therefore, more attention should be 

discussed on these issues in future studies.  

 

 

Figure 3.12. Comparison of lateral stresses along centreline ( H = 45 m, = 18 kN/m
3
 , c = 

0, = 30
o⅔ q = 0) 
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3.2.4 Simple design charts  

In mine stopes containing granular backfills such as hydraulic fills where it is uncommon to 

have any surcharge, c = 0 and q = 0. Eq. 3.16 can be used to develop simple design charts 

for different combinations of  and z/B to minimize the computation efforts in the 

calculation of average vertical stress at any depth. Common range of and z/B for 

mining purposes is stated below (Rankine et al. 2006):   

    
  

  
          

 

 
        (3.25) 

                              

    :  5o 
- 50

o 

        : (1/3, 2/3, 1) of 

        : 50
o
, 60

o
, 70

o
, 80

o
 and 90

o 

    z/B: 1 – 10, 20, 50-100 

Figures 3.13 and 3.14 show separate design charts for K = Ko and K = Ka respectively. 

These design charts enable quick estimates of the average vertical normal stress at any depth 

of a granular backfill contained within an inclined stope.  This will be a valuable tool for 

practicing engineers working with minefills.  The use of the design charts is illustrated 

through a simple numerical example below.  

Given: A plane strain stope with B =10 m, z = 30 m, c = 0,  = = 30
o
,  = 18 kN/m

3
,  = 

80
o
, K = Ko.   

Required: v at z = 30 m depth. 

Solution: From Fig. 3.13 (graph of K’tan  vs ),  /= 1 and = 30
o
, K’tan = 0.35.  Using 

K’tan = 0.35, from the graph of v/B vs K’tan, z/B = 3, v/B = 1.24. Therefore, v = 

223.2 kN/m
2
. The results obtained using Eq. 3.16, where K’tan  = 0.3544, and v/B = 

1.2426 is that v = 223.67 kN/m
2
. They are almost identical with an error 0.21%.   

These design charts can be used for finding z at any depth within the stope but not 

necessarily at the bottom of stope. Referring to Figs 3.13 and 3.14, at K’tan= 0, there is no 

arching effect; therefore z is at its maximum value. As K’tan increases from 0 to 1, v/B 
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reduces exponentially towards a minimum constant value of 0.5 as K’tan approach 1 for 

any depth z/B. Comparing Figs 3.13 and 3.14 for any value of  and , K’tan is always 

higher when K = Ko, indicating that there is higher arching and therefore a smaller z value 

for K = Ko.  This can be explained by the larger horizontal stress when K = Ko, implying 

larger shear stress thus enabling a larger fraction of the fill load to be carried by the wall. 

As noted by Singh et al. (2010) that the product of K’ and tan, K’tan is the main factor  

that contributes to the variation of average vertical stress at any depth within the  granular 

backfill.  It can be seen from Figs 3.13 and 3.14 that, within the range 25
o
- 50

o
,  has little 

influence on the development of K’tan for a vertical stope. K’tan becomes more sensitive 

with increasing wall inclination especially for very rough walls, where get closer to . The 

variation of z/B becomes very small and tends to be constant with K’tan greater than 0.3. 

This explains the results given in Fig. 3.9 where there is very little difference in v as  

varies from 30
o
 to 50

o
. This also supports the observation of Singh et al. (2010) that arching 

is almost insensitive to  for the practical friction angle range. 
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Figure 3.13.  Design charts for estimating average vertical stress at any depth of stope for K 

= Ko  
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Figure 3.14.  Design charts for estimating average vertical stress at any depth of stope for K 

= Ka 
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3.3 Analytical expression for vertical stress within an inclined mine stope with 

non-parallel walls 

In reality, it is rare to find stope with exactly parallel walls. Most of them are stopes with 

non-parallel walls. They are usually trapezoids with both walls inclining at different angle. 

Shukla et al. (2009a) derived an equation to estimate the vertical stress of soils for a cone-

shaped structure by considering arching effects as an axi-symmetric problem. An attempt is 

made in this section to develop an analytical expression for vertical stress in a backfilled 

stope with non-parallel walls with both slopes leaning to the same side as shown in Fig. 

3.15. The following assumptions are made in the analysis: 

 

 The backfill is bounded between two non-parallel inclined walls with both walls 

are leaning to the same side at different angles, and to the horizontal. 

 Top and bottom widths of the stope should be greater than or equal to zero. 

 A two dimensional plane strain condition is considered. 

 At any depth, the vertical normal stresses are uniformly distributed laterally across 

the stope width. 

 As the wall-fill interface is very rough for actual stope condition, the shear plane is 

taken few grains away from the wall, and hence the interface friction angle, is 

taken as friction angle of backfill, .  

 

 

 

 

 

 

 

 

 

Figure 3.15:  Schematic diagram of an inclined stope with non-parallel walls (B < BT) 
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The geometry of the stope is shown in Fig. 3.15 with the necessary dimensions and angles 

where B = stope width at base, BT = stope width at top, H = height of the stope,  = wall 

inclination at hangingwall wall,  = wall inclination at footwall, S1 = shear force acting 

along hangingwall, S2 = shear force acting along footwall, N1 = normal force acting on 

hangingwall, N2 = normal force acting on footwall and q = surcharge on top of fill material. 

The thickness dz of the infinitesimal element is shown larger for clarity. Based on the 

geometry of Fig. 3.15, dimension of x1, x2, x3, x4, L1 and L2 can be defined as follows:  

     
      

  
      

      

    
     (3.26) 

     
      

  
      

      

    
     (3.27) 

     
   

  
      

   

    
      (3.28) 

     
   

  
      

   

    
      (3.29) 

                  
                   

        
   (3.30) 

                   
                

        
   (3.31) 

Area of the differential element,  

        
     

 
                 

                     

         
    (3.32) 

As derived in Section 3.2, Eq. 3.8, 3.9, 3.10 and 3.11 can be used again to express normal 

stress on the wall, n, and shear stress, acting at the wall when wall inclination is 

involved.          

                         (3.33) 

   
   

 
 
   

 
                     (3.34) 

                    (3.35) 

                        (3.36) 

                 ;       (3.37) 
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                     (3.38) 

              ;        (3.39) 

                          (3.40) 

where ni = normal stress on the wall, i = shear stress acting at the wall, Ki = lateral stress 

ratio incorporating wall inclination and i = fill cohesion incorporating wall inclination. The 

subscripts i = 1 and i =2 denote the hangingwall (left) and footwall (right) respectively. 

Self weight, dW of the element is given by substituting Eq. 3.32 into Astrip : 

             

i.e.,        
                     

          
       (3.41) 

Vertical force, V acting on the layer of depth z (refer Eq. 3.31 for L2) is: 

        

i.e.,        
                

        
       (3.42) 

Vertical force, V +dV acting on the layer of depth z+dz (refer Eq. 3.30 for L1) is: 

                  

i.e.,                 
                   

        
    (3.43) 

Shear force, S1 and S2 acting at the backfill-rock interface at depth z on the hangingwall and 

footwall respectively are given by: 

   
    

    
        (3.44) 

   
    

    
        (3.45) 

Normal force, N1 and N2 acting at the backfill-rock interface at depth z are:  

   
     

    
        (3.46) 

   
     

    
        (3.47) 
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For equilibrium of vertical forces on the element 

 (                                         (3.48) 

Substituting Eq.  3.41 through Eq. 3.47 into Eq.  3.48, gives   

           
                   

        
       

                

        
  

     
                     

         
    

    

    
     

    

    
     

     

    
     

     

    
        

i.e., 

  
             

        
    

                      

         
       

                   

        
     

                                     (3.49) 

Substituting Eq.  3.33, 3.35, 3.37 and 3.39 into Eq. 3.49,  

  
             

        
    

                      

         
       

                   

        
      

                                                          

–                            

i.e.    
            

        
     

           

        
     

           

        
        

                                   
             

        
    

            

        
      

            

         
        

           

        
                                  

         (3.50) 

Let 

     
            

        
          (3.51) 

   
           

        
        (3.52)  

                                    
             

        
 (3.53) 

   
            

        
       (3.54) 

   
           

        
                            (3.55) 
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Then 

                                 
         (3.56) 

The product of two infinitesimal small numbers tends to zero,  

                           

i.e., 
   

  
  

 

    
    

    

    
       (3.57) 

Equation 3.57 is a 1
st
 order differential equation, which on solving, gives 

             
               

 
  

 

 
                

    
      

 
 
       

      
 

 

         
     (3.58) 

At z = 0,     . This will give the value of C, the constant of integration, which will be 

substituted in the above to get final expression. C is determined as: 

         
     

 
 

  
 
 
  

      
      (3.59) 

The final expression for the vertical stress at depth z becomes: 

     
      

 
 
       

      
        

     

 
 

  
 
 
  

      
            (3.60) 

where  B and BT should be greater than or equal to zero. 

 

Eq. 3.60 is developed on the basis of known base width B (see Fig. 3.15).  Sometimes it is 

useful to have the expression in terms of the top width BT. An alternative expression (Eq. 

3.61) is developed to counter the situation as shown in Fig 3.16 where the width of base is 

unknown and the top width, BT of stope is used in the calculation. In other words, the 

expression is modified to present z in terms of BT instead of B, along with other parameters. 
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Figure 3.16.   Schematic diagram of an inclined stope with non-parallel walls (B > BT)  

  

   
       

 
 
        

      
     

   
 
   

   

 
 

   

 
 
  

      
        

     (3.61) 

where 

  
           

        
          (3.62) 

                                          (3.63) 

  
            

        
        (3.64) 

  
           

        
                               (3.65) 

and K1, K2,    and    as above, B and BT should be greater than or equal to zero. 
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3.3.1 Special cases 

The general solutions presented above, Eqs. 3.60 and 3.61, are not applicable for the cases 

when the walls are parallel (= ) or when the fill is bounded between a vertical wall and 

an inclined wall ( = 90
o
 or  = 90

o
).  The solutions can be modified to address these 

particular cases. This can also be seen as a verification exercise for those solutions proposed 

for non-parallel walls.  

Special case 1: Cohesionless material bounded between parallel walls    

When , the values of Q (computed from Eqs. 3.52 and 3.62) and S (computed from 

Eqs. 3.54 and 3.64) will be zero.  Therefore, Eqs. 3.60 and 3.61 will be independent of z, 

making these equations invalid.  

In this case, when , Eq. 3.57 can be redefined by simplifying Eqs. 3.33 to 3.40:   

        ;             
 ;           ;               

and Eqs. 3.51  to 3.55 become 

                       and             

   

  
  

 

    
    

    

    
       (3.57) 

i.e.,  
   

  
  

       

 
            (3.66) 

Let    
       

 
        (3.67) 

then   
   

  
              (3.68) 

Integrating Eq. 3.68 gives: 

      
 

 
            (3.69) 

where C is a constant of integration, which can be determined by applying the boundary 

conditions.  At z=0, z=q.  Therefore, 
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i.e.,     
 

 
                    (3.70) 

Substituting Eq. 3.67 into Eq. 3.70, gives 

   
  

       
     

       

 
      

       

 
 
    (3.71) 

Eq. 3.71 is the same as Eq. 3.15 where c = 0 and , which is the case of granular fills 

with very high wall roughness. 

Special case 2: Cohesionless material bounded between a vertical wall and an 

inclined wall 

 

 

(a)                          (b) 

Figure 3.17.  Stope with one vertical slope and one inclined slope 

Figure 3.17 shows two stopes where one of the two walls is vertical.  These are special cases 

of the more general stope as shown in Figure 3.15. Tangent 90
o
 beingsome of the 

expressions become undefined in computing z using Eqs. 3.60 and 3.61. Two analytical 

expressions (Eqs. 3.72 and 3.73) are derived here in the attempt to overcome these situations 

by substituting  or  with 90
o
 into Eq. 3.60.  To avoid numerical problems, 89.999

o
 is used 

in Eq. 3.60 to represent the vertical wall. The results are plotted in Figs 3.18 and 3.19. The 

numbers (for example 90-70) shown in plot legends indicate the slope angle of the walls, 

and respectively.  

 

 
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For vertical hangingwall and inclined footwall, where  as shown in Fig 

3.17(a),  Eq. 3.51 to Eq. 3.55 become 

     
            

        
   

         

      
     

   
           

        
 

        

      
           

   
            

        
 

         

      
   

                       
          

      
              

                 

  
        

      
                                                

Hence, Eq. 3.60 becomes 

    
    

 
 
        

    
          

       

 
 
         

    
                

          (3.72) 

 

Figure 3.18.  Average vertical stress calculated from Eq. 3.60 for < 90
o 
and Eq. 3.72 for  

= 90
o
 while  is fixed at 70

o
 (B = 46 m H = 45 m, = 18kN/m

3 c = 0, K = Ka
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For inclined hangingwall and vertical footwall, where and as shown in Fig 

3.17(b), Eq. 3.51 to Eq. 3.55 become 

     
            

        
   

         

      
      

  
           

        
 

        

      
     

                       
          

      
              

             

   
            

        
 

         

      
     

   
        

      
                                          

Hence, Eq. 3.60 becomes 

.     
    

 
 
        

    
           

        

 
 
         

    
              

(3.73) 

where B > H. 

 

Figure 3.19. Average vertical stress calculated from Eq. 3.60 for < 90
o 

and Eq. 3.73 for 

= 90
o
 while  is fixed at70

o
  (B = 46 m H = 45 m, = 18kN/m

3 c = 0, K = Ka
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In Fig 3.18,  is fixed at 70
o
 while  varies from 60

o
 to 90

o
. When  decreases from 89.999

o
 

to 60
o
, the average vertical stresses calculated based on Eq. 3.60 show a decreasing trend 

and all values fall below overburden pressure. As expected, for  = 70
o
, the vertical stress at 

any depth is the maximum when the hangingwall is vertical. When  = 90
o
, the average 

vertical stress calculated from Eq. 3.72 deviates from the trend of vertical stress when  <  

90
o
 and also exceed the overburden pressure, which is unlikely to happen. 

Similarly, in Fig 3.19 where  is fixed at 70
o
 while  decreases from 90

o
 to 60

o
, the average 

vertical stress calculated from Eq.3.60 show a slight increase from  = 89.999
o
 to 80

o
, and 

appears to converge towards values when  = 60
o
. However, when = 90

o
, the average 

vertical stress calculated using Eq. 3.73 shows no continuity from values obtained when  < 

90
o
 and is significantly less than the value obtained for  = 80

o
 which is unlikely.  

The loss of continuity found in both cases when or is taken as 90
o
 (see Figs 3.18 and 

3.19) indicates that Eq. 3.72 and 3.73 are not valid. This is because as the angle tends toward 

90
o
, tangent grows without bound, which may cause unexpected changes in parameters. 

Therefore, 89.999
o
 (instead of 90

o
) should be used in Eq. 3.60 when dealing with stope 

bounded between vertical and inclined walls to avoid any numerical explosions. This has 

been confirmed by numerical simulation using FLAC as shown in Fig. 3.20. Fig 3.20 shows 

the comparison between stress distributions derived using Eq. 3.60 with 89.999
o
 to represent 

vertical wall and the results from numerical modeling simulated using 90
o
 to represent 

vertical wall. The analytical results obtained are consistent with the numerical results.  
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Figure 3.20. Average vertical stress for stope bounded between vertical and inclined walls 

(B = 6 m for model 90
o
 – 70

o and BT = 6 m for model 70
o
 – 90

o H = 45 m, = 

18kN/m
3 c = 0

 

3.3.2 Comparison to results from numerical modeling 

Different combinations of  are examined in the following section using Eq. 3.60 for 

non-parallel walls situation and Eq. 3.71 is used to calculate the vertical stress for a stope 

with parallel walls. As concluded in Chapter 4, the combination of (K = Ko and 
 

 
) or (K 

= Ka and ) provide very good agreement with the results obtained from elasto-plastic 

numerical modeling where the Mohr-Coulomb constitutive model was used for the fill. 

Hence, K = Ka is used in conjunction with in this section.  The input parameters used 

in the calculations are: K = Ka, =18 kN/m
3
, c = 0 and = 30

o
, H = 45 m,  B = 6 m 

when  and BT = 6 m when .  For comparison with numerical solutions, same 

parameters and stope dimensions are used in modeling and the results are plotted in Figs 

3.21 and 3.22. The detail of numerical modeling approach will be discussed in Section 6.5 

(Chapter 6).  The input parameters and constitutive models for rock mass and backfill 

materials used in the modelling are tabulated in Table 6.2. 
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Figure 3.21. Vertical stress for stope with non-parallel walls where m 

The good agreement between numerical and analytical solutions is achieved for cases where 

.  As shown in Fig.3.21, the vertical stresses estimated using Eq. 3.60 (analytical 

solutions) are slightly lower than those from numerical modeling. With BT fixed at 6 m, the 

average vertical stress experienced by fill materials increases with the increase of angle 

for all solutions. However, the stress increment decreases when  approaches 90
o
 where 

the footwall becomes vertical and the effect of arching is less effective due to  lower aspect 

ratio. 

For both analytical and numerical solutions where as shown in Fig 3.22, the average 

vertical stress increases gradually with depth and with the increase of . Instead of 

maximum vertical stress occurring at the bottom of stope, the maximum vertical stresses 

estimated from analytical expression occur at a depth above the bottom of the stope and the 

plots start to curve inward, indicating a reduction of vertical stress experienced by the fill 

material, which is unlikely.  For example, with fixed at 60
o
 (see Fig. 3.22), the maximum 

vertical stress estimated from analytical expression occurs at aspect ratio z/B = 5 to z/B = 6 
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when  increases from 70
o
 to 90

o
 respectively. No such inward curve observed in the results 

of numerical modeling and the maximum vertical stress occurs at the base of the stope.  

Further investigation is needed to overcome this limitation.   

 

Figure 3.22. Vertical stress for stope with non-parallel walls where , B = 6 m 

 

  (a)                                        (b)                   (c)                                   (d) 

Figure 3.23.  Stopes with different combination of wall inclination ( and )  
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Figure 3.24. Comparison of average vertical stresses with depth for different combination of 

wall inclinations estimated from analytical equations (H = 150 m, B = 55 m,  K = Ka, c 

= 0 30
okN/m

3
) 

Figures 3.23 (a - d) shows the diagrams of stope geometry with different combination of 

wall inclination ( and ). The corresponding results are presented in Fig.3.24. In all four 

cases, B = 55 m and H = 150 m. As the overburden pressure at any depth z in case (d) is 

significantly less compared to that of calculated using z, a separate overburden line (shown 

in green) is plotted in Fig 3.24 to give better comparison for case (d). The line is computed 

by dividing the product of unit weight and area (Area) with stope width at depth z:  

                                           
                 

                      
  (3.74) 

It can be observed from the Fig. 3.24 that arching takes place in all situations and more in 

case (c) than the other three. Case (a) shows the lowest level of arching. With same 

overburden pressure z and base width B, the stress magnitude experienced by fill material 

at any depth z can be significantly varied due to the change in wall inclination.  
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3.4 Maximum vertical stress in inclined backfilled stope 

One of the main findings reported in Chapter 5 (see Fig 5.9) from the laboratory model tests 

is that the vertical stress is at its maximum when the stope is inclined at 80
o
 to the 

horizontal.  The attempt of this section is to check whether this is correct using the analytical 

expressions developed in this chapter.   

The vertical stress at any depth z for an inclined stope with c = 0 and q = 0 is given by 

    
  

       
     

       

 
        (3.21) 

where    
   

 
 
   

 
                      (3.9) 

Let   
       

 
;        (3.75) 

then     
 

 
               (3.76) 

Differentiating z with respect to  to determine maximum or minimum value of z, 

 
   

  
 

   

  
 
  

  
          (3.77) 

      
   

  
      

  

  
   

and 

 
  

  
  

    

 

   

  
             

   

  
       (3.78) 

As 
      

 
 is a monotonically decreasing function and has no extremum (See Appendix A1), 

   

  
   and therefore  

   

  
  becomes zero when 

  

  
  .  That is, when 

   

  
  . 

 
   

  
                              (3.79) 

i.e.,                        

       
      

   
       (3.80) 

   
 

 
      

      

   
 ,  and  0 <  < /2     (3.81) 
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Note: The location where dz/dz = 0 is independent of z. 

The extremum of Eq. 3.81 as a maximum or minimum can be identified through second 

order differentiation. From Eq. 3.77, 

 
   

  
 

   

  
 
  

  
    

 
    

   
 

 

  
 
   

  
  

  

  
 
   

  
 
   

   
   

At the extremum, 
  

  
  , so   

 
    

   
 

   

  
 
   

   
   

 
   

  
 

             

  
 

       
            

  
         (See Appendix A1)   (3.82) 

Next, 

 
   

   
  

    

 

    

   
                               (3.83) 

From Eq. 3.79, at the extremum  
   

  
  , 

        
          

      
  ,      (3.84) 

Substituting Eq. 3.84 into Eq.3.83, gives 

 
    

   
   

                 

      
      

Noting that                  , K  0, tan  >0, 

 
    

   
                         .       (3.85) 

Now, sin2 > 0 when 0 < 2 <.  That is, 0 < < /2.  So, the vertical stress z is a 

minimum when  

   
 

 
      

      

   
 , and  0 <  < /2     (3.81) 
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This analysis concludes that no maximum vertical stress falling within the range of 0 <  < 

/2, contradicting with the observation of the laboratory model tests, which gives the highest 

vertical stress around  = 80
o
.  The reason for this inconsistency is not clear at this stage, 

whether it is due to experimental anomalies or some factors that are not captured in the 

analytical model. Further investigation is required to assess this fact. 

3.5 Summary and conclusion 

This chapter develops analytical equations for the vertical stress at any depth, giving 

consideration to arching mechanism within inclined minefill stopes. The research 

undertaken can be divided into two major parts.  

The first part of the study extends Marston‟s theory to include generalized plane strain 

inclined stopes with parallel walls. Comparatively, the results obtained from this study agree 

well with other limited analytical and numerical results reported in the literature (e.g. 

Caceres Doerner (2005) and Li and Aubertin (2009)). A parametric study is undertaken to 

investigate the effect of various parameters involved in the proposed analytical expression. 

The results obtained reveal that stope geometry, fill properties and stope inclination are 

critical factors in predicting the stress distribution in mine stopes. 

The second part of the study relates to developing an analytical expression for plane strain 

inclined stopes with non-parallel walls where both walls leaning to the same side. The 

results reveal that the analytical expression developed is capable of estimating stress 

distribution within an inclined stope when . For the case where, stress reduction 

occurs at a depth above the bottom of the stope, which is unlikely. Further investigation is 

required to assess this limitation.  This part of the study also show that, with the same 

overburden pressure z, and base width B, the stress distribution experienced within a stope 

can be significantly varied due to the change in wall inclination.  

An analysis on stress optimization is also being carried out in this section. The result reveals 

that there is no maximum vertical stress within the range of 0 <  < /2 (practical range) 

using the analytical method, contradicting with the observation of the laboratory model tests.  

 

 

 



Chapter 5 

63 

 

 

Chapter 4 A simple analytical method to determine vertical 

stresses within a granular material contained in right 

vertical prisms and inclined mine fill stopes 

 

4.1 General 

In large and tall storage containers/structures such as silos, hoppers and mine stopes, the 

average vertical stress at a depth within the vertical prism/stope can be significantly less 

than what is given by the product of unit weight and depth due to arching within the 

backfills. Here, a significant fraction of the self weight of the backfills is transferred to the 

walls in the form of friction, thus reducing the vertical stress at any level (Aubertin et al. 

2003; Pirapakaran and Sivakugan 2006, 2007a, 2007b; Singh et al. 2010; Take and 

Valsangkar 2001).  

There are few analytical expressions available in the literature, as discussed in Chapter 2, to 

determine the vertical stresses considering arching effects based on equilibrium 

considerations. These expressions have been used extensively in computing the vertical 

stresses in underground mine fill stopes, with K assumed as Ka or Ko, and  assumed as  2/3 

 or  where  is the friction angle (Aubertin et al. 2003; Pirapakaran and Sivakugan 2007a; 

Singh et al. 2010).  

In spite of their simplicity and independence from the constitutive behaviour of the fill 

material, Marston‟s model and it‟s modifications have come a long way to date in 

geotechnical applications. Recent work by Li and Aubertin (2008, 2009), Li et al. (2005) 

and Pirapakaran and Sivakugan (2007a, 2007b) suggest that these simple methods are the 

primary tools for computing the average vertical stresses within backfilled stopes, especially 

the ones where the walls are vertical, and they compare well with the values derived from 

sophisticated numerical models and laboratory measurements.  

The purpose of this chapter is to propose an alternate analytical method that can be used to 

compute the average vertical stress within the granular material contained within a long 

container or stope, assuming plane strain conditions, which represents a storage structure in 

mining, civil and chemical engineering disciplines. The method is extended to accommodate 

a surcharge at the top of the granular material (section 4.4) and to storage structures with 
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sloping walls (section 4.5). Marston‟s based equations listed below, as discussed in Chapter 

2, will be used to compare the results obtained from present study for vertical right 

containments. 

For a stope with rectangular cross section in plan (Pirapakaran and Sivakugan 2007a): 

    
     

      
 

 

   
         

        

 
 
   

  
            (2.3) 

For square or circular stope (Pirapakaran and Sivakugan 2007a):  

    
     

      
        

        

 
       (2.4) 

For plane strain model (Marston 1930): 

   
  

       
         

       

 
         (2.5) 

where B = breadth (or diameter) of the stopes, L = length of the stope in plan, H = height of 

the fill,  = unit weight of the fill, c = cohesion of the fill,  = friction angle between the fill 

and the wall, K = lateral earth pressure coefficient, x/z at the wall, and x = horizontal 

normal stress.  

4.2 Derivations 

Initially, the derivation is carried out for stopes or containments where the walls are vertical. 

Later this is extended to inclined walls. 

4.2.1 Pascal‟s triangle  

The analytical method proposed herein uses the Pascal‟s triangle to develop a series 

solution. Let‟s divide the granular fill of height H and width B in Fig. 4.1 into M equal 

horizontal layers where each layer has thickness h and self weight V0. In the first layer (m = 

1), a fraction of the self weight V0 is transferred to the bottom of the layer (V1) and the rest is 

transferred to the wall (F1) in the form of shear force. Let‟s assume that the fraction 

transferred to the wall is x, and the one transferred to the second layer is 1-x, as shown in 

Fig. 4.1. Here, 0 < x < 1. 
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Figure 4.1.  Granular fill layers and the loads transferred to the bottom and the wall 

 

Table 4.1. Loads at the bottom of layers 1 to 7 

Layer No., m Load Vm acting at the bottom of the m
th
 layer 

1 V1 = V0 (1 - x) 

2 V2 = (V0 + V1) (1 - x) = V0(1 - x)(2 - x) 

3 V3 = (V0 + V2) (1 - x) = V0(1 - x)(3 - 3x + x
2
) 

4 V4 = (V0 + V3) (1 - x) = V0(1 - x)(4 - 6x + 4x
2 
- x

3
) 

5 V5 = (V0 + V4) (1 - x) = V0(1 - x)(5 - 10x + 10x
2 
- 5x

3 
+ x

4
) 

6 V6 = (V0 + V5) (1 - x) = V0(1 - x)(6 - 15x + 20x
2 
- 15x

3 
+ 6x

4 
-x

5
) 

7 V7 = (V0 + V6) (1 - x) = V0(1 - x)(7 - 21x + 35x
2 
- 35x

3 
+ 21x

4
-7x

5 
+ x

6
) 

 

 

The second layer (m = 2) carries its self weight V0 and the load V1 transferred from the upper 

layer. Therefore the load V2 transferred to the bottom of the second layer is (V0 + V1)(1 - x), 

and the load F2 transferred to the wall is (V0 + V1)x. It can be deduced that, in the m
th
 layer, 

the loads transferred to the bottom of the layer (Vm) and to the wall (Fm) are given by: 

                                  (4.1) 

m = 1

m = 2

m = 3

m

m = M -1

m = M

V1 = V0(1-x) F1 = V0 x

V2 = (V0+V1)(1-x)
F2 = (V0+V1) x

V3 = (V0+V2)(1-x) F3 = (V0+V2) x

Vm =(V0+Vm-1)(1-x)
Fm = (V0+Vm-1) x

h

H

B
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                              (4.2) 

The loads acting at the bottom of the top seven layers are summarised in Table 4.1. 

 

Figure 4.2.  Pascal‟s triangle 

 

It can be seen that the coefficients of the last term in Table 4.1, shown in bold, are the same 

as the entries in Pascal‟s triangle shown in Fig. 4.2, which is a triangular arrangement of the 

binomial coefficients (Chrystal 1964). These coefficients can be determined from the 

general expression of binomial coefficient involving factorials given by (Riley et al. 2002): 

   
 
  

  

        
        (4.3) 

From Table 4.1, the load transferred at the bottom of layer m can be written as: 

                      
     

     
         

       
    

          (4.4) 

where,        
     

 
  for i = 1, 2,..., m. Eq. 4.4 can be written as: 

                               
 
       

                                                        (4.5)  

For example, from Eq. 4.4, the vertical load at the bottom of the 7
th
 layer (m = 7) can be 

written as: 

                              
     

     
     

     
 ] 

1

1 1

21 1

3 3 11

1 4 6 4 1

1 15 510 10

1 16 61515

Layer 1:

Layer 2:

Layer 3:

Layer 4:

Layer 5:

Layer 6:

Layer 7: 1 17 72121 35 35

20
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where,        
     

 
   ,        

     
 
     ,        

     
 
    ,    

         
 
     ,        

     
 
    ,        

     
 
    , and    

         
 
   .  

In other words,  

                             
                    , 

which is the same expression given at the bottom of Table 4.1. 

Binomial expansion 

The binomial theorem states that (Riley et al. 2002):    

           
 
  

                     (4.6) 

Substituting a = -x and b = 1 in Eq. 4.6, 

                    
 
  

                

                               
 
  

            

                                   
 
            

 
  

       

                                      
 
  

                    
 
  

              

Therefore, 

                               
 
  

         

         
     

 
      

        

 
      (4.7) 

Substituting Eq. 4.7 into Eq. 4.5, the vertical normal load at the bottom of m
th
 layer can be 

written as: 

     
     

 
                 (4.8) 

Therefore, in a plane strain situation shown in Fig. 2.5(b), the vertical normal stress at the 

bottom of the m
th
 layer is given by: 
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                          (4.9)  

Substituting V0 = Bh, Eq. 4.9 becomes: 

     
     

 
                     (4.10) 

The above equation is the same for rectangular, square and circular stopes without any taper, 

where the cross section remains the same at all depths. 

4.2.2 Mathematical proof 

The equation 4.8 can be proved mathematically from first principles as follows. Assuming 

the layers are of uniform thickness of weight Vo, the load acting at the base of layer-1, V1 is   

                    (4.11) 

In the m
th
 layer, where m = 2,….,M, the load Vm is given by  

                   

                            (4.12) 

This is a linear, non-homogeneous first order difference equation with constant coefficients 

for Vm. This can be solved by finding the solution to the homogeneous equation, then adding 

on a particular solution. The initial condition Eq. 4.11 can then be used to evaluate the 

arbitrary constant and fully define the solution. 

The homogeneous equation is  

  
   

          
   

             (4.13) 

Assuming a solution of the form 

  
   

                     (4.14) 

the homogeneous Eq. 4.13 becomes 

                                       (4.15) 

For non-trivial solutions, 
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              (4.16) 

and 

  
   

                 (4.17) 

For a particular solution, try   
   

   where p is a constant.  Substituting into Eq. 4.12, 

                   

                 

   
       

 
        (4.18) 

Therefore, the general solution is 

      
   

   
   

 

               
       

 
         (4.19) 

Now, using the initial condition Eq. 4.11 with m = 1, the solution specific to this problem is 

            

                          
       

 
          (4.20) 

Cancelling the common factor (1-x), 

      
  

 
 

    
  

 
            (4.21) 

Hence, the load in layer-m is 

     
  

 
            

       

 
   

   
               

  

 
         (4.22) 

which is the same as Eq. 4.8. 
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4.2.3 Determination of x, fraction of load transferred to the walls 

1. Long narrow stopes under plane strain conditions  

In plane strain situation, considering unit width, the vertical normal stress at the bottom of 

the m
th
 layer is given by: 

   
  

 
 

              

 
         (4.23) 

The horizontal normal stress at the wall is Kz. Assuming that the frictional coefficient at 

the wall-fill interface is tan , the maximum shear stress mobilized at the wall can be 

determined using the Mohr-Coulomb strength criterion as Kz tan, and can be written as: 

         
              

 
       (4.24) 

The shear load is divided between the two walls, and the shear stress at the wall can also be 

derived from Fm as: 

   
  

  
 

          

  
        (4.25) 

Equating Eqs. 4.24 and 4.25,  

              
       

 
             

Therefore, 

  
 

   
         (4.26) 

where    
       

 
 . 

2. Stopes with rectangular or square cross-sections 

Consider a stope with M equal layers with height H, length, L and width B. The height of 

each layer is assumed as h, where h = H/M.  

 

Weight of each layer,  

 Vo = BLh        (4.27) 

The shearing force or load transferred to the walls for a rectangular model is   
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                              (4.28a) 

and 

                     (4.28b) 

 The vertical stress acting at the base of layer-m gives 

       
  

  
 

              

  
            (4.29) 

 Substituting Eq.4.29  into Eq.4.28  

                     
              

  
         

           
     

  
       

    
  

    
        (4.30) 

 where       
             

  
          

 For square cross-sectional, at which L = B,  

 Vo = B2
h        (4.31) 

   
  

    
        (4.32) 

 where    
       

 
     

 

3. Stopes with circular cross-sections 

 

Consider a stope with M equal layers with height H and radius R. The height of each layer is 

assumed as h, where h = H/M.  

Weight of each layer is,  

 

 Vo = R
2
h        (4.33) 

The shearing force or load transferred to the walls for a circular model is   

                           (4.34) 
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The vertical stress acting at the base of layer-m gives 

 

       
  

   
 

              

   
            (4.35) 

Thus,                 
              

   
         

      
     

 
       

   
  

    
        (4.36) 

 where      
        

 
  or  with B = 2R,   c becomes       

        

 
  . 

 The summary of -equation is tabulated in Table 4.2. 

Table 4.2.  Expressions of -equation for different cross-sectional shape 

   Model  Width  Length  Radius   Diameter  Area Vo 

Plane strain B - - -  Bh 
       

 
 

Square B B - -  B2
h 

       

 
 

Rectangular B L - - L BLh 
            

  
 

Circular - - R B R
 R

2
h 

       

 
 

 or 

       

 
 

 

4.3 Results and discussion 

The use of the above method is illustrated through a simple numerical example below. 

Given: A plane strain stope with B = 10 m, H = 60 m, c = 0,  = 30

,  = 18 kN/m

3
 

Solution: Let‟s assume  =  = 30

, K = K0 and divide the fill into 100 layers (i.e. M = 100 

and h = 0.6 m).  
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From Jaky (1948), K0 = 1 - sin = 0.5. 

Therefore, Vo =108 kN,    
       

 
  0.03464, and from Eq. 4.26, x = 0.03348. 

Substituting these values in Eq. 4.9, for M = 100, z = 301.4 kPa at the bottom of the fill.  

Using Marston‟s equation Eq. 2.5 (with K = Ko and =  separately, z = 302.0 kPa, which 

is in very good agreement with the value predicted by the alternate method proposed herein. 

The predictions are better for larger values of M (i.e. more slices) and the computations are 

not any harder as the equations are the same. With 100 slices (M = 100), the predictions are 

within 1% of the values obtained from the Marston‟s equation. The variation of z with 

depth, when the above fill is divided into 10, 50 and 100 layers, is shown in Fig. 4.3. It is 

quite clear that there is very little improvement by dividing the fill into more than 50 layers. 

Nevertheless, the computational effort is the same for any number of layers. 

 

 

Figure 4.3.  Variation of vertical normal stress with depth in a strip stope compared with 

Marston‟s method for several number of slices (M) in the proposed method, where B = 10 

m, H = 60 m,  = 18 kN/m
3
, c = 0,  = 30

 
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The vertical normal stresses estimated from the proposed method and the Marston‟s 

equation calculated using Eqs. 2.4 and 2.5 are shown in Fig. 4.4, for long strip, square and 

circular stopes of B = 10 m, H = 60 m, c = 0,  = 18 kN/m
3
,  =  = 30


, M = 100. In square 

and circular stopes, since the walls are present right around the entire perimeter, there is 

substantial stress reduction taking place due to arching. The stress at the bottom of a square 

or circular stope is approximately half that in a long strip. 

 

 

Figure 4.4.  Variation of vertical normal stress within a strip, square and circular stopes  

where B = 10 m, H = 60 m,  = 18 kN/m
3
, c = 0,  =  = 30


, M = 100 

 

The solutions obtained from the proposed method are compared with the numerical results 

obtained by Li and Aubertin (2009) and Pirapakaran and Sivakugan (2006, 2007a) for strip 

(plane strain), circular (axi-symmetric) and square models in Figs. 4.5 (a - b). The numerical 

modeling by both Li and Aubertin (2009) and Pirapakaran and Sivakugan (2006) are carried 

out using an explicit finite difference code FLAC/FLAC
3D

 where the backfill is assumed to 

be an elasto-plastic material following the Mohr-Coulomb failure criterion.  
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 Figure 4.5.  Variation of vertical normal stress: (a) within a strip stope with B = 6 m, H = 45 

m, = 18 kN/m
3
, c = 0,  = 30


; and (b) within square and circular stopes with B = 10 m, H 

= 60 m,  = 17.66 kN/m
3
, c = 0,  = 30

 

Four different combinations of K (Ko or  Ka) and ( orof have been used in the 

proposed analytical expression for comparison with the results from the elasto-plastic 

numerical model.  It can be seen from Fig. 4.5 that good agreement is observed between 

numerical results and the proposed solutions for two of the four combinations: (a) K = Ko 

and and (b) K = Ka  and .  These K- combinations agree well with the 

comments of: 

 Li and Aubertin (2008) where they stated that the stress state is best described by 

considering the backfill is close to an active state (K = Ka) and the wall-fill interface is 

very rough and hence , and  

 Pirapakaran and Sivakugan (2007a) where they stated that K = Ko and  gives 

a very close match to numerical results. 
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4.4 Proposed method with surcharge at the top 

It is not common to have a surcharge at the top of the mine fill within a stope or on top of 

the granular material within a silo. Nevertheless, the analytical method proposed herein can 

be extended to incorporate the surcharge load Q at the top of the fill. Here, Eq. 4.5 becomes: 

                     
 
                 

 
     

   
 
       (4.37) 

From binomial expansion, 

           
 
  

                 (4.38) 

Substituting Eqs. (4.7), (4.38) into Eq. (4.37), 

     
     

 
                        (4.39) 

Assuming that the surcharge load (Q) is in the form of a uniformly distributed pressure q at 

the top, the general expression for vertical stress at the bottom of a stope of any cross section 

is given by: 

     
     

 
                         (4.40) 

It is only the value of x that depends on the cross section. The way to compute x was 

discussed before in section 4.2.3. 

4.5 Proposed method for stopes and containments with inclined walls 

The analytical solution presented above can be extended to evaluate the vertical stress 

within an inclined stope as well.  Herein, an attempt is made to extend this to inclined stopes 

with parallel walls, assuming a plane strain model. As Eq. 4.8 is dependent only on self 

weight of layer, Vo and fraction of load transferred to the wall, x, therefore, for stope with 

parallel walls (hanging and foot walls), Eq. 4.8 can be used to estimate the vertical normal 

load at the bottom of m
th
 layer. Modification of the function of x is required to incorporate 

the wall inclination which will be discussed in this section. 

From the basic stress transformation of soil mechanics (Das 1998), as discussed in Chapter 

3, Eqs. 3.9-3.11 can be used to calculate the shear stress macting at the inclined walls with 

slope angle to the horizontal. For granular fill where c = 0, these equation can be reduced 

to  
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                    (4.41) 

where 

   
   

 
 
   

 
                       (3.9) 

From section 4.2.3, Eq. 4.23 gives  

        
  

 
 

              

 
      (4.23) 

Hence,  Eq. 4.24 becomes 

         
              

 
      (4.42) 

Since the walls are inclined, the shear load will not be shared by the two walls equally. 

However, the shear stress between the walls cannot be separated. Therefore, the average 

shear stress, m at the two walls is used.    

Fm is the total shear load carried by the two walls at mth layer. The shear load, Fm is divided 

between the two walls for a plane strain model, and can be expressed as: 

                         (4.43) 

Hence,  

   
        

 
             

   
 

   
                (4.26) 

where    
        

 
 . 

It can be seen that all derivations and expressions are very similar to those for vertical walls, 

except for K’ which replaces K. 
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Figure 4.6. Variation of vertical normal stress with depth in a strip inclined stope compared 

with extension of Marston‟s equation (Eq. 3.15) for several number of slices (M) in the 

proposed method, where B = 6 m, H = 45 m,  = 18kN/m
3
, c = 0 and =30

o
,  = 70

o
 

 

The prediction with the method proposed herein is compared with the expression developed 

in Chapter 3 (Eq.3.15) for an inclined stope. Fig. 4.6 shows the variation of z with depth, 

with M = 10, 50 and 100. Similar conclusions as for vertical case can be drawn where very 

little or no significant improvement is observed with M > 50, indicating the convergence of 

z for large M.  Comparison of vertical normal stresses for different stope inclinations, 

estimated from the proposed method and Eq.3.15, is shown in Fig. 4.7.  Both equations 

show very good agreement.  Therefore, by replacing K with K’, Eq. 4.10 can still be used to 

estimate the vertical stress at any depth of an inclined stope in a plane strain situation.  
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Figure 4.7.  Comparison of vertical stresses for different stope inclination where B = 6 m, H 

= 45 m 18 kN/m
3
 ,K = Ka,  c = 0, =q = 0, M = 45 

4.6 Summary and conclusions 

A simple analytical method to compute the vertical stresses within a right vertical or 

inclined containment, filled with a granular material, is proposed. This situation occurs in 

underground mine stopes backfilled with granular mine fills such as hydraulic fills, and silos 

storing grains, sugar, etc. Due to the wall friction, a significant fraction of the fill weight is 

carried by the wall. The normal vertical stress at the bottom of the stope, irrespective of the 

cross sectional shape, is given by: 

               
     

 
                                         (4.40)                                                          

where the fill is divided into m layers of thickness h, and q is the surcharge pressure at the 

top of the fill. The value of x is given by general equation,  

   


  
              (4.29) 
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where   = 
           

  
 for rectangular stopes and  = 

       

 
 for square and circular 

stopes. For long strips, a special case of a rectangular stopes,  = 
       

 
 for vertical stope 

and  = 
        

 
   for inclined stope. 

The values of vertical normal stresses computed for a long strip, square and circular cross 

sections are in excellent agreement with those computed from Marston‟s theory. Recent 

research has shown that Marston‟s expression and its extensions still remain the main 

analytical tool for estimating the average vertical stress at any depth within a mine fill. 

Validation of these analytical methods against numerical and laboratory model tests have 

been found to be satisfactory. Comparison with elasto-plastic numerical modeling results 

also show that, the proposed method is in very good agreement, provided the K and  values 

are taken as follows: (a) K = K0 and  = 2/3, or (b) K = Ka and  = .   

Here, the analytical model is calibrated against numerical results by changing the 

combination of K and .  It would be recommended in the future research that a friction force 

factor, kfriction is introduced in the equation to allow for the cases in which the maximum 

friction force is not reached while choosing K and  based on physical situation rather than 

calibration requirements.  For example, if K = Ko and are more appropriate to be used 

from the physical conditions of a stope, these values will be used in the analytical model by 

finding an appropriate kfriction value such that the vertical normal stress z computed from the 

analytical model agrees well with the corresponding numerical results. 

The developed analytical expressions are of particular interest in mining geomechanics, 

where it is necessary to determine the vertical stresses within the mine stopes that can be 

approximated as right vertical/inclined prisms and silos used for storing flour, sugar and 

grains. More than the expressions, the method itself would pave the way for its extended 

application to inclined stopes with different cross sectional shape and hoppers.   
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Chapter 5 Laboratory model of an inclined stope 

There are three major techniques, namely analytical modeling, numerical modeling and 

laboratory/field measurements, that have been undertaken in the past to investigate the stress 

distribution within the backfill inside vertical and inclined stopes (Aubertin et al. 2003; 

Caceres Doerner 2005; DeSouza and Dirige 2002; Fahey et al. 2009; Knutsson 1981; Li and 

Aubertin 2008, 2009; Li et al. 2005, 2007; Pierce 2001; Pirapakaran and Sivakugan 2006, 

2007a).  So far, the only laboratory model tests conducted are to study the stress distribution 

within a vertical stope by Pirapakaran and Sivakugan (2007b) and no model tests have been 

developed to study the effects of stope inclination on stress distribution. Most of the present 

studies on inclined stopes are based on numerical modeling and there is limited work on 

analytical modeling. At present, these models are compared against each other. Therefore, a 

physical model that can exhibit arching effect and simulate the filling process within an 

inclined backfill stope, enabling vertical stress measurements, is very valuable.  

The objective of this study is to extend the laboratory model of Pirapakaran and Sivakugan 

(2007b) to a plane strain inclined stope in order to study the vertical stress variation with 

depth within inclined backfill stopes. This also serves as a validation tool for comparing 

with analytical and numerical modeling results. Pore water pressure is not considered in the 

model, and the fill can be assumed dry.  

5.1 Properties of backfilled material 

The purpose of this exercise is to develop a small-scale laboratory model, using which a 

series of tests can be carried out that can be compared against the value derived from the 

analytical or numerical models.  It is not necessary that real hydraulic fills be used in the 

model tests. It is only required that the same properties be used in the numerical and 

analytical studies for a meaningful comparison. Having this in mind, it is decided to use 

ordinary river sand which is very similar to hydraulic fills in the entire laboratory test 

program.  From past studies, it is observed that the factors such as density, friction angle, 

etc, that influence the vertical stress distribution are the same for this sand and common 

hydraulic fills used as backfills in mines (see Table 5.1). Some hydraulic fills can have 

relatively higher densities due to their larger specific gravity values, which are attributed to 

the mineral compositions. In dry condition, both materials are similar in their physical and 

mechanical characteristics.  In arching study, the influencing factors are usually related to 
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the confinement of fill material, stope geometry and relative interface characteristics. They 

may differ in the magnitude of the results due to the differences in unit weight.  However, 

both should give similar arching behavior and stress profile. Further, this sand has been used 

at James Cook University Geomechanics laboratory for several years and the parameters 

determined can be cross checked.  In addition, for future research at James Cook University, 

where they will use the same sand, a meaningful comparison can be made with the data 

reported herein. 

As reported by Li and Aubertin (2009) and Singh et al. (2010), the vertical stress within the 

granular fill contained in a stope or silo is insensitive to the friction angle, provided the 

friction angle is greater than 30
o
. The numerical and analytical studies show the same 

results.   Therefore, no attempt is made to carry out the laboratory model tests at too many 

different relative densities, Dr (or friction angles, ). Tests are carried out only at 30% and 

60% relative densities for a uniformly graded sand with effective grain size D10 = 0.13 mm 

and uniformity coefficient Cu = 3.1. The same properties are used in analytical and 

numerical studies for comparison in Chapter 6. 

 

Table 5.1. Material properties for sand and minefill (Geotechnical info.com 2011; Rankine 

et al. 2006) 

Properties Sand Fill 

Dry density, d  (kg/m
3
) 1345 - 2370 1800 - 4400 

Friction angle,  (
o
) 30 - 45 30 - 45 

Cohesion, c 0 0   in dry condition 

Poisson‟s ratio,  Depends on % of relative 

density 

0.15~0.40 

Relative density, Dr (%) Depends on degree of 

compaction 

45-80 on placement 

 

A series of laboratory tests were carried out to determine the properties of the granular 

backfill material as per Australian standards listed in Table 5.2.  The interfacial friction 

angle was determined using modified direct shear test (Pirapakaran 2008) where the 

conventional direct shear box test was modified by replacing the lower half of the apparatus 

with Perspex flat box with different roughness surfaces. The same grade of sandpaper 
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mounted onto the model stope wall was used here to provide the roughness.  The low wall 

roughness in Table 5.4 implies Perspex walls with no sandpaper attached. 

The sand specimens were prepared with relative densities ranging from loose to dense 

conditions in order to establish a relationship between the material parameter (friction angle, 

interfacial friction angle and elastic modulus) and relative density (see Appendix B1).  The 

physical properties were summarized in Table 5.3.  The friction angles and interfacial 

friction angles tabulated in Tables 5.3 and 5.4 were adjusted for the plane strain condition 

within the stope (Sivakugan and Das 2010). Figure 5.1 showed the particle size distribution 

of the sandy backfill material used in the study. 

 

 

Figure 5.1.  Particle size distribtuion curve of granular backfill material 
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Table 5.2.  Laboratory test program for the granular soil 

Properties  Method /Australian Standard used  

Grain size distribution AS1289.3.6.2-1995 (Standards Australia 1995) 

Specific gravity AS 1289.3.5.1-2006 (Standards Australia 2006)  

Maximum and 

minimum density 

AS1289.5.5.1- 1998 (Standards Australia 1998a)  

Friction angle and 

dilation angle  of sand 

AS1289.6.2.2-1998 (Standards Australia 1998b) 

Plane strain friction angle,        
              

whereds is the friction angle from direct shear (Sivakugan and 

Das 2010). 

Dilation angle,                     

where peak and cv are the peak and residual friction angle 

respectively (Bolton 1986). 

Interface friction 

angle 

Modified direct shear test  (Pirapakaran 2008) 

Elastic modulus AS1289.6.6.1-1998 (Standards Australia 1998c) 

Oedometer modulus,   
     

           
       and 

                                         
           

     
  

where E = Young‟s modulus and  = Poisson‟s ratio ranging 

from 0.2 in loose state to 0.4 in dense state 
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Table 5.3.  Physical properties of backfilled granular material 

Properties 
Relative density 

(30%) (60%) 

Initial moisture content, w( 0.24 0.24 

Specific gravity, Gs 2.58 2.58 

Young‟s Modulus, E (kPa) 420 420 

Minimum dry density, d,min (kg/m
3
) 1430 1430 

Maximum dry density, d,max (kg/m
3
) 1676 1676 

Dry density, d (kg/m
3
) 1496 1568 

Peak friction angle, peak (
o
) 40 41 

Residual friction angle, cv (
o
) 38 38 

Dilation angle,  (
o
) 2.5 3.75 

 

Table 5.4. Summary of interface friction angle for different wall roughness 

Properties 
Relative density 

(30%) (60%) 

   

Interface friction angle – high wall roughness, R (
o
) 39 40 

Interface friction angle – medium wall roughness, M (
o
) 32.5 33.6 

Interface friction angle – low wall roughness, S (
o
) 27 28 

 

5.2 Laboratory model 

Based on a concept similar to that of the experimental model developed by Pirapakaran and 

Sivakugan (2007b), a small scaled inclined plane strain model with additional strain gauges 

attached to the outer side of the long wall of framework was developed to study stresses 

within the granular fill as well as stresses acting on the hangingwall and footwall. The model 

of Pirapakaran and Sivakugan (2007b) replicated vertical stopes without using strain gauges. 

To separate the self weight of the fill carried by the hangingwall and the footwall, it was 

necessary to use strain gauges. This was not the case with the vertical walls, where they 

were the same and hence the wall load was simply apportioned equally to both walls. A 

brief description of the new model for the inclined stope was provided below. 
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5.2.1 Apparatus 

Fig. 5.2(a) shows the diagram of the complete setup to scale, and Fig. 5.2(b) is a photograph 

of the same. The connections and the dimensions that cannot be shown in Fig. 5.2 are shown 

through Fig. 5.3. The apparatus consists of the following components: 

 A model stope, made of Perspex, which can be adjusted to inclination of 90
o
, 80

o
, 75

o
 

and 70
o
 to the horizontal by placing it on the appropriate base (Fig. 5.3); 

 A metal frame from which the stope is suspended as shown in Figs. 5.2(a) and 5.2(b); 

 A 60 kg-balance located below the stope with a clearance of less than 1 mm between 

the base of the stope and the balance, to measure the weight of backfill transferred to 

the base; 

 A high precision load cell connected to a digital readout unit, to measure the backfill 

weight transferred to both the walls of the stope;   

 8 strain gauges (4 on each side) mounted at equal spacing along the centerline of outer 

side of stope, which are connected to a data logger TDS-602 unit, to measure the 

deformation experienced by the walls due to the loading on both walls (hangingwall 

and footwall) separately. These readings are used as the basis to apportion the wall 

load between the two walls; and 

 A funnel with adjustable opening, which is used to place the backfill material onto the 

stope.  The relative density can be controlled by varying the mass of falling material 

through the opening (depositional intensity).  Due to the space limitation, the 

deposition of the sand into the box is done from a prescribed height. As the depth of 

the soil is substantial, differences in relative density may occur through the height of 

the specimen.  Therefore, the relative density used throughout the text is referred to as 

average relative density within the stope. 

The stope with length (L) to width (B) ratio of 5 and height of the model to width ratio of 9 

is adopted. Pirapakaran (2008) carried out numerical modeling of 3-dimensional stopes of 

different L/B ratios and concluded that the stress profiles remain approximately constant for 

L/B > 4. Therefore, a model with L/B = 5 is suitable to model plane strain condition. The 

dimensions of the model stope used in this study are: 

 Shortest width of the model (between hangingwall and footwall): 100 mm 
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 Length of the model: 500 mm 

 Height of the model: 900 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                       (b) 

Figure 5.2. (a) The diagram of the apparatus to scale and (b) a photograph of the laboratory 

experimental model 
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Figure 5.3.   Further details of the model stope 
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Depending on the surface roughness required, sandpapers of two different grades are glued 

to the inner wall surface of Perspex model stope to represent medium and high roughness of 

the wall.  The low wall roughness is represented by the original smooth surface of 

framework. Table 5.5 lists the material used for different surface roughness and their trade 

names. Selleys KWIK GRIP contact adhesive is used to attach the sandpaper to the wall.  

 

Table 5.5.  Sandpaper used to represent different wall roughness 

Wall roughness modeled Material Grade of sandpaper 

Low Original surface of 

Perspex 

No sandpaper 

 

Medium Sandpaper KMCA P1200 Wet/Dry S85 

Silicon Carbide electro coated 

water proof abrasive paper 

High Sandpaper KMCA Garnet G62 P40 

Garnet electro coated dry sanding 

abrasive paper 

 

5.2.2 Strain gauges 

In vertical stopes, the self weight of the fill carried by the stope walls is shared equally 

between the two walls. In the case of inclined stopes, the self weight carried by the two 

walls can be quite different; footwall will carry a larger fraction than the hangingwall. The 

high precision load cell simply measures the fraction of the self weight that is jointly carried 

by the two walls. To separate the components carried by the hangingwall and the footwall, 

strain gauges are employed (Dally and Riley 1991; Window and Holister 1982). When 

backfill material is loaded into the stope, there will be minor deformations on the Perspex 

walls.  As the intention of this experiment is to determine the ratio of loads acting on 

footwall compared to hangingwall, single linear-position TML strain gauges (PFL-30-11-

3L) are used for this purpose.  CN CYANOACRYLATE adhesive is used to attach the TML 

strain gauge to the stope wall at four locations on both hanging and footwall walls. Fig. 5.4 

and Table 5.6 show the location of strain gauges in the laboratory model. As it is difficult to 

deduce the stress experienced by the wall through single linearly positioned strain gauge, a 

simple method is introduced to apportion the total load into the fraction carried by the 

hangingwall and the footwall. 
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                (b) 

 

 

 

 

(a)  

  

Figure 5.4.  (a) Schematic diagram of strain gauges‟ positions (b) A close up view of strain 

gauge to show how it was installed 

 

Table 5.6.  Heights of strain gauges from the base of stope 

Inclination 

to the 

horizontal 

(degrees) 

Vertical height of strain gauge from base (mm) 

Front (Hangingwall)  Rear (Footwall) 

ST1 ST2 ST3 ST4  ST5 ST6 ST7 ST8 

90 739.0 539.0 339.0 139.0  784.0 584.0 384.0 184.0 

80 727.8 530.8 333.8 136.9  750.4 553.5 356.5 159.5 

75 713.8 520.6 327.4 134.3  725.4 532.2 339.0 145.9 

70 694.4 506.5 318.6 130.6  694.4 506.5 318.6 130.6 
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The wall loads carried by the hangingwall and footwall are related to the normal stresses 

acting on them. The normal stresses on the stope walls can be approximated as point loads 

distributed along the walls.  These normal stresses (or the equivalent point loads) are 

measures of the wall loads.  The strain gauge readings are therefore measures of these 

distributed point loads.  The simplistic calibration is carried out on the empty stope lying flat 

on the two supports.  Point loads are applied at the location of the strain gauges and the 

loads are plotted against the strain (see Fig 5.5). It is noted that, in all cases the strain gauge 

readings increase linearly with the applied loading. The average values of the four strain 

gauges are used as the basis for apportioning the total wall load (i.e. hangingwall plus 

footwall) measured by the load cell to the hangingwall and the footwall. The calibration 

technique used is simple and crude; however, it can be seen later (Table 5.8) that the 

apportioning carried out on the experimental results match the numerical values calculated 

using stress transformation concept of soil mechanics. 

 

 

Figure 5.5.  Calibration results of strain gauges for stope with inclination 80
o
 and low wall 

roughness (see Appendix B2 for medium and rough wall roughness) 
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5.2.3 Methodology and Interpretation 

The following procedure had been used to perform the laboratory tests. To ensure 

reproducibility, the tests were carried out in triplicate and average values were used for each 

combination based on the inclination, surface roughness and relative density of the material. 

1. For each test, the mass of backfill material for the desired relative density was 

determined in order to maintain the final aspect ratio of vertical-height/span-width = 

7, and the material was then split evenly among 7 containers. The material in each 

container was further split into 6 equal portions, enabling the stope be filled in 42 

equal layers (see Fig. 5.6).   

2. The model as shown in Fig. 5.2 was setup with a small gap (less than 1 mm) between 

the stope and the weighing scale.   As the granular material used in the test had 

particle size smaller than 1 mm, less than 100 g (about 7% - 8% of the material 

required for a single pour or 0.2% of the material required to complete the filling) of 

material will flow through the gap at the first stage of filling. As the influence was 

insignificant, this small fraction of material was neglected in the test.  

3. Depending on the density required, the opening of funnel was adjusted to the desired 

depositional intensity, where the pouring rate was pre-calibrated for each model.  

4. The stope was filled in equal layers (pours) with 6 equal layers from each container. 

Overall, 42 pours were required to complete filling the stope (see Fig 5.6).  The 

readings of balance and load cell at the end of each pour were recorded. The readings 

of strain gauges were recorded directly by data logger. 

5. At the end of the test, the height of fill material in the stope was taken, and the stope 

was emptied. The fill material was then recollected and weighed.  From this, the 

relative density was determined. 

Simple calculations had been performed to study the arching behavior of fill material based 

on the readings recorded from the weighing scale and load cell.  When the stope was filled 

to a height of h above the base of the stope, part of the fill weight was transferred to the 

bottom of the stope, and the remaining weight was transferred to the walls due to arching 

effect. 
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When the stope was filled up to height h, the proportions of fill weight were defined as: Ww 

= the fill weight transferred to the wall of stope (recorded by load cell), Wb = the fill weight 

acting at the base of stope (recorded by scale), and W = the total fill weight. 

The average vertical stress acting at the base of the stope at fill height of h was  

v = Wb/(BL)                                                      (5.1) 

and  

  W =Ww +Wb                                   (5.2) 

The ratio of load acting at footwall (FFW) to that of hangingwall (FHW) was calculated as: 

  
   

   
 

  
                                

                                   
  

   
 

 
     (5.3) 

where i represented the index of summation for the pairs of strain gauges (ST5, ST1)1, (ST6, 

ST2)2, (ST7, ST3)3 and (ST8, ST4)4.  The average variation from the mean was less than 

14%. The load cell reading was apportioned on the basis of this ratio determined from the 

strain gauge readings. 

 

Figure 5.6.  Schematic diagram of equal filling layers and corresponding aspect ratios 
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To investigate the stress developments within the stope, the following cases as shown in 

Table 5.7 were considered in the model. 

 Four different slope angles  (90
o
, 80

o
, 75

o
, 70

o
 to the horizontal)  

 Three different wall roughnesses (low, medium and high)     

 Two different relative densities (30% and 60%). As similar trend of results 

were obtained for relative density of 30% and 60%, the results of 30% relative 

density were given in the Appendix B3. 

 Aspect ratio (vertical-height/span-width) of 1 to 7 for all the cases above. 

It should be noted that symbol such as 70R60 used in this study identified the test conducted 

in the laboratory model stope with 70

 inclination to the horizontal having high wall 

roughness, and  granular backfill with relative density of 60%. Using the readings obtained 

from the load cell and the balance, it was possible to separate the load transferred to the base 

and the wall, and hence computed the average vertical normal stress at the base of the stope. 

This could be done at every stage of filling and hence the plots of average vertical stress 

against the depth could be generated. In addition, the above data obtained from a single pour 

could also be used for developing v – z plots for stopes of other aspects ratios such as 1:1, 

1:2...1:7 (see Fig. 5.6). The 42 stages of filling represented 42 different aspect ratios ranging 

from 0 to 7. Three tests, listed at the bottom of Table 5.7, were carried out where the 

roughness at the footwall and hangingwall were different. 
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Table 5.7. Description of the model test 

Model 

 

Slope angle 

(degrees) 

Wall roughness 

 

Aspect ratio 

 

Relative density 

(%) 

90R60 90 High 1-7 60 

90R30 90 High 1-7 30 

90M60 90 Medium 1-7 60 

90M30 90 Medium 1-7 30 

90S60 90 Low 1-7 60 

90S30 90 Low 1-7 30 

80R60 80 High 1-7 60 

80R30 80 High 1-7 30 

80M60 80 Medium 1-7 60 

80M30 80 Medium 1-7 30 

80S60 80 Low 1-7 60 

80S30 80 Low 1-7 30 

75R60 75 High 1-7 60 

75R30 75 High 1-7 30 

75M60 75 Medium 1-7 60 

75M30 75 Medium 1-7 30 

75S60 75 Low 1-7 60 

75S30 75 Low 1-7 30 

70R60 70 High 1-7 60 

70R30 70 High 1-7 30 

70M60 70 Medium 1-7 60 

70M30 70 Medium 1-7 30 

70S60 70 Low 1-7 60 

70S30 70 Low 1-7 30 

70RS60 

 

70 

 

Hangingwall (front): High 

Footwall (rear): Low 
1-7 

 

60 

 

70SR60 

 

70 

 

Hangingwall (front): Low 

Footwall (rear) : High 
1-7 

 

60 

 

90SR30 

 

90 

 

Hangingwall (front): Low 

Footwall (rear): High 

1-7 

 

30 
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5.3 Results and Discussion 

The test results obtained with different aspect ratios (from 1 to 7), wall roughnesses (low, 

medium and high), and stope inclinations (90
o
, 80

o
, 75

o
 and 70

o
 to the horizontal) are 

depicted in Figs. 5.7-5.9,  respectively. In these figures, dimensionless stress ratio, v/H is 

plotted against dimensionless depth, z/B, where v is the average vertical stress acting at any 

depth z measured from top of the backfill.  is the unit weight of the fill, H is the total 

height. Except Fig. 5.7, z is normalized with respect to B to express depth in terms of aspect 

ratio (e.g. z = 5B). In Fig 5.7, depth z is normalised with respect to H, mainly to illustrate the 

level of arching at a certain fraction of the total depth for various aspect ratios and wall 

roughnesses. It should be noted that the results plotted are the averages of three replicate 

tests, the maximum variability in relation to the mean of the measured value is less than 

5.38% and the mean variation is about 1.68%. In Fig 5.7(a), the error bars indicating the 

standard deviation obtained from the test results are included in order to give a better 

indication of the reproducibility of the test results. 
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                       (d) 

Figure 5.7.  Average vertical stress at the base of stope with inclination 70
o
 to the horizontal 

for different aspect ratios: (a) high wall roughness, (b) medium wall roughness, (c) low wall 

roughness and (d) vertical stress acting at the base vs aspect ratio 

 

5.3.1 Effect of stope aspect ratio (height to width) 

Figure 5.7 (a-c) shows the variation of average vertical normal stress acting at the base of 

stope against the dimensionless fill height, determined from the laboratory model tests, for 
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This can be explained by the increase in the wall contact areas for the stopes with larger 

aspect ratios. The magnitude of stress transferred to the base of stope varies depending on 

the wall roughness and inclination. For model 70R60, 70M60 and 70S60, the vertical stress 
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pressure when aspect ratio increases from 1 to 7. Rough wall contributes more in carrying 

the fill weight and therefore, the average vertical stress at the base is smaller. It can be seen 

in the figure that this is true for any aspect ratio and at any depth. The effects of wall 

roughness at different aspect ratios are highlighted in Fig 5.7(d). It is evident from the figure 

that the arching effect increases with wall roughness for all aspect ratios.  For a given wall 

roughness, the arching effect increases with the aspect ratio, transferring a larger fraction of 

the fill load to the wall. Similar trends as shown in Figs.  5.7(a - d) are obtained for vertical 

stope and slope angle of 80
o 
to the horizontal (see Appendix B4).   

5.3.2 Effect of wall roughness 

The effects of wall roughness are illustrated in Figs. 5.8(a) through 5.8(c), where v/H is 

plotted against z/B for stopes having inclination to the horizontal of 70, 80 and 90 

respectively, with walls of low, medium and high roughnesses. All these plots are for 

relative density of 60%. For all three wall roughnesses, it is evident that the rougher the wall 

surface, the lower is the vertical normal stress at any depth. The difference becomes more 

and more pronounced with depth. 
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Figure 5.8. Average vertical stress acting at the base of stope for different wall roughnesses: 

(a) stope inclination,  = 70

 to the horizontal, (b) stope inclination, = 80


 to the horizontal 

and (c) stope inclination, = 90

 to the horizontal 
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Figure 5.9.  Average vertical stress acting at the base of stope for different inclinations: (a) 

high wall roughness, (b) medium wall roughness, (c) low wall roughness and (d) average 

vertical stress acting at the base of stope 
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5.3.3 Effect of stope inclination 

Fig. 5.9 (a-c) shows the variation of v/H against z/B for stope inclination of 70, 75, 80 

and 90 to the horizontal, for different grade of wall roughness (high, medium and low). An 

interesting observation here is that the maximum load is transferred to the base when the 

stope inclination to the horizontal is about 80 for all three grades of roughness considered. 

The vertical normal stress is increasing from 70
o
 to 80

o
, and then relatively flat from 80

o
 to 

90
o
 as highlighted in Fig. 5.9 (d).  For relatively smooth wall-fill interface, the change of 

vertical stress is insignificant when there is very slight tilt to the vertical of less than 10
o
.  

Only when the tilt is more than 10
o
, there is noticeable reduction in the vertical stress.   

It appears that with a slight deviation from vertical, there is significant loss of arching at the 

hangingwall, and hence reduction in the fill weight carried by the hangingwall which 

increases the vertical stress at the bottom of the stope.  At the same time, there is a greater 

tendency for the footwall to carry greater load than when the wall is vertical.  Depending on 

the relative magnitudes of these two components, the vertical stress at the bottom of the 

stope may increase or decrease, with the inclination of the stope wall.  When the stope 

inclination to the horizontal is reduced from 90
o
 to 80

o
, it appears that the vertical normal 

stress increases. With further reduction in the slope angle, the vertical stress decreases, due 

to increase in the load carried by the footwall. The relative reduction and increase depend on 

the changes in wall friction and slope angle.  

The observation on the occurrence of maximum load for the stope inclination of 80
o
 to the 

horizontal is not consistent with the analytical studies (Chapter 3) and numerical modeling 

(Chapter 6) of inclined stope, where the vertical stope always gives the highest vertical 

stress with depth. However, the results obtained herein are consistent for all three grades of 

roughness and at all aspect ratios.  The conflict observed among the results may be due to 

some parameters not being fully captured in the analytical or numerical modeling or due to 

some irregularity in the experimentation setting (e.g. placement conditions, rotating at the 

base, etc). The actual reason behind this slight disagreement will need to be investigated 

further in order to address this issue.    

5.3.4 Stresses acting on hangingwall (HW) and footwall (FW) 

The results of stresses acting on hangingwall and footwall in this section are compared with 

the results obtained from numerical modeling using FLAC as discussed in Section 6.3. From 

numerical modeling, the shear stress acting at footwall and hangingwall are calculated based 

on the following stress transformation equation (Hibbeler 2005). 
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                     (5.4) 

where z = vertical stress in z-direction, x = horizontal stress in x-direction, xz= shear stress 

in x-z direction, and = stope inclination to the horizontal. The following example 

demonstrates the way to calculate shear stress acting at footwall and hangingwall using Eq. 

5.4 for model 70M60 at depth z = 56.1 cm and   = 70
o
.  From the results of numerical 

modeling,  

At hangingwall : x  = -1.036 kPa, z  = -1.833 kPa and xz  = -0.77 kPa,  

       
               

 
                           

                        

At footwall:  x  = -0.823 kPa, z  = -2.709 kPa and xz  = 0.04 kPa, 

        
               

 
                        

                       = 0.6368 kPa (absolute value). 

The ratio of shear stress acting at footwall to that of hangingwall are computed as:  

                 
                                          

                                             
   (5.5) 

Comparison with experimental results is based on average ratio obtained from Eq. 5.5 

throughout the height of the stope. The results of stress ratio for both experimental and 

numerical models are tabulated in Table 5.8. It can be seen that all the numerical values are 

greater than or equal to 1. 

The line in Fig 5.10 represents the condition that the numerical results are the same as 

experimental results.  Data points on the graph are scattered close to the line showing that 

the experimental results are well correlated with numerical results with an average 

difference of less than 10%.  It can be seen that the shear stresses experienced by both 

hangingwall (HW) and footwall (FW) are approximately equal for vertical stopes.  When the 

walls are inclined, as expected intuitively, the load acting at FW is higher than HW due to 

the combined effect of gravity and arching action.  The differences between loads acting on 

HW and FW increase significantly with the increase of stope inclination and wall roughness. 

As can be seen for model 70R60 where the ratio is about 2.0, indicating that 2/3 of the load 



Chapter 5 

106 

 

transferred to the walls is acting on the FW and only 1/3 is transferred to the HW. The 

influence of the relative densities of the fill materials seem to be insignificant in the split 

between hanging and foot walls. The results are in agreement with Singh et al. (2010) who 

observed that the friction angle of the fill and hence the relative density have negligible 

influence on the vertical stresses within the fill. They observe that the two influencing 

factors are the wall roughness (i.e., /) and the wall movement (i.e. whether K = Ka or K0). 

 

Figure 5.10. Comparison of the ratio of load acting at footwall and hangingwall – 

Experimental vs numerical results 
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Table 5.8.  The ratio of load acting at footwall to that of hangingwall 

Model Experimental Numerical Difference (%) 

70R30 1.99 1.91 4.2 

70R60 2.04 1.94 5.2 

70M30 1.74 2.05 15.1 

70M60 1.90 1.96 3.1 

70S30 1.66 1.88 11.7 

70S60 1.70 1.78 4.5 

    75R30 1.73 1.92 9.9 

75R60 1.61 1.55 3.9 

75M30 1.39 1.72 19.2 

75M60 1.40 1.71 18.1 

75S30 1.47 1.60 8.1 

75S60 1.41 1.54 8.4 

    80R30 1.38 1.52 9.2 

80R60 1.45 1.50 3.3 

80M30 1.12 1.43 21.7 

80M60 1.02 1.40 27.1 

80S30 1.33 1.38 3.6 

80S60 1.13 1.33 15.0 

    90R30 1.04 1.00 4.0 

90R60 1.04 1.00 4.0 

90M30 0.98 1.00 2.0 

90M60 1.00 1.00 0.0 

90S30 1.06 1.00 6.0 

90S60 0.99 1.00 1.0 

    1 
70RS60 1.38 1.22 13.1 

2 
70SR60 2.35 2.78 15.5 

3
 90SR30 1.22 1.52 19.7 

1
Wall roughness:  hangingwall-high and footwall-low 

2
Wall roughness:  hangingwall-low and footwall-high 

3
Wall roughness: hangingwall (front)-low and footwall (rear)-high 

 

The Models 90SR30, 70RS60 and 70SR60, which are modeled with dissimilar wall 

roughness characteristics as described in Table 5.8, show that more loads are transferred to 

the wall with higher friction compared to that of relative smooth wall. For vertical stope, the 

ratio deviates from 0.98 to 1.22 (experimental) for smooth surface at hangingwall and rough 

surface at footwall. For inclined stope, the ratios vary from 1.38 to 2.35 (experimental) by 
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changing the wall characteristics from 70RS60 to 70SR60.  Apart from this, from the Figs 

5.11 (a – b), it can be seen that the average vertical stress profile for 90M30 is similar to 

90SR30, 70M60 is similar to 70RS60 and 70SR60 for both experimental and numerical 

results.  Since M is an approximate average value of R and S, it can be concluded that a 

reasonable estimate of vertical stresses can be obtained with an average interface friction 

angle of the two dissimilar surfaces.  This result is comparable to the observations of Take 

and Valsangkar (2001). This result also enables the use of equations developed in Chapter 3 

and 4 as well as those listed in Tables 2.2, 2.3 and 2.4, with a single average value of used 

to represent both wall characteristics. 
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(b) 

Figure 5.11. Average vertical stress acting at the base of stope for dissimilar wall 

characteristics:  (a) vertical walls, (b) inclined walls 

 

5.4 Summary and conclusions 

This chapter describes the development of a plane strain laboratory model that simulates 

mine backfilling in an inclined stope, and enables determination of the average vertical 

stress at any depth within the fill. Sand is used as granular fill in the study. The material 

properties of this granular material are determined through a series of laboratory tests as per 

Australian standards.  

The laboratory model is developed based on the similar concept of experimental model of 

Pirapakaran and Sivakugan (2007b) with additional strain gauges attached to the long wall 

of the framework to separate the self weight carried by hangingwall and footwall.  Four 

different slope angles (90
o
, 80

o
, 75

o
, 70

o
 to the horizontal), three different wall roughnesses 

(low, medium and high), seven aspect ratio (vertical-height to span-width) as well as two 

different relative fill densities are considered in the study.  
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The laboratory model test results clearly demonstrate the effects of arching within inclined 

stope filled with granular material. The model clearly demonstrates that a significant 

fraction of the fill weight is carried by the stope walls.  This fraction gets larger with 

increasing wall roughness and aspect ratio. 

The experimental results reveal that aspect ratio, stope inclination and wall roughness are 

critical factors in predicting stress distribution within a stope. The effect of arching is the 

least when the stope is inclined at about 80

 to the horizontal, giving highest vertical stresses 

at any depth. However, this fact is not captured in both the mathematical and numerical 

models developed in the past and the ones discussed herein.  

The observation from the reading of strain gauges also reveals that the load acting at 

footwall is higher than hanginwall for an inclined stope.  Two of the contributing factors to 

this load fraction are stope inclination and wall roughness. In the case of walls with 

dissimilar frictional characteristics, the test results show that an average value of wall-fill 

friction angles can be used in analytical expression to represent both wall characteristics. 
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Chapter 6 Numerical modeling of inclined stopes using FLAC 

 

6.1 General  

Numerical modeling appears to be a useful tool in exploring and providing new insights to a 

system, which is too complex for an analytical solution and/or too cumbersome for 

laboratory modeling or simulation (Coulthard 1999).  It is a process that can help one to 

fully understand the complex real physical system and to improve the judgement of 

engineers in making prediction (Lee Barbour and John Krahn 2004). Numerical models are 

also used as validation tools where the results can be compared with those from analytical 

and/or laboratory model studies. In geomechanics, numerical simulations have been used 

across the full range of geotechnical problems, such as analysis of ground conditions, 

mining, ground support, seismic studies, slope stability, foundation, tunnelling/caveability 

and fragmentation analysis. The focus of this dissertation is limited to the stress 

development within backfilled stopes.  A review of past studies by researchers using 

numerical modeling on arching effect and stress development within backfilled stope has 

been discussed in Chapter 2.  

This chapter develops a numerical model to simulate the stress development within the 

laboratory model for backfilled stope discussed in Chapter 5 using FLAC (version 5.00), 

which is a powerful numerical tool suited to solve complex geotechnical problems that 

consist of several stages, such as sequential excavations, backfilling and loading. The 

simulation results are compared to analytical and laboratory measurements of stresses, that 

are developed in Chapter 3 and 5 respectively.  A similar approach is then extended to a full 

scale mine stope to investigate the stress distribution within the backfill. In the analyses 

throughout this chapter, the simulations are limited to static problem in plane-strain and the 

deformation is assumed to be time-independent. 

A brief discussion of FLAC is given in the following section. The details are taken from 

FLAC user‟s manual and the official website of FLAC (CeAs 2011; Coetzee et al. 1998; 

ITASCA 2011). 
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6.2 Review of FLAC 

FLAC (Fast Lagrangian Analysis of Continua) is a two-dimensional explicit finite 

difference program for engineering mechanics computation. It is a design tool for solving 

geotechnical, civil, and mining engineering problems. Materials are represented by a grid 

system that is adjustable by user to fit the shape of the object to be modelled. Each element 

behaves according to a prescribed linear or nonlinear stress/strain law in response to the 

applied forces of boundary restraints. The material can yield and flow, and the grid can 

deform (in large-strain mode) and move with the material that is represented.  The explicit, 

Lagrangian calculation scheme and the mixed-discretization zoning technique used in FLAC 

ensure that plastic collapse and flow are modelled very accurately.  FLAC is suited to model 

the geotechnical continuum problems that consist of several stages (such as sequential 

excavations, backfilling and loading), non-linear material behaviour and unstable systems 

even if yield/failure occurs over a large area or if total collapse occurs.  

The program is equipped with built-in constitutive models which include isotropic elastic 

model and a wide range of plasticity models such as Mohr-Coulomb, Drucker-Prager, 

modified Cam-Clay, ubiquitous joint, double yield, strain-hardening/softening and Hoek-

Brown. Groundwater flow and consolidation (fully coupled) model are also available in 

FLAC.  Another main feature in FLAC is the built-in programming language, FISH (short 

for FLACish).  FISH enables the users to write their own functions and user-defined 

constitutive models to suit their specific needs. 

FLAC uses an explicit, time-marching solution scheme where no matrix is required for 

solving problems with large amount of elements. Hence, it requires relatively low computer 

resources (in terms of memory and processor speed) in handling computation analyses of 

large and complex problem. The full dynamic equations of motion are used in FLAC to 

model both static and dynamic problems, which enable FLAC to model unstable system 

effectively without numerical distress.  The disadvantage of FLAC is that large numbers of 

steps must be taken due to the small time-step used in explicit solution scheme and the 

problem of damping.  Compared to other equivalent numerical programs, FLAC is less 

efficient in linear simulations.  
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6.3 Numerical modeling of arching in laboratory stope 

In this section, stopes with similar geometries (vertical-height to width-ratio: 7) and the 

same material properties as in the laboratory models were adopted for numerical simulation 

using FLAC.  A typical inclined backfilled stope (laboratory model) with dimension of 100 

mm width and 700 mm vertical height was modelled as shown in Fig. 6.1. 

 

Figure 6.1.  Schematic diagram of inclined laboratory stope used in numerical modeling 

 

6.3.1 Modeling approach 

The wall was considered to be a homogeneous, isotropic, and linearly elastic material, 

whereas the granular backfill was assumed to follow the Mohr-Coulomb failure criterion 

with linear elastic behaviour prior to failure. Fixed boundary conditions were applied to the 

walls and vertical displacement was fixed at the bottom of the stope. Interface elements 

between the walls and fill material were incorporated in the numerical simulation, to allow 

relative slip between the wall and the backfill. The choice of boundary conditions, mesh 

density and interface properties were established prior to the investigation in the study 

through a sensitivity analysis as discussed in Section 6.3.2.  Filling was performed in 42 

layers to simulate the 42 pours used in the experimental model.  The default mode of FLAC 

is a two-dimensional plane-strain model; therefore, the assumption of plane-strain loading 
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conditions was made in analysing the stress-strain behaviour.  The FLAC code of the model 

can be found in Appendix C1. 

6.3.2 Sensitivity analysis 

Sensitivity analysis was conducted for all important parameters in the numerical simulation 

in order to evaluate the effect of each parameter so as to avoid incorrect specification and 

uncertainty associated with the model.  

Constitutive models 

In numerical modeling, the Perspex walls were assumed to be homogeneous, isotropic and 

linear elastic, which was confirmed by Fig. 5.5 where the loads were proportional to the 

displacements. The material properties of typical Perspex were used in the numerical 

modeling: Young‟s modulus, E = 3.2 GPa; Poisson‟s ratio, = 0.3; and density, = 1190 

kg/m
3
. The sand backfill was assumed to follow Mohr-Coulomb failure criterion (Vermeer 

and de Borst 1984).  The required material properties for the sand were given in Table 5.3. 

These were assumed in the numerical model. 

Initial condition 

There was always an in-situ state of stress prior to any excavation or filling, which might 

influence the behaviour of the model. To reproduce this in-situ state, the model was allowed 

to achieve its equilibrium and steady state under the gravitational stresses before any filling 

occurs.  

Boundary conditions 

The wall thickness was modelled as 10 mm in thickness which was 1/10 of the stope width.  

To avoid the occurrence of premature failures during simulation with inclined stope, fixed 

boundary conditions were applied to the perimeter walls of the model. Laboratory model 

tests with full bracing along the outer walls of model were conducted. Bracing was referred 

to the insertion of metal bars along the perimeter of the model at fixed interval along the 

depth of the model to prevent any possible deformation. Fig 6.2 showed the comparison of 

stress profiles for model 70M60 between unbraced and braced models. The dotted lines 

(tests 1-3) showed the results obtained from the standard laboratory model (unbraced) as 

discussed in Chapter 5, whereas, the straight continuous lines (tests 1-2) showed the results 

obtained from laboratory model with bracing along hangingwall and footwall. The results 

showed that the minor displacements as reflected by the strain gauges did not influence the 
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stress profile within the backfill. Therefore, it was appropriate to provide fixed boundary 

conditions to the model in the numerical simulations.  

 

Figure 6.2. Comparison of stress profiles between unbraced and braced model for 70M60 

 

Mesh density 

The mesh density was established by refining the grid from 14 elements (10 mm/grid) to 38 

elements (3.33 mm/grid) in x-direction (horizontal) and from 84 elements (8.33 mm/grid) to 

210 elements (3.33 mm/grid) in z-direction (vertical) as shown in Table 6.1. Vertical stress 

along centreline and shear stress along hangingwall at depth, z = 600 mm (B = 100 mm) 

were used as indicators in the selection of optimum grid size to be used in the model. As 

shown in Fig 6.3 and 6.4, the stresses remained almost the same for all the combination. 

Therefore, a square grid was preferred in the simulation. Because higher mesh density 

required longer simulation time and higher computer specification, grid 26 x 126 (3276 

elements) which was equivalent to grid size 5 mm/grid in x-direction and 5.6 mm/grid in z-

direction was selected in this exercise. 
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Table 6.1.  Grid size, number of element, and stresses variation at z/B = 6 in FLAC at 600 

mm depth 

Stresses at z/B = 6 

Elements 

in direction 

x – z 

No of element 
Vertical stress along 

centreline 

Shear stress 

along 

hangingwall 

  

(kPa) (kPa) 

14 x 84 1176 3.033 0.5855 

26 x 84 2184 3.039 0.6199 

26 x 126 3276 3.026 0.5945 

38 x 168 6384 2.988 0.5819 

38 x 210 7980 2.990 0.5769 

 

 

 

Figure 6.3.  Stresses variation against number of element modelled in FLAC  
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Figure 6.4.  Vertical stress along centreline with depth at different grid sizes 

 

Interfacial frictional properties  

Interface elements were included in the model to represent the slip plane between two 
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be found in Pirapakaran (2008) and FLAC user‟s manual (Itasca 2005).  The material 
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the modeling. A good rule-of-thumb was to set the kn and ks ten times the equivalent 
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appropriate stiffnesses, a sensitivity analysis was carried out to examine the influence of the 

stiffnesses on stress profile as well as to improve the solution efficiency. 

Assuming kn = ks, a range of values from 10
6
 Pa/m to 10

10
 Pa/m were tried for normal and 

shear stiffnesses.  Corresponding variations of the shear stresses along the two walls of a 

vertical stope with depth were shown in Fig 6.5 for  kn = ks = 10
6
 Pa/m, 10

7
 Pa/m, 10

8
 Pa/m, 

10
9
 Pa/m, and 10

10
 Pa/m.  As could be seen in Fig 6.5, 10

8
 Pa/m had the least oscillation and 

gave identical results for both hangingwall and footwall. It was clear that, with further 

increase in kn and ks, the stresses remained approximately constant at all depth and the trend 

of the plots started to oscillate and deviate between hangingwall and footwall. Therefore,  kn 

= ks = 10
8 
Pa/m

 
was selected for the numerical simulation of the laboratory stope. 

 

Figure 6.5. Shear stresses at interfaces along hangingwall (HW) and footwall (FW) with 

depth for different normal (kn) and shear (ks) stiffnesses 
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6.4 Comparison of analytical, experimental and numerical results 

The experimental results obtained from Chapter 5 had been validated by comparing these 

with the stresses calculated from numerical and analytical models. Equation 3.15 was used 

in this study as an analytical tool for determining the average vertical stress at any depth 

where, K was taken as Ko or Ka. The value of  was taken in accordance to the wall 

roughness as listed in Table 5.4.  For relative fill density of 60%,  was taken as 40
o
, 33.6

o
 

and 28
o
 for high, medium and low wall roughness respectively.  The average vertical normal 

stress was also determined from the numerical model. These three were compared against 

each other.  

The comparisons of results among the three different approaches (experimental, numerical 

and analytical) were presented in Figs. 6.6-6.8.  The overburden pressure (v = z) shown in 

the figures was the situation where the wall was assumed to be perfectly smooth and no 

arching was taking place. In these figures, dimensionless stress ratio v/H was plotted 

against dimensionless depth, z/B, where v was the average vertical stress acting at any 

depth z measured from top of the backfill.  was the unit weight of the fill, H was the total 

fill height.  Here the depth was normalized with respect to the stope width B.   These figures 

showed the variations of normalized average vertical normal stress against normalized depth 

for different wall roughness and slope angles.  
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       (d) 

Figure 6.6. Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with high wall roughness: (a) model 90R60, (b) model 

80R60, (c) model 75R60 and (d) model 70R60 
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even at depth of 7B, except for the stope with  = 70
o
 (see Figs 6.6d and 6.7d).  The 

experimental and numerical modeling values were in good agreement for all cases except for 

the one where  = 80
o
.  As expected, the smoothness in the stress profiles seen in the 

numerical and analytical models was not seen from the laboratory model test data.  A steady 

decline in v with increasing tilt from vertical of the stope walls was quite clear from the 

analytical and numerical solutions.  This trend was not very clear from Fig 6.6 for 

experimental modeling data. 
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(c)            

 

 

 
      (d) 

 

Figure 6.7. Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with medium wall roughness: (a) model 90M60, (b) 

model 80M60, (c) model 75M60 and (d) model 70M60 
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The trend for stope walls with medium roughness are similar to what is seen for walls of 

high roughness.  In this case, for  = 75
o
 and 70

o
, the asymptotic value ofv is reached in the 

laboratory models as well.  A trend that is evident for walls of high and medium roughness is 

that v – z profile shows an increasing tendency to reach the asymptotic value with 

increasing tilt of the walls.   
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               (d) 

 

Figure 6.8.  Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with low wall roughness: (a) model 90S60, (b) model 

80S60, (c) model 75S60 and (d) model 70S60 
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low wall roughness obtained from modified direct shear test in the stress determination. s 

used in numerical and analytical modeling may be higher than actual s due to the 

fluctuating value of stress-strain profile obtained from modified direct shear test.  In all 

cases, the value of Ka was always less than K0 and therefore, the corresponding lateral earth 

pressure and the fill weight transferred to the wall were less when K was assumed as Ka. 

Therefore, assuming K = Ka implied larger vertical normal stresses at any depth, which was 

evident from Figs. 6.6-6.8. When using the analytical equation (Eq 3.15), it could be seen 

that, in all cases, the results obtained by using K = Ko  tend to overestimate stresses 

transferred to the walls due to arching effect. It could also be seen from the figures (Figs 

6.6-6.8) that the stress state within the backfill tended to shift from at-rest state to active 

state with increasing stope inclination and wall roughness. For vertical stope, the results 

obtained from numerical and experimental modeling fell between those obtained from 

Eq.3.15 using K = Ko and K = Ka.  For inclined wall, the solutions obtained from numerical 

modeling were well correlated with analytical solutions using K = Ka except for the cases of 

low wall roughness where the numerical prediction of the average normal stress fell between 

those analytical solutions predicted using K = Ko and K = Ka.  This result revealed that both 

stope inclination and wall roughness might have significant influence on the stress state 

change within the backfill. However, for a typical inclined minefill stope, where = , K = 

Ka was reasonably appropriate to describe the stress development within the stope. 

 

6.5 Numerical modeling of arching in a full scale stope backfilled with 

granular material 

Now that the numerical model has been validated against the laboratory model test data and 

the analytical expression, it is time to apply the model to solve a real-life mining problem.  

Numerical modeling of stresses within a prototype mine stope with due consideration to the 

surrounding environment is carried out in this section to investigate the stress state in the 

backfilled stope. 

6.5.1 Modeling approach 

Using approach similar to what was discussed in previous section; a numerical model of 

typical plane strain inclined stope was developed assuming idealized mining characteristics 

and processes as shown in Fig 6.9 (see Appendix C2 for FLAC code). The vertical height of 

the model, H was 45 m and the width, B was 6 m (i.e. aspect ratio of width to height is 

1:7.5).  The reason of selecting these stope dimensions was to compare the numerical 
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modeling results with those from Professor Aubertin‟s group with similar dimensions 

(Aubertin et al. 2003; Li and Aubertin 2008, 2009; Li et al. 2003, 2007). The same material 

properties were used for the calculations in FLAC.   

In Fig 6.9, b was the minimum distance between rock boundaries and stope walls; d was the 

depth of rock below the base of stope and also the depth of rock above the stope; hv was the 

gap between the rock roof and fill material which was typically 0.5 m to 1 m and was taken 

as 0.5 m in this research.  was the angle of stope inclination to the horizontal.  

In the simulation, top of the stope was assumed to be located approximately 200 m below 

the ground surface.  b and d were selected such that they were far enough from the area of 

interest and did not influence the system being modelled and the accuracy of the results. 

This was because using larger b and d value in the simulation would result in increasing 

number of elements, and therefore increased the simulation time. Modeling with b ranging 

from 10 to 30 m and d ranging from 10 to 30 m had been conducted in a sensitivity study 

and b was taken as 20 m and d was taken as 10 m in this dissertation. The remaining 190 m 

depth of rock mass on top of stope from ground surface was converted to equivalent 

overburden pressure q acting on the top boundary of the model as shown in Fig 6.9. The 

value of q was calculated as 5.0325 x 10
6
 kPa. 

 

Figure 6.9.  Schematic diagram of an idealized mine stope  
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6.5.2 Sensitivity analysis 

Based on the sensitivity analysis similar to what was done in Section 6.3.2, the following 

modeling criteria had been established.  

Mesh Density 

Mesh density ranging from 1 m/grid to 0.25 m/grid had been carried out to determine the 

grid size used in the simulation.  It could be seen from the Fig 6.10 that stresses levelled off 

at grid size 0.5 m/grid at all elevations. Mesh density with grid size 0.5 m/grid produced 

reasonably good results rather quick without sacrificing the accuracy. Therefore, 0.5 m/grid 

in both x- and y-direction were selected in the modeling, with a total of 12408 elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Stresses variation against number of element at different depth modelled in 

FLAC (a) Vertical stress along centreline (b) Shear stress along hangingwall 

(a) 

(b) 



Chapter 6  

130 

 

Constitutive models 

The FLAC built-in constitutive models were used in the simulation. The rock mass was 

assumed to be homogeneous, isotropic and linear elastic whereas backfill materials was 

modelled to follow Mohr-Coulomb failure criterion. Table 6.2 showed the summary of input 

parameters and constitutive models for rock mass and backfills used in FLAC for basic 

calculation. These parameters were typical of rock surroundings and the various hydraulic 

fills studied at James Cook University Geomechanics laboratory. 

 

Table 6.2.  Input parameters and constitutive models for rock mass and backfill materials 

Model input parameters Rock mass Backfills 

Constitutive model Linear elastic Mohr Coulomb 

Young‟s modulus, E (GPa) 30 0.3 

Poission‟s ratio,  0.3 0.2 

Density,(kg/m
3
) 2700 1800 

Cohesion, c (kPa) - 0 

Friction angle, (
o
) - 30 

Interfacial friction angle,  (
o
) - 30 

Dilation angle,  (
o
) - 0 

 

Boundary conditions 

The boundary conditions along the far left and right ends of rock region were fixed in x-

direction and the base of rock regions was fixed in both x- and y-direction. Simulations had 

been conducted with and without using interface elements between the fill and rock mass. 

Almost identical results among models with and without interface elements were obtained 

when interfacial friction angle,  was taken as fill friction angle, . However, when  was 

taken as less than , higher vertical stresses were developed due to less arching induced 

along rock-fill interfaces. The interfacial elements where  allowed slip between the fill 

and the rock mass that enabled a greater load to be transferred to the base. In this 

dissertation, interface elements were included along the walls between the rock mass and fill 

material and the kn (= ks) was taken as 10
10 

kPa/m based on the similar approach discussed 

in Section 6.3.2.    
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Initial conditions 

The initial stress distribution of the model was modelled in accordance with typical mining 

situations. The natural in-situ vertical stress of rock mass was taken by considering the self 

weight of rock mass surrounding the stope and the overburden pressure on top of the model. 

The natural in-situ lateral stress was taken as twice of the vertical stress (i.e. Ko = 2 which 

was common in rocks). The system was allowed to reach its steady state under gravitational 

stresses before excavation and filling were carried out.  The stope was then excavated and 

once again, the system was allowed to reach its equilibrium state before commencing the 

filling process.  

Lift/filling rate 

The filling process was conducted by placing the fill in several layers. Number of filling 

layers ranging from 5, 10, 18 and 45 were modelled and almost identical results were 

obtained.  As the solution time increased with increasing number of layers, 10 layers were 

selected in the simulation for the present model. 

6.5.3 Results and discussion 

Vertical stress distribution 

Figure 6.11 showed the comparison of vertical stress along centreline against depth between 

proposed model and Li and Aubertin‟s (2009) model.  There was very good agreement 

between the two results. The author‟s results gave slightly lower values for stopes with 

inclination of 90
o
 and 80

o
 and very close match at  = 70

o
 and 60

o
. The models developed by 

Li and Aubertin (2009) were simulated without using interface element. However, as 

discussed in section 6.5.2 (boundary condition), with  = , the results were almost identical 

for models with and without using interface elements. Therefore, they should be comparable 

to each other. 

.  
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Figure 6.11.  Comparison of vertical stress along centreline with Li and Aubertin‟s (2009) 

model 

 

Figure 6.12 showed the vertical stress contours within the backfill and surroundings rock 

mass for different stope inclination. The stresses within the backfill were smaller along the 

walls compared to those at the centre of the stope at any elevation, clearly showing that 

arching occurred within the fill.  As stope inclined from vertical, the peak stress deviated 

from centreline towards footwall and the stress profile quickly became asymmetric. Higher 

stresses were observed along the footwall compared to those along hangingwall at a given 

elevation. It was clearly shown in the Figs 6.11-6.13 that the stress experienced by the fill 

decreased when the wall became more inclined. The reason for this behaviour might be due 

to the combined action of arching and gravitational effects. 
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Figure 6.12. Vertical stress distribution profiles within backfill and surroundings rock region 

for stope inclination of (a) 90
o
 (b) 80

o
 (c) 70

o
 and (d) 60

o
 to the horizontal 
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Figure 6.13.  Comparison of average vertical stress against depth among numerical and 

analytical solutions 
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for the good agreement between the two models could be attributed to the gap left on top of 

the stope, the stiff and arching action of surrounding rock mass. The 0.5 m gap on top of the 

fill avoided the immediate contact between the fill and the overlying rock mass, justifying q 

= 0. With stiffness of rock mass two orders of magnitude larger than fill materials, the 

displacement of rock walls was expected to be very small. In the case of narrow stope, the 

effect of arching enabled stress redistribution and transmission of overburden pressure on 

top of the stope into both the hangingwall and footwall or around the openings to the 

surroundings rock mass.     

Horizontal stress distribution 

Figure 6.14 showed the comparison of lateral stress against depth along centreline between 

proposed numerical results and Li and Aubertin‟s (2009) results. The results agreed well 

with the comments  by Li and Aubertin (2009) that the lateral stress was not sensitive to the 

stope inclination. This behaviour could not be shown in analytical solution (refer to Fig 

3.12), where with a constant value of K (Ka or Ko), the lateral stress varied in accordance to 

the magnitude of vertical stress (h = Kv).  No such constant K was assumed in numerical 

modeling, allowing K to vary throughout the fill. 

Figures 6.15 (a - d) showed the lateral stress profiles within backfill for different stope 

inclinations. The stress magnitude varied from 0 kPa to 110 kPa from top of the stope down 

to the base of the stope with a stress contour interval of 10 kPa. As the stope became more 

inclined, the stress distribution became asymmetric. Higher lateral stresses were observed 

along hangingwall compared to that of footwall with the highest stress located at the bottom 

region of hangingwall. From the equation h = Kv, it was expected that h would increase 

when v increased.  However, based on numerical modeling results, it was shown that h 

increased when v decreased. It could be due to the variation of K across the span.  

Therefore, a preliminary analysis of K was carried out below. 
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Figure 6.14.  Comparison of lateral stress with Li and Aubertin‟s  (2009) model 
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Figure 6.15. Lateral stress profiles within backfill and surroundings rock region for stope 

inclination of (a) 90
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 and (d) 60
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Figures 6.16 (a – d) showed the value of K across the span at elevation, z = 10, 20, 30 and 40 

m for stope varied from 90
o
 to 60

o
 to the horizontal respectively, where z was measured 

from the top of the fill. Here, K was calculated using equation K=x/z, where the vertical 

stress, z and the horizontal stress, x were obtained from numerical results. It could be seen 

from the figures that K was insensitive to the elevation. As shown in Fig 6.17, with the 

assumed  = 30
o
, Ko = 0.5 and Ka = 0.33, when the stope became more inclined, the value of 

K increased along hangingwall and decreased gradually across the span towards footwall. 

The K-values for vertical stope lied between these two and showed symmetry as expected. 

The value of K was almost identical at footwall for all three different stope inclinations 

considered except for vertical stope, which gave slightly higher value of K at footwall.  This 

combination of higher K and lower z or vice versa would result in constant x across the 

span. This behaviour could not be captured in simple analytical solutions and therefore 

further investigation was required to address this issue.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16.  Variation of K across the span for stope inclination of 90
o
, 80

o
, 70

o
 and 60

o
 to 

the horizontal at elevation z = 10, 20, 30 and 40 m 
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Figure 6.17.  Variation of average K value across the span for different stope inclination 

 

For this typical example (shown in Fig 6.17 with material properties listed in Table 6.2), K 

varied, along the hangingwall, from 1.05 to 0.45 as slope angle varied from 60
o
 to 90

o
 

respectively. At footwall, K was computed as 0.45 for vertical stope and 0.4 for inclined 

stope ( = 60
o
 to 80

o
). The theoretical values of Kp, Ko and Ka were calculated as 3, 0.5 and 

0.33 respectively. It could be observed from the figure that the stress state experienced by 

the fills changed across the span from slight passive state to at rest state and finally active 

state except for vertical stope, which was almost constant throughout the span. The plots in 

Fig. 6.17 also showed that K value fell between Ko and Ka and K = Ka was more appropriate 

for describing the stress state within a stope.   

Shearing stress distribution 

Figure 6.18 showed the variation of shear stresses along hangingwall and footwall with 

depth for different stope inclination. The shear stress was calculated based on the following 

stress transformation equation. 

   
     

 
                      (5.4) 

As shown in the figure, the magnitude of shear stress for a vertical stope was the same along 

hangingwall and footwall. For an inclined stope, the shearing stress along footwall increased 

from vertical to stope inclination of 80
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60
o 

(to the horizontal). Conversely, the shearing stress along the hangingwall decreased 

significantly when the stope became more inclined. The difference of stresses between 

hangingwall and footwall became more pronounced with the increase of stope inclination. 

Table 6.3 showed the ratio of shear stress acting at footwall to that of hangingwall. The ratio 

varied from 1 to 2.6 when the stope inclined from vertical to 60
o
 to the horizontal 

respectively.   

This stress behaviour could be explained by the combined action of arching and 

gravitational effects. The shear component along footwall was assumed to be fully 

mobilized when the stope inclined more than 10
o
 to the vertical. At the same time, the fills 

within the stope settled under gravitational force and transferred part of their weight to the 

rock mass in the vicinity through the footwall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18. Variation of shear stresses with depth along hangingwall and footwall for 

different stope inclination 
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Table 6.3.  The ratio of shear stress acting at footwall to that of hangingwall  

Slope angle to horizontal Numerical results 

90 1 

80 1.51 

70 2.11 

60 2.60 

 

6.6 Numerical modeling for a full scale laboratory stope surrounded by rock 

With similar approach as described in section 6.3, a numerical model with width, B = 6 m 

and vertical height, H =42 m (aspect ratio H/B = 7) was modelled to scale up the laboratory 

model (100 x 700 mm). Scaling up of this model would better represent the mining 

condition.  The model was simulated with sand as fill material bounded between Perspex 

walls with rough wall characteristics. The material properties used in the modeling was 

listed in Table 6.4 (sand and Perspex).  

The numerical results of both models (6 x 42 m and 100 x 700 mm) for different stope 

inclinations were plotted in Figs 6.19 (a - c) along with analytical and experimental results. 

In these figures, normalized stress was plotted against normalized depth. It could be shown 

in the plots that scaling effect was insignificant as long as the aspect ratio at any depth 

remained constant and normalized values were used in comparison. Marston‟s equation for 

vertical stopes and its extension for inclined stopes (Eq 3.16) clearly showed that normalized 

stress (v/B) was a function of normalized depth (z/B). This implied that v/ was a 

function of z/H and H/B (aspect ratio), and hence v/H variation with z/H would be the 

same for a specific aspect ratio, irrespective of the stope width B. In addition, as discussed in 

Chapter 3 and 5, the vertical stress within a stope was influenced by the lateral earth 

pressure coefficient, aspect ratio, stope inclination and relative interface characteristics, 

therefore, the model with dimension of 6 m width and 42 m vertical height (aspect ratio = 7) 

could be used to describe the stress profile within the model of 100 x 700 mm. 
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Table 6.4. Input parameters and constitutive models for sand, Perspex and rock mass used in 

numerical modeling 

Properties Sand Perspex Rock mass 

Constitutive model Mohr Coulomb Linear elastic Linear elastic 

Young‟s Modulus, E 

      -  Model 100 x 700 mm 

420 kPa 3.2 GPa - 

Young‟s Modulus, E 

     -  Model 6 x 42 m 

0.1 GPa 3.2 GPa 30 GPa 

Poission‟s ratio,  0.2 0.3 0.3 

Density,  (kg/m
3
) 1568 1190 2700 

Cohesion, c (kPa) - - - 

Friction angle,  (
o
) 41 - - 

Dilation angle,  (
o
) 3.75 - - 

Interface friction angle, R (
o
) 40 - - 
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(b) 

 

(c) 

Figure 6.19. Normalized average vertical stress estimated from analytical equation using 

K=Ka, numerical model with stope dimension 6 x 42 m, numerical model with stope 

dimension 100 x 700 mm and experimental model (100 x 700 mm) for models (a) 90R60 (b) 

80R60  and (c) 70R60 
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The full-scale 6 x 42 m model was extended to simulate the mining situation by 

incorporating the model into rock mass condition while the fill material remained as sand, 

which was shown in Fig. 6.9. The material properties used was listed in Table 6.4 (sand and 

rock mass). The results obtained for different stope inclinations were plotted together with 

the results obtained from laboratory model, analytical model and the numerical model with 

Perspex wall (see Fig 6.20 (a - c)). In general, the results of the four models were in 

reasonable agreement, justifying the use of laboratory model introduced in Chapter 5 to 

study stress distribution within minefill stope.  
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(b) 

 

(c) 

 

Figure 6.20. Normalized average vertical stress estimated from analytical equation using 

K=Ka, numerical model with Perspex walls (6 x 42 m), numerical model with rock walls (6 

x 42 m) and experimental model (100 x 700 mm) for models (a) 90R60 (b) 80R60  and (c) 

70R60 
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6.7 Summary and conclusions  

Numerical modeling has been used in this chapter to simulate the stress distribution within 

an inclined stope. The effects of the input parameters of the numerical modeling are 

determined using sensitivity analysis. The simulation undertaken can be divided into three 

parts.  

The first part simulates laboratory model developed in Chapter 5. The simulation results are 

compared with the results from the analytical equation developed in Chapter 3 and the 

laboratory measurements in Chapter 5. Comparable results are obtained among the three 

different techniques. In this section, it can be concluded that the proposed laboratory model 

is capable of quantifying arching effect and will be a useful tool in validating the solutions 

obtained from analytical and numerical modeling.  The results also show that the fill depth 

to which increment of fill weight has insignificant influence on load distribution is 

dependent on assumed K-value, wall roughness and stope inclination. 

The second part of the study is to simulate minefill stope under a typical underground 

mining condition. In this case, the simulation results are compared to the analytical 

equations developed in Chapter 3 and numerical solutions reported in the literature. This 

section confirms the applicability of analytical equations developed in Chapter 3 in 

estimating vertical stress distribution within an inclined stope. A brief discussion of stress 

distributions within an inclined stope are also carried out in this section.   

The third part of this chapter scales up the 100 x 700 mm laboratory model to a full-scale 6 

x 42 m model and incorporates it into mining conditions, where sand is used as fill material 

with surrounding rock mass. This section concludes that scaling factor is insignificant if the 

aspect ratio remains constant and the laboratory model introduced in Chapter 5 is capable to 

be used to study stress distribution within minefill stope. 
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Chapter 7 Summary, Conclusions and Recommendations 

This chapter presents a summary of the research carried out in this dissertation as well as 

conclusions, and recommendations for future research. 

7.1 Summary 

The objective of this thesis is to investigate the stress distribution within an inclined stope, 

with due consideration to the arching effect within the stope.  

Arching is a universal phenomenon in soil mechanics where it occurs in minefills contained 

in underground voids, backfills in ditches and behind retaining walls. Previous studies have 

shown that arching occurred in mine backfilling, where part of overburden weight of fill 

material was transferred to adjacent rock wall in the form of shear stress. A review of 

previous research was conducted on backfill technology related to underground mining, with 

emphasis on techniques used to investigate the arching mechanism on stress distribution, 

which included analytical, numerical and laboratory/field work. The review showed that the 

current design approach for an inclined stope was based on the results obtained from vertical 

stope by allowing some minor errors. The research conducted on stress analysis for an 

inclined stope was largely based on numerical modeling, and there was a lack of research 

conducted in analytical and laboratory methods. Therefore, a realistic and simple analytical 

solution for an inclined stope taking into consideration arching effects; and a physical model 

that can exhibit arching effect and simulate filling process within an inclined stope are 

crucial to improve the current state-of-the-art.  

Three major modeling techniques were carried out in this research, which included 

analytical, experimental and numerical methods. All three techniques were performed 

concurrently and the outcomes were compared among each other to verify that the results 

were in close agreement. The research could be divided into three major parts based on the 

techniques applied in the analysis.   

The first part of the study developed analytical expressions for inclined stope using 

Marston‟s theory.  Two separate equations were developed for the stope with parallel and 

non-parallel walls respectively. For stope with parallel walls, the final analytical expression 

developed was similar to Marston‟s and Terzaghi equations. The only difference was the 

expression of lateral stress coefficient, K, where K was replaced by K’ (Eq. 3.9) in current 
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derivation by incorporating stope inclination and interfacial friction angle.  A significant 

reduction of vertical stresses was observed toward the base of the stope, showed that arching 

was taking place. The results obtained compared well with limited analytical and numerical 

results reported in the literature. Noting that K was typically assumed as or equal to Ko or Ka, 

simple design charts for K = Ko and K = Ka were also developed. One can use these charts 

and interpolate for any K values in between Ko and Ka. Besides, parametric study was 

carried out to study the effects of various parameters related to the proposed analytical 

expression, which included stope inclination, aspect ratio and fill properties.  The vertical 

stress was observed to reduce with the increase of stope inclination. The arching effect was 

more significant for higher aspect ratios and the pressure exerted at the bottom of the stope 

was almost independent of the fill depth when H > 5B (for the case  = 70
o
) where the 

vertical normal stress reached a constant asymptotic value. The results revealed that the 

vertical stress increased with an increase in unit weight and reduced when fill cohesion 

increased. Within practical range (30
o
 – 40

o
), friction angle had insignificant influence on 

the stress development. Any increase in friction angle led to reduction in the earth pressure 

coefficient, and hence lowered normal stress on the wall.  The net effect was negligible on 

the wall friction. 

For the analysis of inclined stope with non-parallel walls, different combinations of wall 

inclinations were examined using the analytical expression developed. The results of the 

analysis showed that the proposed analytical expression was capable in estimating the 

vertical stress within stope where the inclination of the hangingwall to the horizontal, is 

less than that the footwall, . For the case where, an unrealistic stress reduction 

occurred at a depth close to the bottom of the stope where the vertical normal stress 

decreased beyond a certain depth. The results from equation limitation study suggested that 

89.999
o
 should be used to represent 90

o
 in proposed analytical expression, to avoid 

numerical explosion from division by zero.   An important behavioural trend for the stress 

distribution in stopes was observed where with the same overburden pressure z and base 

width B, the stress magnitude experienced by fill material at any depth z could be 

significantly different depending on the wall inclination. With increasing tilt from vertical, 

there was significant stress reduction at any depth.  No maximum vertical stress was 

observed within the range of 0 <  < /2 using the analytical method, which was 

inconsistent with the observation of the laboratory model. The analytical model and the 

numerical model later showed that the vertical stress at any depth was the maximum when 

the wall was vertical. 
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A new analytical approach is introduced in this study to serve as an alternate method in 

predicting the vertical stress distribution within vertical and inclined stopes. The analytical 

expression was developed using Pascal‟s triangle and binomial series by dividing the fill 

into M layers. The solution was found converging when the fill was divided into large 

number of layers (e.g. M > 50) and the computation effort was the same for any number of 

layers. The results obtained compared very well with the Marston type equations derived in 

this dissertation (Chapter 3) and numerical results from published literature.  The results 

suggested that lateral earth pressure coefficient, K and interfacial friction angle,  could be 

taken as either ( K = K0 and  = 2/3)  or (K = Ka and  = ) to better describe the stress state 

at mining conditions in inclined stopes. 

The second part of the study involved the development of a small scaled plane strain 

inclined laboratory model based on the similar concept of experimental model of 

Pirapakaran and Sivakugan (2007b). Stope inclination, wall roughness, relative density and 

aspect ratio were varied independently to study their influence on the stress distribution and 

arching effects within the stope.  The results obtained from the studies revealed that aspect 

ratio, wall roughness and stope inclination were critical factors in predicting the stress 

distribution within a backfill stope. Vertical stress decreased with increase of aspect ratio 

and wall roughness. On the other hand, vertical stress increased from 70
o
 to 80

o
 and 

remained relatively same from 80
o
 to 90

o
.  The highest vertical stress was observed near 80

o
 

to the horizontal. This observation was not consistent with the results of extension of 

Marston‟s Theory (Chapter 3) or numerical modeling (Chapter 6) where it was clear that the 

vertical stress was the maximum when the walls were vertical.  Analysis of the stresses 

acting on hangingwall and footwall were conducted. The observations showed that, the load 

acting on the footwall was higher than the load acting on the hangingwall for an inclined 

stope. Models with different wall roughness characteristics were also tested. The laboratory 

model results showed that more loads were transferred to the wall with higher friction. In the 

case of walls with dissimilar frictional characteristics, the results showed that an average 

value of the wall-fill friction angles could be used in analytical expression for a reasonable 

estimate of the vertical stress at any depth. This overcame the limitation of analytical 

equations which had only a single value of  to represent both rock-fill interfaces. 

In the final part of the study, approximate solutions were developed for the stress 

distribution within inclined stopes based on FLAC simulation. Three separate models were 

conducted in the numerical simulation; laboratory model stope, a full-scale minefill stope 

surrounded by rock, and a full-scale laboratory stope surrounded by rock as in typical mine 

stopes. Sensitivity analysis and interface element were applied in each model. The 
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application of interface elements in the numerical model allowed for possible relative slip 

between the fill and the wall. The numerical results were validated with experimental results 

in Chapter 5 and the stresses determined from analytical expression (Chapter 3) as well as 

other numerical results from the literature.  Stresses distribution within an inclined stope 

were also studied. At any depth, the vertical normal stresses near the hangingwall and 

footwall were less than that at the central part of the stope, showing that arching occurred 

and parts of the stresses were being transferred to the surrounding rock walls.  The shearing 

stress along hangingwall decreased significantly with the increase of stope inclination. At 

footwall, the shearing stress increased with increasing stope inclination and remained 

constant when slope angle was greater than 80
o
. The difference of stresses between 

hangingwall and footwall became more pronounced with the increase of stope inclination. 

The results indicated that the lateral stress was insensitive to stope inclination. Higher 

stresses were observed along hangingwall, which was not proportional to vertical stress with 

constant value of K in accordance to h = Kv.   The numerical modeling showed that K 

varied within the stope laterally, and it was better described by Ka for minefill stope.  The 

results also confirmed the applicability of analytical expressions and laboratory model 

proposed in this dissertation in predicting vertical stress distribution within an inclined 

stope. 

7.2 Conclusions 

The main conclusions of the study are summarized below in corresponding to the chapters 

of the thesis. 

Analytical modeling - Extension of Marston’s Theory 

 Two analytical expressions are proposed to estimate the vertical stress at any depth 

within the inclined backfilled stopes for parallel and non-parallel walls, taking into 

consideration the arching phenomenon within the fill materials. These expressions are 

applicable for two-dimensional plane strain problems where the length of the mining 

stope is much greater than the width. But, further investigation is required for case 

when .  These expressions allow for a uniform surcharge pressure at the top of 

the stope.   

 With the same overburden pressure and base width, the stress magnitude experienced 

by fill material significantly differs depending on the wall inclination. The vertical 

stress reduces with the increase in stope inclination.  

 The arching effect is more significant for stope with higher aspect ratio.  
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 The vertical stress increases with the increase of unit weight and reduces with 

increasing fill cohesion. The analytical expression shows that the effect of friction 

angle is insignificant on the stress development within the practical range. 

New analytical approach developed from Pascal’s triangle and Binomial series   

 A simple analytical method to compute the vertical stresses within a vertical or 

inclined containment for granular material is proposed. 

 The model is capable of estimating normal vertical stress at any depth of the stope, 

irrespective the cross sectional shape.  

 Lateral earth pressure coefficient, K and interfacial friction angle,  can be taken as 

either ( K = K0 and  = 2/3)  or (K = Ka and  = ) to better describe the stress state at 

mining conditions in inclined stopes. 

Laboratory model of an inclined stope 

 The proposed laboratory model is capable of quantifying arching effect, and enables 

estimation of stress profile within inclined stopes for a wide range of aspect ratios. 

 Aspect ratio, wall roughness and stope inclination are critical factors in predicting the 

stress distribution within a backfill stope. 

 The effect of arching is the least when the stope is inclined at 80
o
 to the horizontal, 

giving the highest vertical stresses at any depth, which is inconsistent with the results 

obtained from analytical and numerical modeling. 

 The shear stress experienced by the footwall increases with an increase in stope 

inclination and wall roughness and more load is transferred to the wall with higher 

friction. 

 The average interface friction angle can be used to predict the vertical stress within a 

stope with different wall characteristics.  

Numerical modeling of inclined stopes using FLAC 

 The results confirmed the applicability of: 

a. The proposed laboratory model developed in Chapter 5 in quantifying arching 

effect and enabling validation of the numerical and analytical modeling results 

from an inclined stope. 

b. The analytical equation developed in Chapter 3 as a preliminary design tool to 

estimate the vertical stress within an inclined stope. 

 The study on stress distribution reveals that: 
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a. Arching occurs within the fill, 

b. The lateral stress is insensitive to stope inclination and higher horizontal stress 

is observed along hangingwall than the footwall, 

c. Shear stresses on hangingwall and footwall increase as stope inclination 

increases. The shear component along footwall is fully mobilized when the 

stope inclines more than 10
o
 to vertical. 

 K is insensitive to the depth of the stope. For inclined stopes, the stress state 

experienced by the fills varies across the span from hangingwall to footwall.  

 Active state is more appropriate than at rest state for describing the stress state within 

an inclined stope, with the interfacial friction angle  being equal to the friction angle 

of the fill .  

 The asymptotic value of fill depth to which the increment of fill load has insignificant 

influence on vertical stress distribution is dependent on assumed K-value, wall 

characteristic and stope inclination.  

 Scaling effect is insignificant as long as the aspect ratio remains constant and 

normalized (e.g. v/H, z/B) values are used. 

7.3 Recommendations for future research 

Based on works carried out in this dissertation, the following recommendations are made for 

future research.  They are summarized in the sequence of the chapters in this dissertation.  

Analytical modeling - Extension of Marston’s Theory 

 Refine the analytical expression for stope with parallel walls with the consideration 

of factors such as Young‟s modulus, Poisson‟s ratio and dilation angle. 

 Refine the analytical expression developed for stope with non-parallel walls to 

overcome the limitation of: 

o Stope with parallel walls 

o Stope where slope angle of hangingwall is greater than angle of footwall 

o Enable the use of 90
o
 instead of 89.999

o
 in modeling vertical wall 

 For stope with non-parallel walls and , examine the depth of onset of the 

inward curve, zcutoff by observing the first derivative of the normal vertical stress 

with respect to depth, z (Eqs. 3.60 and 3.61) in order to condition the use of the 

equation for z  zcutoff. 
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 New analytical approach developed from Pascal’s triangle and Binomial series   

 Introduce and calibrate a friction force factor, kfriction in the analytical equation to 

allow for the cases in which the maximum friction force is not reached while 

choosing K and  based on physical situation. 

 Extension of the proposed equation to include:  

o Vertical stope with irregular shape 

o Inclined stope with different cross sectional shape 

o Hopper 

 Extension of the proposed equation to incorporate cohesion 

Laboratory model of an inclined stope 

 Modification of the model by conducting tests on wet minefills and cemented fills to 

better represent the field situations 

 Investigation of the effects of fill properties by using a wide range of fill materials 

 Investigation into the position and orientation of strain gauges so that stresses acting 

at the walls can be estimated directly from the readings of strain gauges. 

 Investigate the inconsistency of maximum load at 80
o
 obtained from the 

experimental model which may be caused by experimental errors, such as 

systematic and intrinsic errors. 

 The small-scaled models can lead to quite erroneous conclusion regarding soil-

interaction effects. A full scale experiment or in-situ measurement is recommended 

to verify the results obtained from laboratory model.  

Numerical modeling of inclined stopes using FLAC 

 Modeling that incorporate the effect of pore water pressure and cementitious for 

cemented fill to better represent mine conditions is recommended 

 Extension of the model from 2-dimension to 3-dimension, including square and 

rectangular stopes with tilt 

 Study of the stability of an inclined stope is recommended when the neighboring 

stopes are excavated and refilled  

 Further investigation on lateral stress ratio, K 

 Validations of the model with in-situ data 
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Appendix A 

Differentiation ofz against u,  dz/du 

The function 

    
 

 
                 (A1.1) 

can be shown to be monotonically decreasing (and thus has no turning points) by 

showing that the first derivative is always less than zero (Note: strict inequality 

applies). From Eq. 3.82 

 
   

  
 

            

  
       (A1.2) 

Note that 

                    
   

  
  ,     (A1.3) 

as u
2
 > 0 when u  0. The case u = 0 is a special case and will be treated later. 

Letting  y = uz,  we need to show that 

              ,   y 0.      (A1.4) 

We know that 

         ,    y 0,       (A1.5) 

with equality occurring when y = 0. Multiplying the expression through by e
-y
 and 

subtracting 1, we obtained the required result. 

When u = 0, 

         
   

  
       

            

  
  

                      
                 

  
  

                      
        

  
    

                 
  

 
 < 0,   z  0.      (A1.6)     

   

Note that z = 0 when z = 0, as expected. Hence the function in equation (A1.1) is 

monotonically decreasing (z  0) or identically zero (z = 0). In either case, there are no 

relative optima. 
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Appendix B1 

Laboratory results of material properties 

 
Figure B1. 1.  Variation of friction angle with fill relative density 

 
Figure B1. 2. Variation of interfacial friction angle with fill relative density 
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Figure B1.3. Stress-strain plots for different fill relative density (from one-dimension 

Oedometer test) 

 

 
Figure B1.4.  Variation of Young‟s modulus, E with fill relative density  
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Appendix B2 

Calibration results of strain gauges 

 
Figure B2. 1. Calibration results of strain gauges for stope with inclination 80

o
 and medium 

wall roughness 

 
Figure B2. 2. Calibration results of strain gauges for stope with inclination 80

o
 and high wall 

roughness 
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Appendix B3 

Results of laboratory model at 30% relative density 
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(c) 

 

(d) 

Figure B3.1.  Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with high wall roughness at 30% relative fill density (a) 

model 90R30 (b) model 80R30 (c) model  75R30 (d) model 70R30 
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(c) 

 

(d) 

Figure B3.2.  Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with medium wall roughness at 30% relative fill density 

(a) model 90M30 (b) model 80M30 (c) model  75M30 (d) model 70M30 
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(c) 

 

(d) 

 

Figure B3.3.  Comparison between the solutions of experimental, numerical and analytical 

modeling for different slope angle with low wall roughness at 30% relative fill density (a) 

model 90S30 (b) model 80S30 (c) model  75S30 (d) model 70S30 
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(c) 

Figure B3.4.  Average vertical stress at the base of stope with inclination 90
o
 to the 

horizontal at 30% relative density for different aspect ratio (a) high wall roughness (b) 

medium wall roughness (c) low wall roughness 
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(b) 

 

(c) 

Figure B3.5.  Average vertical stress at the base of stope with inclination 80
o
 to the 

horizontal at 30% relative density for different aspect ratio (a) high wall roughness (b) 

medium wall roughness (c) low wall roughness 
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(c) 

 

Figure B3.6.  Average vertical stress at the base of stope with inclination 70
o
 to the 

horizontal at 30% relative density for different aspect ratio (a) high wall roughness (b) 

medium wall roughness (c) low wall roughness 
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Appendix B4 

Effect of aspect ratio for stope with inclination 90
o
 and 80

o
 to the 

horizontal  
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(c) 

Figure B4. 1.  Average vertical stress at the base of stope with inclination 90
o
 to the 

horizontal at 60% relative density for different aspect ratio (a) high wall roughness (b) 

medium wall roughness (c) low wall roughness 
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(b) 

 

(c) 

Figure B4. 2. Average vertical stress at the base of stope with inclination 80
o
 to the 

horizontal at 60% relative density for different aspect ratio (a) high wall roughness (b) 

medium wall roughness (c) low wall roughness  
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Appendix C1 

FLAC code for laboratory model 100 mm x 700 mm 
;============================================ 

; Laboratory stope 100 x 700 mm 

; High wall roughness 

; Inclination: 70
o
 

; Filling: 42 Lift 

;=========================================== 

new 

define moduli 

; Wall : s1-shear modulus, b1-bulk modulus, y1-Young modulus, pr1-Poisson's ratio 

;Fill : s2-shear modulus, b2-bulk modulus, y2-Young modulus, pr2-Poisson's ratio 

    s1=y1/(2*(1+pr1))      

    b1=y1/(3*(1-2*pr1)) 

    s2=y2/(2*(1+pr2)) 

    b2=y2/(3*(1-2*pr2)) 

end 

 

def const 

    ; Wall properties: y1-Young modulus, pr1-Poisson's ratio, d1-density 

      y1=3.2e9    

      pr1=0.3       

      d1 = 1190   

     ; fill properties 

    ;  y2-Young modulus, pr2-Poisson’s ratio, d2-density, phi2-friction angle, c2-cohesion  

     ; de2-interfacial angle, dil2-dilation, ks2 & kn2 -interface properties  

     y2=420e3 

     pr2=0.2     

     d2=1568   

     phi2=41.1   

     c2=0        

     del2=40     

     dil2=3.7    

     ks2=1e8     

     kn2=1e8     
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end 

const 

moduli 

 

;generate grid 

  grid 26,126 

  mod elas 

  prop den = d1 bulk = b1 shear = s1 

  gen       0,0  0.2548,0.7  0.2648,0.7   0.01,0    i = 1,3     j = 1,127 

  gen 0.01,0   0.2648,0.7  0.3648,0.7   0.11,0    i = 4,24   j = 1,127 

  gen 0.11,0   0.3648,0.7  0.3748,0.7   0.12,0    i = 25,27  j=1,127 

  mod null i = 3,24 

 

;boundary condition 

fix x y i = 1 

fix x y i = 27 

fix y j = 1 

 

;initial conditions  

ini xdis = 0 ydis = 0  

ini syy = 0 sxx = 0 szz = 0 sxy = 0 

set grav = 9.81 

set large 

step 2000 

solve 

       ini xd 0 yd 0 

 

; ----------------------filling process------------------------------------------ 

  ;fill first layer 

model mohr i = 4,23 j = 1,3 

prop bulk = b2 shear = s2 den = d2 fric = phi2 coh = c2  

int 1 as from  3,1 to  3,4   bs from  4,1 to  4,4 

int 2 as from 24,1 to 24,4  bs from 25,1 to 25,4 

int 1 ks = ks2 kn = kn2 fric = del2 dil = dil2 

int 2 ks = ks2 kn = kn2 fric = del2 dil = dil2 

step 100 
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set gravity = 9.81 

set large 

solve 

  ; Tiered filling  

   def fill 

   loop k(1,41) 

      k1 = k*3+1 

      k2 = k1+2 

      k3 = k*3+2 

      k4 = k3+2 

      k5 = k*2+1 

      k6 = k5+1 

      command     

         model mohr i = 4,23 j = k1,k2 

         prop bulk = b2 shear = s2 den = d2 fric = phi2 coh = c2  

         int k5 aside from  3,1  to 3,k4     bside from 4,k3 to 4,k4 

         int k6 aside from 24,k3 to 24,k4 bside from 25,1 to 25,k4 

         int k5 ks = ks2 kn = kn2 fric = del2 dil = dil2 

         int k6 ks = ks2 kn = kn2 fric = del2 dil = dil2 

         step  

        set large 

        set gravity=9.81 

        solve 

    end_command 

      end_loop 

end 

fill 
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Appendix C2 

FLAC code for full scale model 6 m x 45 m 
;============================================ 

;Full scale model 6 x 45 m 

= 

; Grid: 94x131  

; Filling: 10 Lift  

; Inclination: 70
o
 

; ============================================ 

new 

def const 

   ; rock properties 

   ; y1-Young modulus, pr1-Poisson’s ratio, d1-density, ks1 & kn1 – interface properties  

     y1=30e9 

     pr1=0.3 

     d1 = 2700 

     ks1=1e13 

     kn1=1e13 

   ; fill properties 

   ;  y2-Young modulus, pr2-Poisson’s ratio, d2-density, phi2-friction angle, c2-cohesion  

   ; de2l-interfacial angle, dil2-dilation, ks2 & kn2 -interface properties  

     y2=300e6 

     pr2=0.2 

     d2=1800 

     phi2=30 

     c2=0 

     del2=30 

     dil2=0 

     ks2=1e10 

     kn2=1e10 

end 

 

define moduli 

   ; rock: s1-shear modulus, b1-bulk modulus 

   ; backfill: s2-shear modulus, b2-bulk modulus 
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      s1=y1/(2*(1+pr1))      

      b1=y1/(3*(1-2*pr1)) 

      s2=y2/(2*(1+pr2)) 

      b2=y2/(3*(1-2*pr2)) 

end 

const 

moduli 

 

; generate grid 

     grid 94, 131 

     mod elas 

     prop den=d1 bulk=b1 shear=s1 

     gen   0,0               0,65.5   43.84005,65.5   20,0               i = 1,41    j = 1,132 

     gen 20,0  43.84005,65.5   49.84005,65.5   26,0               i = 42,54  j = 1,132  

     gen 26,0  49.84005,65.5   69.84005,65.5   69.84005,0    i = 55,95  j = 1,132  

     mod null i = 41  

     mod null i = 54  

     int 1 as from 41,1  to 41,132   bs from 42,1  to 42,132 

     int 2 as from 54,1  to 54,132   bs from 55,1  to 55,132 

     int 1 glue ks = ks1 kn = kn1 

 int 2 glue ks = ks1 kn = kn1 

 

; boundary condition 

     fix x i = 1 

     fix x i = 95 

 fix y j = 1 

 

 ; initial conditions   

     ini syy = -6.7674285e6   var 0,1.7348985e6 j =1,132 

     ini sxx = -1.3534857e7   var 0,3.469797e6   j = 1,132 

     ini szz = -1.3534857e7   var 0,3.469797e6   j = 1,132 

     apply syy = -6.7674285e6  i =  1,41   j=1 

     apply syy = -6.7674285e6  i = 42,54  j=1 

     apply syy = -6.7674825e6  i = 55,95  j=1 

     apply syy = -5.03253e6  i = 1,41    j = 132 

     apply syy = -5.03253e6  i = 42,54  j = 132 
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     apply syy = -5.03253e6  i = 55,95  j = 132 

     apply sxx = -1.3534857e7  var 0,3.469797e6  i = 1     j = 1,132 

     apply sxx = -1.3534857e7  var 0,3.469797e6  i = 95   j = 1,132 

     ini xdis = 0 ydis= 0  

     set grav=9.81 

     set large 

     step 500  

 solve 

 

  ; excavate the stope 

     model null i = 42,53  j = 21,112 

     set grav = 9.81 

     set large  

     solve 

 ini xd 0 yd 0 

 

; ---------- filling process--------------------------------------- 

  ; first layer filling 

     model mohr i = 42,53  j = 41,49 

     prop bulk = b2 shear = s2 den = d2 fric = phi2 coh = c2  

     int 7 as from 41,21  to 41,50  bs from 42,21  to 42,50 

     int 8 as from 54,21  to 54,50  bs from 55,21  to 55,50 

     int 7 ks = ks2 kn = kn2 fric = del2 dil = dil2 

     int 8 ks = ks2 kn = kn2 fric = del2 dil = dil2 

     step 2000 

     set gravity=9.81 

     set large 

     solve 

  ; tiered filling 

    def fill 

      loop k(1,9) 

         k1 = k*9+21 

         k2 = k1+8 

         k3 = k*9+21 

         k4 = k3+9 

         k5 = k*2+7 
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         k6 = k5+1 

        command     

           model mohr i = 42,53  j = k1,k2 

           prop bulk = b2 shear = s2 den = d2 fric = phi2 coh = c2  

           int k5 aside from 41,21  to 41,k4  bside from 42,k3 to 42,k4 

           int k6 aside from 54,k3  to 54,k4  bside from 55,21 to 55,k4 

           int k5 ks = ks2 kn = kn2 fric = del2 dil = dil2 

           int k6 ks = ks2 kn = kn2 fric = del2 dil = dil2 

           step 2000 

          set large 

          set gravity=9.81 

          solve 

       end_command 

   end_loop 

end 

fill 

 

 

 

 

 

 

 

 

 

 

 


	Cover Sheet
	Front Pages
	Title Page
	Statement of Access
	Statement of Sources
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols

	Chapter 1 Introduction
	Chapter 2 Literature review
	Chapter 3 Extension of Marston's Theory
	Chapter 4 A simple analytical method to determine vertical stresses within a granular material contained in right vertical prisms and inclined mine fill stopes
	Chapter 5 Laboratory model of an inclined stope
	Chapter 6 Numerical modeling of inclined stopes using FLAC
	Chapter 7 Summary, conclusions and recommendations
	References
	Appendices
	Appendix A Differentiation of ...
	Appendix B 1 Laboratory results of material properties
	Appendix B2 Calibration results of strain gauges
	Appendix B3 Results of laboratory model at 30% relative density
	Appendix B4 Effect of aspect ratio for stope with inclination 90° and 80° to the horizontal
	Appendix C1 FLAC code for laboratory model 100 mm x 700 mm
	Appendix C2 FLAC code for full scale model 6 m x 45 m




