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Abstract  Raised temperatures are deleterious to early life stages in many organisms, 13 

however, the biological effects of lowered temperatures are rarely explored.  For 14 

example, the tolerance of marine invertebrate larvae to temperatures lower than 15 

ambient might affect the capacity of species to disperse from tropical to sub-tropical 16 

locations. In addition, reduced rates of development are likely to affect the proportion 17 

of larvae retained on natal reefs. Here, we explore the relationship between 18 

temperature, embryonic development and larval survival over an 8°C temperature 19 

range (-4 to +4°C around the ambient temperature at the time of spawning of 24ºC) in 20 

two reef-building corals, Goniastrea favulus and Acropora spathulata from One Tree 21 

Island (OTI) in the southern Great Barrier Reef (GBR).  Rates of development were 22 

generally slower at lower temperatures: embryos of both species took longer to 23 

complete gastrulation and to become motile at temperatures below ambient. In 24 

contrast, temperatures below ambient did not affect larval survivorship in either 25 

species.  A. spathulata larvae were more sensitive to raised temperatures than G. 26 

favulus, which also had higher survivorship than A. spathulata at all temperatures 27 

except 20°C.  These results suggest that fluctuations in temperature at the time of 28 

spawning will influence patterns of coral larval dispersal. Furthermore, cold water is 29 

unlikely to prevent the dispersal of tropical corals to sub-tropical locations. 30 

 31 
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INTRODUCTION 35 

The earth’s environment is changing rapidly as a consequence of global warming.  36 

Rising temperatures are affecting terrestrial, marine and freshwater populations by 37 

altering processes such as growth and reproduction (Parmesan & Yohe 2003; Root et 38 

al. 2003; Poloczanska 2007).  However, climate change will not necessarily result in 39 

all locations becoming hotter.  For example, the effects of climate change are 40 

expected to alter ocean currents, including the East Australian Current, which delivers 41 

warm waters from the tropics to higher latitudes in eastern Australia (Poloczanska et 42 

al. 2007).  Such changes in circulation patterns may result in some sub-tropical 43 

locations, such as Lord Howe Island, becoming colder than at present.  Consequently, 44 

it is important to investigate the effects of both raised and lowered temperatures in 45 

order to accurately predict the consequences of global warming (Addo-Bediako et al. 46 

2000; Pörtner 2001). 47 

The effects of raised temperature on coral larval biology are well known.  48 

Deleterious effects, such as an increase in the proportion of abnormal embryos and a 49 

decrease in larval survivorship are evident as little as 2ºC above ambient (Bassim et 50 

al. 2002).  Raised temperatures also increase rates of coral larval development (Chua 51 

et al. 2012) and coral larvae become competent to settle more quickly at higher 52 

temperatures (Nozawa & Harrison 2007; Heyward & Negri 2010).  Given a strong 53 

association between rates of development and levels of self-recruitment in corals 54 

(Figueiredo et al. 2013), rising sea surface temperatures are likely to affect patterns of 55 

dispersal by reducing the levels of connectivity among populations (O’Conner et al. 56 

2007).  The effects of colder temperatures on coral larval biology are less well known.  57 

Edmondson (1946) demonstrated that coral larvae were robust to short term exposures 58 

to temperatures as low as 0.5°C.  In contrast, metamorphosis to CCA by Stylophora 59 
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pistillata was 5 times lower at 2ºC below ambient (Putnam et al. 2008). Similarly, 60 

settlement was approximately 50% lower in Acropora solitaryensis larvae at 3ºC 61 

below ambient (Nozawa & Harrison 2007). 62 

Climate-driven changes in ocean circulation are altering dispersal patterns in 63 

many marine organisms (O’Conner et al. 2007; Przeslawski et al. 2008).  For 64 

example, the mussel Mytilus edulis (Jones et al. 2009), many reef fish species (Feary 65 

et al. 2013) and some corals (Yamano et al. 2011; Baird et al. 2012) have recently 66 

shifted their ranges pole-ward.  Similarly, the fossil record indicates that scleractinian 67 

corals have been tracking climate on geological timescales (Veron 1992; Precht & 68 

Aronson 2004; Greenstein & Pandolfi 2008).  This tendency of marine organisms to 69 

track changing climates strongly suggests there are environmental barriers to 70 

dispersal, although geographical ranges could also be limited indirectly, for example, 71 

by changes in competitive interactions among species (Cahill et al. 2013).  72 

Nonetheless, one potential factor limiting the dispersal of corals south from the Great 73 

Barrier Reef (GBR) into sub-tropical areas may be the capacity of coral larvae to 74 

withstand the colder waters they encounter en route. 75 

In this study, we compared the response of the early life history stages of two 76 

species of scleractinian corals, Goniastrea favulus and Acropora spathulata to an 8ºC 77 

temperature range from -4 to +4ºC around the ambient experienced at the natal 78 

location, One Tree Island, around the time of spawning.  In addition to comparing the 79 

temperature response, we aimed to test whether cool water is a barrier to the dispersal 80 

of larvae of these species to higher latitudes from this location.  Both G. favulus and 81 

A. spathulata are common at One Tree Island (OTI), however, while OTI is the 82 

southern latitudinal limit for A. spathulata (Wallace 1999), G. favulus occurs as far 83 

south as Lord Howe Island (Veron 1993). 84 
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 85 

MATERIALS AND METHODS 86 

Coral collection and culture of propagules 87 

Six colonies of Acropora spathulata and five colonies of Goniastrea favulus were 88 

collected from the reef flat of the first lagoon at One Tree Island (23°30’S, 152°05’E) 89 

in the southern GBR, a few days prior to the predicted spawning period in 2010.  90 

Colonies were maintained in flow-through filtered seawater (FSW) in shaded outdoor 91 

aquaria.  Just prior to spawning, species were placed in separate aquaria and water 92 

flow was stopped to prevent gametes being washed away.  G. favulus spawned on the 93 

afternoon of 26 November 2010 and A. spathulata spawned on the night of 30 94 

November 2010.  A. spathulata egg and sperm bundles were collected and broken 95 

apart with gentle agitation and the density of sperm diluted to ca. 10
6
 sperm ml

-1
 in 96 

order to maximize the fertilization success (Oliver & Babcock 1992).  Once cleavage 97 

was observed approximately 2 h post-fertilization (hpf), embryos were washed three 98 

times in 0.2 micron FSW to remove excess sperm which can cause cultures to 99 

deteriorate.  In contrast to the positively bouyant egg/sperm bundles released by A. 100 

spathulata, G. favulus releases eggs and sperm separately, with the negatively 101 

buoyant eggs released approximately 30 min before sperm.  Consequently, the eggs of 102 

G. favulus were collected from the base of parent colonies approximately 30 min after 103 

spawning was complete.  The time that eggs were spawned was considered to be the 104 

time of fertilization in G. favulus. 105 

 106 

Experimental design 107 

To test for the effects of raised and lowered temperature on larval development and 108 

survivorship, water baths were set up in a temperature-controlled room at five 109 
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temperatures (20°C, 22°C, 24ºC, 26°C, 28°C i.e. -4°C, -2°C, ambient, +2°C, +4°C).  110 

Aquarium heaters, coolers, and pumps kept treatment baths stable and within 0.5°C of 111 

the target temperatures (monitored with HOBO data loggers).  Ambient average SST 112 

for the month prior to spawning (24.2°C) was determined from on-reef sensors 113 

(GBROOS, http://data.aims.gov.au/gbroos/).   114 

 115 

The effect of temperature on embryonic development 116 

To test the effect of temperature on embryonic development, washed embryos were 117 

transferred to 20 ml glass vials filled with 0.2 µm FSW and distributed among 118 

temperature treatments at 2 hpf (ca. 30 embryos per vial; 3 vials per treatment).  The 119 

stage of development of the first 20 embryos in each vial was assessed at 8 or 9 time 120 

points depending on the species: 18, 24, 30, 36, 48, 72, 96, 120 and 144 hpf (6 days). 121 

The following five development stages were identified (following Ball et al. 2002): 4-122 

cell blastula, multiple cell blastula, early gastrula, gastrula and planulae (motile 123 

stage).  To test for differences in development time between treatments, the average 124 

time for propagules to reach gastrulation and motility was estimated following Chua 125 

et al. (2012):  126 

 127 

Average time to reach stage, X  = Σ [time (hours) x number of propagules to 128 

reach stage]/Total number of propagules 129 

 130 

Effect of temperature on larval survival 131 

To test the effect of temperature on coral larval survival, 50 washed embryos were 132 

placed in 50 ml glass vials filled with 0.2 µm FSW and distributed among temperature 133 

treatments 2 hpf (50 embryos x 3 vials per treatment).  Survival was measured by 134 
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counting the number of embryos remaining at each of the above time points.  Coral 135 

larvae lyse within 24 h of death (Baird et al. 2006) so all larvae counted were 136 

considered to be alive at the time of census. 137 

 138 

Data Analysis 139 

Differences in mean time to complete gastrulation and to reach the planula stage (for 140 

G. favulus only) among temperature treatments (fixed, 5 levels: 20, 22, 24, 26 and 141 

28ºC) were tested using a 1-way ANOVA for each species separately.  Data were log-142 

transformed and homogeneity of variance was confirmed by Levene’s Test.  Tukey’s 143 

HSD post-hoc tests were used to identify which treatment levels differed.  Non-144 

parametric Kaplan-Meier product limit analyses were used to test for differences in 145 

median survivorship among temperatures for each species separately.  Median 146 

survivorship (in hours) was considered significantly different when the 95% 147 

confidence intervals did not overlap.  All analyses were performed using SPSS v19
®
. 148 

 149 

RESULTS  150 

Temperature had a significant effect on rates of propagule development in both 151 

species.  In general, the slowest rates of development occurred at the lowest 152 

temperatures (Fig. 1 & 2).  Temperature had a significant effect on the mean time to 153 

complete gastrulation in both A. spathulata (F4, 10 = 71.53, p <0.001) and G. favulus 154 

(F4, 10 = 11.84, p = 0.001) (Fig. 1).  A. spathulata embryos at 28ºC took 23.1 ± 0.9 h to 155 

complete gastrulation compared to 37.7 ± 2.1 h at 20ºC.  Similarly, G. favulus 156 

embryos required 30.4 ± 4.0 h to complete gastrulation at 20ºC compared with 20 ± 157 

1.0 h at 28°C.  In addition, G. favulus developed more rapidly than A. spathulata at all 158 

temperatures (Fig. 1).  Over all temperatures pooled, the mean time to complete 159 
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gastrulation was 21.6 + 1.4 h in G. favulus and 28.4 + 1.3 h in A. spathulata.  160 

Similarly, temperature had a significant effect on the mean time to reach the planula 161 

stage in G. favulus (F4,10=15.62, p=<0.001; Fig. 2).  The mean time to reach the 162 

planula stage was greatest at 20ºC (129.7 + 6.3 h) and lowest at 26ºC & 28ºC (Fig. 2). 163 

Only raised temperatures had a significant effect on larval survival (Fig. 3).  In 164 

A. spathulata, survival was reduced at both temperatures above ambient (Fig. 3a).  In 165 

contrast, G. favulus survival was reduced only at the highest temperature (Fig. 3b).  In 166 

addition, G. favulus larval had higher survivorship than A. spathulata larvae at all 167 

temperatures, with the exception of 20ºC (Fig. 3). 168 

 169 

DISCUSSION 170 

Embryonic development was strongly affected by temperature. In general, the lower 171 

the temperature, the longer it took to complete gastrulation and for larvae to become 172 

motile. In contrast, larval survival was only reduced at temperatures above ambient.  173 

While the response of both species to temperature was broadly similar, there were, 174 

nonetheless, differences between the species in development rate, larval survivorship 175 

and thermal tolerance. 176 

 The effect of temperature on development rates in these coral embryos is 177 

typical of most marine invertebrates (Pechenik 1987).  For example, embryos of 178 

Goniastrea australensis in the Solitary Islands (30ºS) developed more slowly at 22ºC 179 

than at 26 and 28ºC (Wilson & Harrison 1998).  This suggests that rates of embryonic 180 

development are likely to depend on the temperature conditions prevailing shortly 181 

after the time of spawning.  Given that rates of self-recruitment are typically higher in 182 

larvae that develop more rapidly (Figueiredo et al. 2013), patterns of dispersal are 183 

likely to vary among years if ambient temperatures vary.  In addition, patterns of 184 
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dispersal might vary predictably among locations at different latitudes.  In particular, 185 

high latitude locations, are likely to have lower levels of self-recruitment than tropical 186 

locations because larvae take longer to develop.  In addition, rates of predation are 187 

likely to increase the longer larvae remain in the plankton. For example, reduced 188 

levels of self-recruitment might help explain low numbers of juvenile corals at Lord 189 

Howe Island (LHI) (Latitude 33°S) when compared to many tropical locations (Hoey 190 

et al. 2011). However, the effect of low temperatures on rates of recruitment can not 191 

be discounted (Putnam et al. 2008). 192 

Rates of embryonic development were also influenced by the size of the 193 

propagules.  Across all temperatures, G. favulus embryos (mean diameter of 320 µm) 194 

developed more rapidly than A. spathulata embryos (mean diameter of 500µm; Fig. 1 195 

& 2), which can most likely be attributed to faster rates of cell division in species with 196 

smaller eggs (Berrill 1935; Marshall & Keough 2008).  Similarly, in eighteen species 197 

of broadcast spawning corals, egg size was strongly and positively correlated with 198 

time to motility (Figueiredo et al. 2013).  The more rapid rate of development in G. 199 

favulus embryos did not come at the cost of reduced larval survival: G. favulus larvae 200 

survived longer that A. spathulata at all temperatures, except at 20°C where there was 201 

no difference between the species (Fig. 3). 202 

In contrast to the relationship between development and temperature, larval 203 

survival was only reduced at temperatures 2-4ºC (Fig. 3).  These upper thermal limits 204 

(2-4ºC above ambient: Fig. 3) appear to be consistent over a very large geographical 205 

scale and among many different species (Bassim et al. 2002; Randall & Szmant 2009; 206 

Heyward & Negri 2010), supporting the hypothesis that many corals live very close to 207 

their upper thermal limits, In contrast, temperatures up to 4°C below ambient had no 208 

effect on larval survival (Fig. 3).  Projections based on the speed and direction of the 209 
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East Australia Current suggest that the time taken to disperse from OTI in the 210 

southern GBR to LHI takes approximately 16-33 days. Given that spawning occurs at 211 

OTI in November, larvae will arrive at LHI between late November and early 212 

January.  In the course of this journey water temperatures can be as low as 19ºC 213 

(AIMS 2012). Consequently, it is unlikely that temperature is a barrier to dispersal 214 

from the southern GBR to higher latitudes for either of these species and therefore 215 

other factors must determine why A. spathulata is not found on LHI. 216 

Thermal tolerance differed between the species.  In particular, larval survival 217 

was reduced at 26 °C in A. spathulata and 28°C in G. favulus (Fig. 3).  A similar 218 

difference in thermal tolerance was also observed between acroporid and merulinid 219 

embryos by Negri et al. (2007).  Consistent differences in stress tolerance are also 220 

apparent between adult colonies of these two families: adult acroporids are much 221 

more susceptible to bleaching and disease when compared to adult merulids (Hughes 222 

& Connell 1999; Marshall & Baird 2000; Diaz & Madin 2011). 223 

In conclusion, temperature has important effects on many aspects of coral 224 

larval biology.  In particular, development rates varied predictably with temperature, 225 

suggesting that patterns of dispersal are likely to change in response to global 226 

warming.  In addition, coral larvae appear to be tolerant of temperatures 2-4ºC below 227 

ambient, suggesting that cold water is unlikely to limit the dispersal of tropical species 228 

to sub-tropical locations. 229 

 230 
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FIGURES 337 

338 
Fig. 1 Mean time to gastrulation (hours post-fertilization + one SE) of a) 339 

Acropora spathulata and b) Goniastrea favulus at five temperatures (n= 60, 340 

ambient = 24°C).  Letters above the error bars indicate homogenous groups 341 

identified by Tukey HSD post-hoc analysis (p<0.05).  342 

 343 

 344 

 345 

 346 

 347 
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 348 

 349 
Fig. 2. Mean time to the planula stage (hours post-fertilization + one SE) in 350 

Goniastrea favulus at five temperatures (n=60, ambient = 24°C).  Letters above the 351 

error bars indicate homogenous groups identified by Tukey HSD post-hoc analysis 352 

(p<0.05).   353 

 354 

 355 

 356 

 357 

  358 
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 359 

 360 
Fig. 3 Kaplan-Meier median survivorship estimates for a) Acropora spathulata and b) 361 

Goniastrea favulus at five temperatures (n=150, ambient = 24°C). Error bars show 362 

95% confidence intervals and letters indicate homogenous groups determined by the 363 

overlap of confidence intervals. 364 
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