Modeling methods for cell phase classification

Tran, Dat T., Pham, Tuan D., Zhou, Xiaobo, and Wong, Stephen T.C. (2007) Modeling methods for cell phase classification. In: Pham, Tuan D., Yan, Hong, and Crane, Denis I., (eds.) Advanced Computational Methods for Biocomputing and Bioimaging. Nova Science Publishers, New York, USA, pp. 143-166.

[img] PDF (Published Version)
Restricted to Repository staff only



Studies of drug effects on cancer cells are performed through measuring cell cycle progression such as inter phase, prophase, metaphase and anaphase in individual cells. Such studies require the processing and analysis of huge amounts of image data. Manual image analysis is very time consuming thus costly, potentially inaccurate and poorly reproducible. Stages of an automated cellular imaging analysis consist of segmentation, feature extraction, classification, and tracking of individual cells in a dynamic cellular population. Image classficiation of cell phases in a fully automatic manner presents the most difficult task of such analysis. We considered applying several advanced computational, probabilistic and fuzzy methods for the computerized classification of cell nuclei in different mitotic phases recorded over a period of twenty-four hours at every fifteen minutes with a time-lapse fluoresence microscopy. The experimental results have shown that the proposed methods are effective and have potential for higher performance.

Item ID: 3004
Item Type: Book Chapter (Research - B1)
ISBN: 978-1-60021-278-9
Keywords: image analysis; pattern recognition; bioinformatics
Date Deposited: 15 Dec 2009 22:59
FoR Codes: 08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080109 Pattern Recognition and Data Mining @ 50%
08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080106 Image Processing @ 50%
SEO Codes: 89 INFORMATION AND COMMUNICATION SERVICES > 8902 Computer Software and Services > 890205 Information Processing Services (incl. Data Entry and Capture) @ 100%
Downloads: Total: 6
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page