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Abstract 

 

The discrete wavelet transform using adaptive wavelet bases were investigated in 

classification, regression and experimental design applications for spectroscopic data.  

Adaptive wavelets have been used previously in near infrared spectroscopy fields for 

classification and regression; however methods to select the parameters required in the 

adaptive wavelet algorithm have been largely influenced by human interaction.  

Methods are developed within this thesis to select parameters for adaptive wavelets 

along with investigating the hypothesis of using multiple wavelet bases to improve the 

predictability of classification and regression models. 

 

Use of the adaptive discrete wavelet transform (ADWT) is illustrated using a repeated 

measures experiment.  Near infrared (NIR) spectra of wine grape homogenates, from 

the Australian viticulture industry, underwent feature extraction via the ADWT and then 

modelled using penalised discriminate analysis, random forests and multiple adaptive 

regression splines.  The correct classification rates of all three methods were 

substantially improved when the ADWT was applied.  Scores from the ADWT 

penalised discriminate analysis (PDA) were analysed via multivariate analysis of 

variance (MANOVA) where it is reported that all main and interaction effects were 

significant.  A bi-plot of the PDA scores illustrated the ease of which the ADWT 

extracted useful features from the spectra which were pertinent to the experimental 

design. 

 

A method of ADWT parameter selection was derived using the Bayes’ information 

criteria (BIC) and demonstrated in an unsupervised classification problem.  Using the 

BIC to select ADWT parameters removed the need to for human interaction to select 

good, optimised, adaptive wavelets.  This outcome highlighted an advantage over 

standard wavelet types, which gave similar unsupervised classification performances, 

where adaptive wavelets only need to span a relatively small set of parameters to give 

good models while a prohibitively large number of standard wavelet types need to be 

trialled.  
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Investigation of using multiple wavelet transforms to improve model performance - a 

new hypothesis in the field of chemometrics – was demonstrated in supervised 

classification and regression applications.  In the classification example, SELDI-TOF 

mass spectra from a cancer study were analysed by pre-processing the spectra with a 

variety of standard wavelet types prior to variable elimination via a t-static and random 

forest approach.  The retained variables were subsequently model using Treeboost 

where the specificity and sensitivity of the modelling process was improved by using 

multiple standard wavelet types compared to model using only one wavelet type alone.  

Models derived from wavelet processing were superior to models without pre-

processing. 

 

Further evidence supporting the multiple wavelet feature extraction hypothesis was 

gained in the regression application.  Using a publically available and well documented 

NIR dataset, a Bayes Metropolis regression was modified to incorporate multiple 

wavelet transforms by using constrained stacking rather than Bayes model averaging as 

the model ensemble method.  Multiple adaptive wavelets and multiple standard 

wavelets were trialled with the multiple adaptive wavelet approach resulting in a 

superior predictive regression model when compared to: all single standard wavelet 

models, single adaptive wavelet models, multiple wavelet standard wavelet models and 

models cited previously in literature for the same data set. 

 

Methods for using adaptive wavelets, both multiple and singular wavelet bases, are 

outlined in this thesis with the general conclusion that the modelling process of NIR 

data (or juxta-positional data) can be substantially improved by the use of these wavelet 

transforms. 
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Chapter 1 
 
Introduction 

Study of near infrared absorption spectra is of interest for developing low cost, 

automated and rapid measurement systems.  The near infrared (NIR) spectrum is the 

portion of the energy spectrum between 800nm to 2500nm where molecular dipoles 

absorb energy.  Molecular dipoles absorb at characteristic wavelengths and the amount 

of absorbance relates to the concentration of the dipole. 

 

The Beer-Lambert-Bouguer law (Appendix 1) is the most widely adopted theoretical 

framework to correlate molecular concentration with spectral absorbance and is 

particularly useful when samples have few absorbing dipoles.  With a sample with few 

absorbing dipoles at different wavelengths, absorbance is directly proportional to 

concentration.  However in samples that comprise of a large number of absorbing 

dipoles there is, as yet, no consistent theoretical framework that can be universally 

applied.  With samples with many absorbing diploes, the measured NIR spectrum is a 

convolution of many NIR absorbance spectra.  To overcome this obstacle, empirical 

methods have been developed to determine molecular concentration based upon the 

measured near infrared absorbance spectrum. 

 

Projection based calibration methods such as partial least squares (PLS) [1] and 

principle component analysis regression (PCR) [2] have widely been used in NIR 

spectroscopy with considerable success to empirically correlate NIR absorbance with 

molecular concentrations.  The idea behind projection based methods is that the NIR 

spectrum can be decomposed into a multitude of orthogonal spaces which can be 

correlated with the desired molecular concentration. 

 

While projection based methods have been quite successful in forming empirical 

relationships between NIR spectra and molecular concentrations, projection methods do 

not utilize the physical characteristics of the NIR spectrum; particularly the juxta-

positional nature of wavelengths.  For example, wavelengths (or wavenumbers) can be 

re-ordered randomly and PLS will result in an identical model – with re-ordered PLS 

loadings naturally.  Empirical models derived solely from projection based method can 
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be sensitive to the conditions in which the calibration data were collected [3].  Variants 

of PLS have been developed which do incorporate aspects of juxta-positioning.  The 

most popular variant of PLS is moving window PLS (MWPLS) [4], where the spectrum 

is “windowed” in smaller regions.  The windowing procedure incorporates some juxta-

positioning information; however the portion of the spectrum within each window can 

still be randomly permutated to achieve the same result.  Feature extraction, or signal 

filtering, is often used with PLS or PCR [5] to improve predictive performance as the 

feature extraction step incorporates physical information regarding the molecular 

dipole(s) spectrum. 

 

With signal filter extraction methods, the spectrum (observed signal) is thought to 

consist of a superposition of underlying signals, where the signals can be characterised 

by a known functional form. For example, in Fourier analysis, the signals functional 

form is given by the sine function combined with a phase delay.  Signal filters can be 

categorised into two classes: global and localised filters. 

 

Fourier transforms are a classic example of a global filter where the basis function of 

the filter spans over the entire space of the observed signal.  The Discrete Wavelet 

Transform (DWT) [6] and the Gabor Transform [7] are examples of localised signal 

filters, where the filter basis functions are localized to a small region of the observed 

spectrum.  Most spectra consist of a superposition of overlapping signals and the 

desired signal, in regression applications, is widely believed to be restricted to a portion 

of the measured signal.  With this overlapping structure, localised signal filters are ideal 

for feature extraction to improve modelling of spectra. 

 

The discrete wavelet transform (DWT) has a similar structure as the spectrum 

superposition idea, where the DWT represents the spectrum as a superposition of 

scalable, localised functions.  The DWT has been shown to be highly effective in 

improving the performance of calibration type problems in many fields of NIR 

spectroscopy [5].  However, unlike the Fourier transform, the DWT has a large number 

of basis functions to choose from and it has been demonstrated that some wavelets, used 

in the DWT, perform better than others in specific applications [8]. 

Most studies to date utilise wavelet transforms that use a mathematically derived 

wavelet such as a Daubechies or Morlet wavelet.  These standard wavelet types have 
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been very successful in improving model performance particularly in the field of 

calibration development [9].  While Morlet and Daubechies wavelets have convenient 

mathematical properties, such as minimal phase distortion or maximum symmetry, they 

were not designed for unknown signal feature extraction for data analysis.  Thus, it is 

more likely that a different wavelet basis, one derived for the task at hand, will more 

likely yield more a favourable model. 

 

Wavelets in the DWT are functions that are fore mostly scalable and localised [7].  This 

criterion encompasses a broad range of functions that can be classified as wavelets.  It is 

also possible to generate functions that fulfil the wavelet criteria.  Pollen factorisation 

[10], Lifting [11] and Angular factorisation [12] are the most common algorithms to 

generate functions that meet the wavelet criteria.  Additional criteria can be imposed in 

these wavelet generating algorithms to design wavelets specific to data analysis tasks – 

so called adaptive wavelets.  

 

Adaptive wavelets are a class of wavelets which update their function frequency and 

phase forms to reduce a predefined optimisation criterion.  The application of adaptive 

wavelets is quite limited in field of chemometrics with very few articles in literature [8, 

12, 13].  Although the application of adaptive wavelets in literature is limited within the 

chemometrics field, the chemometric studies on adaptive wavelets have all indicated 

that adaptive wavelets are superior to standard wavelets.  Nearly all of the adaptive 

wavelet applications in chemometrics have been on regression development [12] with 

only two papers on classification [8, 14]. 

 

Slow adoption of adaptive wavelets can be partially attributed to a lack of integration of 

adaptive wavelets into modern chemometric methods such as principle component 

analysis (PCA) and partial least squares (PLS).  Standard wavelets have been used as a 

feature extraction tool for both PCA and PLS [1] chemometric applications, so it is 

understandable that adaptive wavelets should also be able to integrate with PLS and 

PCA to obtain further gains in model development.  Integration of adaptive wavelets 

into modern chemometric methods is a key issue of this thesis, in particular how to 

generate the correct adaptive wavelet. 
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To derive the correct adaptive wavelet there are three key issues to be addressed.  Firstly 

are the optimisation criteria; second is implementation of the adaptive wavelet 

algorithm and lastly selection of adaptive wavelet parameters required in the wavelet 

generation algorithms. 

 

Adaptive wavelets are largely dependant on the defined optimisation criteria [7] and 

definition of the optimisation criteria is entirely dependant on the modelling process 

under investigation.  Chemometric modelling of NIR spectra can take many forms, but 

is generally one of the following four types: (1) unsupervised classification, (2) 

supervised classification, (3) analysis of experimental designs and (4) regression [15].  

Each of these model types has different objectives and as such has different 

optimisation criteria.  Development of the optimisation criteria for each of the model 

types is outlined in this thesis and is an important issue in generating the correct 

adaptive wavelet. 

 

Adaptive wavelets have also been viewed as overly complicated and so have been 

criticized as an unnecessary complication in the modelling process [16]. While adaptive 

wavelets do have complicated mathematical properties, they are no more complicated 

than standard wavelet types.  The algorithms that give rise to standard wavelets are in 

fact the same algorithms that are used to generate adaptive wavelets; the only difference 

being for standard wavelets, predefined constraints are used [7].  With this in mind, this 

thesis introduces an alternative adaptive wavelet algorithm based on the more familiar 

concept of binomial trees. 

 

Apart from the optimisation criteria, algorithms used to generate adaptive wavelets also 

contain a set of parameters that need to be defined [17].  These parameters pertain to the 

number of banded wavelets used in the DWT and the localisation (width) of the 

wavelets.  Values of these parameters essentially restrict what form the resulting 

wavelets can take.  The larger the values the more flexible the wavelets become. 

 

An additional key issue of this thesis is wavelet homogeneity.  In all applications of the 

DWT to spectroscopy calibration problems, a single wavelet type is used in the feature 

extraction process.  This assumes homogeneity of underlying signals across the breath 

of the spectrum.  However, if the underlying signals are heterogeneous along the 
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spectrum, different wavelet basis at different parts of the spectrum may offer further 

advantages in feature extraction for model development.  This then leads to the main 

purpose of this thesis being, how to choose which wavelets to use and where to apply 

them. 

 

The key issues addressed in this thesis are: 

1. Integration of adaptive wavelet features within modern data analysis techniques 

2. Generation of adaptive wavelet optimisation criteria for the four main types of 

data modelling: experimental design analysis, unsupervised classification, 

supervised classification and regression. 

3. Automate adaptive wavelet parameter selection 

4. Investigate feature heterogeneity within in a spectrum by using multiple 

wavelets, both adaptive and standard wavelets and, 

5. To generate adaptive wavelets using a simplified binomial tree algorithm. 

1.1 Thesis outline 

This thesis is composed of five chapters investigating the application of wavelets, both 

standard and adaptive, to chemometric problems.  Chapters 2 to 5 focus on 

incorporating adaptive wavelets with modern chemometric methods and addressing the 

issues related to wavelet selection, while Chapter 6 introduces a new method to generate 

adaptive wavelets based on a binomial tree factorisation. 

 

Chapter 2 investigates integration of adaptive wavelets to experimental design analysis 

using near infrared (NIR) spectra; Chapter 3 integrates adaptive wavelets with 

unsupervised classification and investigates automated parameter selection for adaptive 

wavelets; Chapter 4 investigates heterogeneity of wavelets in building supervised 

classification models and; Chapter 5 focuses on multiple adaptive wavelet basis 

functions for regression applications and ensemble methods for adaptive wavelet 

parameter selection. 

1.2 Chapter 2 

The aims of Chapter 2 are to (i) develop adaptive wavelet optimisation criteria for 

experimental designs and (ii) integrate adaptive wavelets with traditional projection 

based methods.  Chapter 2 introduces the concept of using adaptive wavelets in a 
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repeated measures experiment.  Using an adaptive discrete wavelet transform, the 

method initially extracts features from the spectra that correlate with the design of the 

experiment.  The extracted features are then mapped onto a five-dimensional hyper-

plane using penalized discriminate mapping (PDM) to form PDM scores which are 

analysed using a multivariate mixed model (MMM) to determine if the experimental 

design affects the NIR spectra. 

1.3 Chapter 3 

Chapter 3 aims to integrate adaptive wavelets with unsupervised classification and 

investigate automated parameter selection for adaptive wavelets.  Chapter 3 investigates 

a new method of unsupervised cluster exploration and visualization for spectral datasets 

by integrating the wavelet transform, principal components and Gaussian mixture 

models.  This method incorporates feature extraction with model selection where the 

Bayesian Information Criterion (BIC) and classification uncertainty performance 

criteria are used to guide an automated search of commonly available wavelets and 

adaptive wavelets. The effectiveness of the proposed method is demonstrated in 

elucidating and visualizing unsupervised clusters from near infrared (NIR) spectral 

datasets. 

1.4 Chapter 4 

Chapter 4 introduces a new concept applying different wavelet transforms to different 

regions within the spectrum for supervised classification.  Data used in Chapter 4 is not 

NIR spectra but SELDI-TOF mass spectra.  Mass spectra (MS) and NIR spectra have 

similar characteristics as the data are juxta-positional so the same hypothesised data 

framework applies. 

 

Features are extracted from the mass spectrum using multiple standard wavelets and 

incorporate into CART to develop a supervised classification model.  Chapter 4 

investigates the hypothesis of feature heterogeneity within the spectrum and develops 

methodology to use features derived from multiple wavelets simultaneously in a CART 

model.  The method is illustrated using the publicly available prostate SELDI-TOF MS 

data from the American National Cancer Institute (NCI). 



 7 

1.5 Chapter 5 

Chapter 5 extends and combines the multiple wavelet approach to regression 

applications.  Multiple adaptive discrete wavelet transforms were applied to NIR 

spectroscopic data for a multiple regression problem for the purpose of investigating the 

hypothesis – does the use of different wavelets, at different points, within a NIR 

spectrum elucidate predictive capability of regression models.  This furthers the natural 

framework of the spectrum as different molecules exhibit different NIR signatures at 

different locations of the spectrum 

 

The aims of Chapter 5 are to (i) develop adaptive wavelet criteria for regression 

applications, (ii) further investigate the hypothesis of feature heterogeneity within the 

spectrum and, (iii) develop methodology to use multiple wavelet transforms for 

regression.  Data used in Chapter 5 is a publically available dataset pertaining to biscuit 

dough where sample near infrared spectra were measured by a FOSS 5000 NIR 

instrument and laboratory measurements were made to determine the fat, flour, sugar 

and moisture content. 

1.6 Chapter 6 

Algorithms to generate adaptive wavelets, such as Lifting [11], Quadrature Mirror 

Filtering [7] and Pollen factorisation [10], are complex and difficult to implement.  By 

investigating the Pollen factorisation method, a simplified algorithm based on a 

binomial tree factorisation is established.  The binomial method is relatively simple to 

implement to produce a full range of adaptive wavelets. 
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1.7 Considerations for the NIR spectroscopy community 

Methods and techniques discussed and developed in this thesis may initially be thought 

to be of a passing or isotoric academic interest.  However, after being actively employed 

in the NIR chemometric community for the previous five years, presenting at 

international conferences regarding NIR spectroscopy and being invited to present in 

industrial committees on NIR applications, there remains many issues in the fifty year 

old plus field that remain to be resolved.  Without question, the largest issue is, and will 

be for some decades, measurement sensitivity of the NIR spectrum.  The issue of 

measurement sensitivity has resulted in a general impression in the scientific 

community that NIR spectroscopy is a black box magic! 

 

Near infrared spectra lack the tightly focused peak definition that is observed in all other 

forms of spectroscopy such as infrared, visible, ultraviolet and x-ray.  The spectra of 

agricultural products all look the same with broad flowing mounds for peaks.  

Measurement sensitivity is not simply a consequence of detector sensitivity, however it 

does help, but measurement sensitivity in the NIR spectrum is also a product of sample 

presentation. 

 

NIR energy is extremely prone to absorption, scattering and emission, so when a sample 

of sufficient thickness is illuminated with NIR energy, vast numbers of interactions 

occur and “statistically blur out.”  This leaves the interesting phenomena of sample 

presentation invariance (or close to) and peak broadening.  If an incredibly thin film of a 

material (solid or liquid) was presented to a NIR spectrophotometer that was capable of 

analysing each photon and whence that photon interacted with the sample, a spectrum of 

clearly defined peaks would be measured.  As it happens this is exactly what occurs 

when the NIR spectrum of gases are measured.  Sadly gas NIR spectroscopy is limited 

and analysis of solid and liquid samples is what matters. 

 

Methods to integrate and analyse broad flowing peaks in NIR spectra from solid and 

liquid samples are required.  Current methods, such as PLS, utilise large portions of the 

measured spectra (the water absorption bands are typically ignored in most practical 

applications) which are mathematically used to solve Eigen vector relationships 

between the spectra and a measured constituent.  Loadings (or regression) coefficients 
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from this approach rarely impart any knowledge regarding the importance of particular 

wavelength regions with respect to the constituent(s).  Conversely, feature extraction 

methods utilise relatively small portions of the spectrum so a direct interpretation can be 

made between the spectrum and the constituent(s).  Feature extraction methods almost 

invariably result in more predictive models than the traditional counterparts. 

 

Feature extraction methods, such as adaptive wavelets, offer a means to resolve 

measurement sensitivity by de-convoluting portions of interest in the spectrum.  

Wavelets are still an underutilised pre-processing method in the chemometrics 

community partly because it involves making more choices being which wavelet to use.  

The field is already a flood with pre-processing techniques and introducing another 

which involves more complexity invokes further choice headaches. 

 

By presenting a method which: selects/generates an appropriate wavelet, determines the 

portion of the spectrum to use, reduces model uncertainty and ultimately improves 

future predictions, the chemometrics community will develop a wider view to feature 

extractions methods – of which there are very few. 

 

The question of how practical this thesis will be to the scientific community can be 

answered thus: Feature extraction methods illuminate localised information within the 

NIR spectrum which would otherwise be misinterpreted due to a lack in measurement 

sensitivity. 
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1.8 Publications resulting from thesis 

Chapters 2, 3, 4 and 5 have been published in the following manuscripts respectively: 

1. David Donald, Danny Coomans, Yvette Everingham, Daniel Cozzolino, Mark 

Gishen and Tim Hancock (2006), Adaptive wavelet modelling of a nested 3 factor 

experimental design in NIR chemometrics. Chemometrics and Intelligent Laboratory 

Systems, 82 (1-2). pp. 122-129. 

2. David Donald, Yvette Everingham and Danny Coomans (2005), Integrated 

wavelet principal component mapping for unsupervised clustering on near infra-red 

spectra. Chemometrics and Intelligent Laboratory Systems, 77 (1-2). pp. 32-42 

3. David Donald, Tim Hancock, Danny Coomans and Yvette Everingham (2006), 

Bagged super wavelets reduction for boosted prostate cancer classification of seldi-tof 

mass spectral serum profiles. Chemometrics and Intelligent Laboratory Systems, 82 (1-

2). pp. 2-7. 

4. David Donald, Danny Coomans and Yvette Everingham (2011), Joint multiple 

adaptive wavelet regression ensembles, Chemometrics and Intelligent Laboratory 

Systems, 108 (2), pp. 133-141. 

 

Additionally, sections of this thesis contributed to a book chapter: 

 

Donald, D.A., Everingham, Y.L., McKinna, L.W., and Coomans, D. (2009) Feature 

selection in the wavelet domain: adaptive wavelets. In: Comprehensive Chemometrics: 

chemical and biochemical data analysis. Elsevier, Oxford, UK, pp. 647-679. 
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Chapter 2 

 

Adaptive Wavelet Modelling of a Nested 3 Factor 

Experimental Design in NIR Chemometrics 

2.1 Introduction 

Near infrared (NIR) spectroscopy, being a relatively inexpensive means of data 

collection is enabling many industrialists and academics the opportunity to increase the 

experimental complexity of their research, which in turn results in more accurate and 

precise information of their area of interest.  An example is the comparison of the 

generalized randomized block design (GRBD) with the randomized block design (RBD) 

[18], where the GRBD is a k replicated RBD (and thus cost k times as much). The 

GRBD offers the opportunity to measure the effects of pseudo blocking factors, thus 

forming more accurate effects corresponding to the (true) fixed effects.  This is not 

possible with the RBD.  So with decreased costs for replication with NIR, GRBD 

experiments are becoming increasing popular and as a result of this, increasing interest 

(and concern) is how the experimental design affects the NIR spectrum. 

 

Traditional methods for analysing a GRBD are ANOVA or MAVOA; however, 

ANOVA/MANOVA methods are ill suited to highly correlated, high dimensional data 

such as NIR spectra.  To overcome the issue of high dimensionality, the NIR spectra are 

projected onto a lower dimensional, less correlated space.  This is most commonly done 

using either a PLS [19-22] or PCR [19, 21] kernel based approach or alternatively 

projection via PCA alone [23]. 

 

Since the experimental design is known, PLS on the experimental design matrix, ASCA 

[24] or LDA [22]; would be a more appropriate projection method since this would be 

in effect mapping the NIR spectra onto a MANOVA space (the space that best describes 

the treatment factors!).  In addition, while the above methods address the issue of the 

high dimensionality, the corresponding concern of the high variable correlation is still 

evident. 
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To overcome this issue of high variable correlation while simultaneously reducing the 

dimensionality and correcting for experimental design, we can employ a variety of 

methods such as: covariance inflation; penalized discriminate analysis (PDA) [25, 26], 

selection of multiple variable subsets; random forests (RF) [27] or fitting simple piece 

wise regressions; multiple adaptive regression splines discriminate analysis (MARS-

DA) [28].  It would seem as if the problem is solved.  However, PDA, MARS and RF, 

can become insensitive in situations where the NIR spectrum is dominated by a small 

fraction of the experimental design, effectively masking the effects resulting from the 

remainder of the experiment. 

 

One of the main reasons for this is the NIR spectrum is composed of complex 

convolutions of chemical signals spanning across multiple localized wavelengths.  This 

type of localized interactions can be difficult to detect with the above methods which 

focus on detecting differences arising from linear combinations of all the wavelengths 

simultaneously.  To improve the sensitivity of PDA, MARS and RF, we focus on the 

localised convolutions rather than the raw wavelengths.  The discrete wavelet transform 

(DWT) can be used as a localised convolution filter, which can be used to approximate 

and extract features from a NIR spectrum and has been used as such in PCR and PLS 

NIR regression applications [1, 29]. 

 

The wavelet transform (WT) is a projection of the spectrum onto an orthogonal basis, 

called a wavelet basis.  This is to say that the spectrum can be represented by a set of 

localised, orthogonal basis functions called wavelets [6].  In this the WT has a familiar 

origin with the Fourier transform (FT), whose orthogonal basis functions are the sine 

functions.  However, the DWT has a larger amount of flexibility than the FT, in the 

sense that the WT has an infinite choice of basis functions (wavelets) to choose from.  

Thus we can choose a wavelet basis that will result in good approximations of the latent 

features within the spectrum. 

 

In most NIR WT applications to date, the wavelet used is selected from one of eight 

standard types of wavelets [7] mainly as a matter of convenience [5, 9, 12, 30-32].  

However, it is possible to develop wavelets specifically for a particular application.  

These application specific wavelets iteratively adapt themselves towards a user defined 

criteria and are generally termed adaptive wavelets [8, 13, 33, 34].  It has been 
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demonstrated in supervised settings that adaptive wavelets – ones characteristic to the 

modelling process, result in higher classification rates [8] and more accurate regression 

models [12]. 

 

In this chapter, NIR spectra from red grape homogenates collected as part of a three way 

cross GRBD experimental design will be modelled using PDA, MARS-DA and RF on 

both the NIR spectra and the adaptive discrete wavelet transform (DWT) NIR data.  

Following the modelling process, the WT PDA is analysed with MANOVA to assess 

which fixed effect processes from the GRBD affect the spectra. 

2.2 Theory 

2.2.1 Discrete wavelet transform 

The discrete wavelet transform (DWT) [15] like the Fourier transform, can be used to 

reformulate a spectrum into an alternative “feature space”, by mapping the spectrum 

onto an analyzing function.  In Fourier analysis, the analyzing functions are the set of 

sine function (spectra are mapped onto “frequency space”), where as for the DWT 

wavelets are the analyzing functions (spectra are mapped onto a “wavelet space”).  The 

DWT is given by: 

 

 ( )
2

, ,

1 0

ll

j k j k

j k

x t c ψ
= =

=∑∑  (2.1) 

 

where 0,0ψ  is the father wavelet, from which all the other wavelets kj ,ψ  are derived 

from, ( )tx  is the spectrum and kjc ,  is the wavelet coefficient calculated by the inner 

product between ( )tx  and kj ,ψ . 

 

 ( ), ,j k j kc x t ψ=  (2.2) 

 

Unlike Fourier analysis, there are many types of analysis functions (wavelets) that can 

be used for the DWT – each resulting in different wavelet coefficients (mapped 

features), where typical (standard) wavelets used are Daubechies Symlets Coiflets.  

Since we do not know which wavelets will result in the best feature extraction a priori 
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for classification, this chapter will use Pollen’s adaptive wavelets [15, 17] to extract 

features. 

 

An advantage of the Pollen adaptive wavelets, is that the wavelet can be parameterized 

into q+1 normalized vectors u u u1 2, ,..., q  and v ; where q +∈Ζ  is a smoothness 

parameter for the resulting wavelet.  This means that we can asses the “fitness” of the 

wavelet as a function of the normalized vectors, which can then be iteratively updated to 

achieve a high “fitness”.  In this study, we define the fitness as the ability to 

discriminant between the various homogenizers, varieties and storage combinations, and 

to achieve this; we introduce a fitness function based on the wavelet coefficients from 

the DWT and the experimental design. 

 

The fitness function is defined as: 

 ( )
R

1 1 i
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=

=∑…  (2.3) 

where 

 

 1

w B i i igβ β−Σ Σ =  (2.4) 

 

wΣ  is the with group covariance matrix, BΣ  is the between groups covariance matrix, R 

is the effective rank of 1

w B

−Σ Σ  and, ig  and iβ  are the eigen-values and vectors of 1

w B

−Σ Σ  

respectively. 

 

The Pollen adaptive wavelets can be summarized in the following steps: 

(1) Define the integer values for m and q 

(2) Initialize the normalized vectors u u u1 2, ,..., q  and v  

(3) Perform the DWT and evaluate the performance of the wavelet with Eqn.

       (2.3) 

(4) Iteratively update u u u1 2, ,..., q  and v  until a converge criteria is met. 

 

In this study, u u u1 2, ,..., q  and v  are initially assigned elements from the uniform 

distribution, which in previous supervised studies as shown to converge based on 
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similar optimization criteria detailed in eqn (2.3) [8, 13].  For a comprehensive account 

of the theory of the Pollen Factorization, the reader is referred to [17]. 

2.2.2 Penalized discriminate analysis (PDA) 

Penalized discriminate analysis [26] is an extension of Fisher’s linear discriminant 

analysis (LDA) which aims to find linear combinations of the variables that best 

separate the G different groups within the dataset such that the between group 

variability is maximised as much as possible relative to the within group variability.  

Here, LDA assumes that the data are drawn from G groups with K dimensional mean 

vectors GjM j …1, = , common within group covariance wΣ  and proportions Gππ …,1  

of the groups in the population.  Specifically, LDA finds Kℜ∈β  with 1=Σ ββ w

T  such 

that ( )∑ =
−=

G

j

T

j

T

j MMf
1

2
ββπ  is maximised. Here ∑=

j jj MM π  is the overall 

population mean vector. Maximising f is identical to maximising the ratio 

ββββ w

T

B

Tg ΣΣ=  under the constraint 1=Σ ββ w

T .  Differentiation leads to the 

eigensystem ββ gBw =ΣΣ−1 .  In this way we can see that the eigenvectors of Bw ΣΣ−1  lead 

to the discriminate space. 

 

In many NIR spectra situations, wΣ is near singular due to the high correlations between 

adjacent wavelengths (variables), thus the eigenvalues of Bw ΣΣ−1  cannot be computed.  

To overcome this near singularity, wΣ  is replaced with Ω+Σ=Σ′ ww , where Ω  is a K 

by K matrix such that ββ ΩT  is large for undesirable β .  This Ω  is the central idea in 

PDA, where Ω  penalizes the s'β .  We refer the reader to [26] for a detailed description 

of Ω . 

2.2.3 Multiple adaptive regression splines (MARS) 

The idea behind the MARS [28, 35] strategy is that in different areas of the sample 

space, different variables may have a greater or lesser contribution to the response 

surface via different loci.  In general, the number of variables contributing significantly 

along one locus to any one region of the response surface will be smaller than the total 

number of variables.  The adaptive term in MARS refers to the ability of the algorithm 

to select the dominant variables in each of the subregions. 
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The underlying MARS model can be written as: 

 

 ( ), ,i i j j i j

j

y f Xβ ε= +∑  (2.5) 

 

where the vector y is the response vector, jf  are the various (normalized) loci, ji,β  are 

the loci coefficients, jiX ,  are the variables (wavelengths) that significantly contribute to 

yi through the loci jf , and ε  is the error in the model.  The set of basis functions is 

called the MARS function given by: 

 

 m j

j

f f=∑  (2.6) 

 

NIR data, which are piecewise smooth, jf  are typically multivariate polynomial 

regression splines [36], and the jX  are selected by trialling all permutations for jX  in 

jf  order to minimize a lack-of-fit (LOF) criterion described by [35]: 
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where mf is the MARS function, C(M) is a complexity penalty function and N is the 

number of observations (spectra). 

 

For the n spectra, there will be n corresponding models given by Eqn. (2.5), were the n 

models share a common MARS function, mf , but are allowed different coefficients ji,β .  

We can then analyze the ji,β ’s using LDA to differentiate between the G groups within 

the sampled spectra [36]. 
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2.2.4 Random Forests 

Random forests for classification as defined by Breiman [27] is a collection of many 

classification trees, each built on a unique bootstrapped (both variables and 

observations) sample of the data.  The specific example of a RF used by Breiman [27], 

implements randomly selected predictor variables at each node in the building of each 

tree included within the bootstrapping.  Breiman called this routine Forest-RI.  Forest-

RI randomizes during the split selection of each tree.  This randomness has the effect of 

building new trees with different structures, increasing the variety of relationships 

modeled within the forest (multiple trees) which in turn improves the overall predictive 

performance.  The classifications are the determined by a count (majority vote) of the 

classifications from each tree within the forest. 

 

This strategy of randomly selecting observations and sub-sets of variables for 

constructing trees has a significant role in NIR data as (a) the tree approach avoids the 

problems associated with high wavelength correlation and (b) localized regions within 

the spectrum can be identified rather than a single wavelength and (c) helps to mitigate 

the effects of over fitting that can occur in a single classification tree. 

2.3 Experimental 

2.3.1 Data 

Data used in this study consists of 284 near infrared spectra of red grape homogenates, 

which are prepared from grapes using a combination of various common sample 

preparation procedures.  The homogenates of three red grape varieties (A, B and C) 

were randomly partitioned into two batches which were subjugated to one of two types 

of short term storage (fresh and overnight freezing).  Then the homogenates were 

randomly prepared using one of three types of homogenisers (H1, H2 and H3).  The 

design of the data collection is illustrated in Figure 2.1.  The variety plots for A and B 

were replicated five times, while the C variety plots were replicated twice.  Further 

more, each homogenate was replicate four times at the homogenizer level. 
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Each homogenate was scanned in a FOSS NIRSystems6500 instrument at 2nm 

increments from 400nm to 2500 nm.  The spectra were then truncated to 400-2448nm 

(1024 sample wavelengths), transformed via the log(1/R) transform and then 

normalized via the SNV transform [37].  Figure 2.2 shows sample spectra of the red 

grape homogenates. 
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Figure 2.1 Nested three way design of the collected data where Variety, Storage and Homogenizer 

are crossed factors and the two levels of levels of replication occur within Variety and at the lowest 

level.  Fixed effects and random effects are indicated in parenthesis as F and R respectively. 

 

Figure 2.2 Sample NIR spectra of the red grape homogenates 
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Figure 2.3 Flow diagram of the adaptive DWT analysis 

 

2.3.2 Method 

The experiment was carried out in a three step process. 

1. Modeling the NIR spectra initially with Random forest (RF), PDA, and MARS-

DA.  Then apply RF, PDA and MARS-DA on the discrete wavelet transformed 

(DWT) NIR spectra using the adaptive wavelet, illustrated in Figure 2.3.  For both 

the NIR and DWT analysis, we used the correct classification rate (CCR) as a 

measure of model performance.  Throughout the modelling phase of the 

methodology, we focus on the effects of the fixed effects only. 

2. Analysis of the GRBD in Figure 2.1, is performed using the adapted DWT PDA 

scores from (1) via a MANOVA testing for 

a. Main effects due to the fixed factors; Storage, Homogenization and 

Variety, 

b. Interactions between the main fixed effects, 

c. Main and interaction effects corresponding to the random effect of 

Variety replication. 

3. Visualization of the Treatment (main and interaction) effects and their 

corresponding relationships to the adapted DWT coefficients are illustrated using 

biplots [24].  These effects (corresponding wavelet coefficients) are then mapped 

onto regions within the normalized NIR spectrum. 
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2.3.3 Software 

The DWT was coded in Matlab [38] and the optimization function utilized for the 

adaptive wavelet is the unconstrained optimizer fminu function from the Matlab 

Optimization Toolbox
®

 [39].  The Random Forest, PDA and MARS-DA were all 

generated in R using the modules; randomForest for random forest [40] and mda [41] 

for PDA and MARS.  The MANOVA model was developed using the manova 

command in R [42]. 

2.4 Results and Discussion 

Table 2.1 shows the correct classification rates for the NIR and DWT data using the 

PDA, MARS-DA and RF methods.  Estimates for the dimensionality required for the 

PDA and MARS-DA models on both the adapted DWT and (SNV transformed) NIR 

data were taken from the effective rank of the correlation matrices, being three and four 

respectively. 

 

The correct classification rates (CCR) for all three methods improved substantially 

when the wavelet coefficients from the adaptive DWT are analyzed rather than the 

original spectra.  Various other Daubechies, Symlets and Coiflets wavelets were also 

trialed which resulted in higher CCR than the models on the (SNV transformed) NIR 

data, but did not outperform the adaptive wavelet. 

 

From Table 2.1, the adaptive DWT PDA resulted in the highest CCR of 99.93%.  

During the MANOVA analysis of the adaptive DWT PDA, it was found that the 

random effect due to the Variety replication is not significant.  This resulted in a 

simplification of the model which can be analyzed via a three factorial MANOVA. 

 

The MANOVA model, shown in Table 2.2, on the adaptive DWT PDA revealed that all 

the main fixed effects, two way interactions are significant.  By looking at the 

partitioned mean squared error (MSE) in Table 2.3, we can see that the main effects 

dominate the MSE for all the PDA axes (PDA1, PDA2,…,PDA4).  From Table 2.3, 

PDA1 is largely dominated by the Variety main effect and to a lesser extent by the 

Homogenizer and Storage main effects.  For PDA2, it is the main effects of both the 
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Homogenizer and Variety treatments that dominate the MSE.  From Table 2.3, PDA3 is 

largely dominated by the Storage main effect. 

 

Table 2.1 Comparison of SNV and ANV ADWT NIRdata using PDA, MARS and RF analysis 

techniques 

Method SNV treated NIR SNV ADWT treated NIR 

PDA 63.4 % 99.93% 

MARS 58.6% 99.2% 

RF 45.6% 76.4% 

 

Table 2.2 Manova based on the PDA (1 to 4) scores from the adapted DWT.  Box M statistic = 

0.051, Bartletts test for sphericity statistic = 1.000.  

Effect 
Wilks' 

Lambda 
F 

Hypothesis 

 df 

Error  

df 
Sig. 

Intercept .204 256.4 4.0 263.0 .000 

Storage .041 1550.9 4.0 263.0 .000 

Homogenizer .011 573.6 8.0 526.0 .000 

Variety .000 3656.4 8.0 526.0 .000 

Storage * Homogenizer .828 6.4 8.0 526.0 .000 

Storage * Variety .368 42.6 8.0 526.0 .000 

Homogenizer * Variety .566 10.2 16.0 804.1 .000 

Storage * Variety * 

Homogenizer 
.558 10.5 16.0 804.1 .000 

 

Table 2.3 Manova partitioned mean squared error 

Main Effects 
PDA 

Storage Homogenizer Variety 

PDA1 1453.595 984.223 18137.039 

PDA2 122.540 2049.847 1849.345 

PDA3 4093.689 274.914 485.576 

PDA4 604.739 790.966 957.461 

 Two-way Interactions 

 Storage * 

Homogenizer 

Storage * 

Variety 

Variety * 

Homogenizer 

PDA1 1.245 82.338 20.397 

PDA2 0.704 2.754 5.729 

PDA3 13.854 19.179 13.130 

PDA4 10.638 77.014 3.789 

 Three-way interaction 

 Storage * Variety * Homogenizer 

PDA1 18.804 

PDA2 14.692 

PDA3 5.495 

PDA4 7.281 
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Biplots in Figure 2.4 and Figure 2.5 illustrate the groupings within the adaptive DWT 

PDA data and the relationships with the wavelet coefficients.  Where in the biplots, the 

bottom and left axes represent the PDA scores (shown as a scatter plot), while the top 

and right axes are used for the PDA loadings (ray diagram of the wavelet coefficient 

loadings).  The wavelet coefficients in the loadings plots directly relate to localized 

regions in the NIR spectra centered at: WC*8 + 400nm, where WC is the wavelet 

coefficient number. 
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Figure 2.4 Biplot of the adapted DWT PDA 1 and PDA 2 of the combined treatments.  Adapted 

DWT PDA 1 and PDA 2 spectra scores are represented by the scatterplot (corresponding to the 

bottom and left axes respectively) while the ray diagram represents the PDA 1 and PDA 2 wavelet 

coefficient loadings (corresponding to the top and right axes respectively).  Legend: variety A - ♦, 
variety B - ● variety C –(▼), H1(red), H2(green), H3(blue), Frozen – solid marker, Fresh – open 

marker. The PDA 1 scores are represented 

 

In the PDA1 and PDA2 biplot, Figure 2.4, there are very distinguishable groups which 

can be characterized by the variety/homogenizer/storage treatment combination.  In 

Figure 2.5, the biplot of PDA1 ad PDA3, we can see that the frozen and fresh levels are 

separated by a downwards shift in the direction of PDA3. 
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Figure 2.6 shows the regions in the NIR spectrum that relate to the respective PDA axes 

and hence the different treatment effects.  For PDA 1, which is dominated mostly by the 

Homogenizer treatment; we can identify four main regions: 750-810nm, 860-930nm, 

980-1040nm and 1090-1140nm, that relate strongly to PDA 1.  The regions that are 

related to PDA 2, and thus the Homogenizer and Variety main effects are: 850-860nm, 

930-980nm and 1040-1085nm.  For PDA 3, which is largely dominated by the Storage 

treatment, the NIR regions 850-980nm and 1040-1075nm were identified. 
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Figure 2.5 Biplot of the adapted DWT PDA 1 and PDA 3 of the combined treatments.  Legend: 

variety A - ♦, variety B - ● variety C –(▼), H1(red), H2(green), H3(blue), Frozen – solid marker, 

Fresh – open marker. 

 

The irregular appearance of the variable importance plot is due to two factors.  Firstly 

PDA axes are typically differential over small regions and secondly, the adapted 

wavelet is also irregularly differential over localised regions (on the wavelength axis).  

The irregularity of Figure 2.6 is also compounded the auto-scaling used to obtain the 

relative importance scale – being the auto-scaling of the absolute value of the inverse 

transform of the wavelet PDA axis. 
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The region between 1080 and 1120 nm was likely to be an artefact created by noise in 

the spectra due to the change over of the detectors in the spectrophotometer, which 

occurs at a wavelength of 1098 nm.  All the other regions affecting the PDA axes are 

generally attributed to OH overtones and combinations, which are most likely 

associated with water red grape homogenate.  The treatments are therefore probably 

affecting the sample in a variety of ways that is manifested as changes in the 

interactions of water in the matrix, in particular, hydrogen bonding. 

 

Homogenization may affect the degree of extraction of ionic species form the grapes, 

which in turn might affect the pH of the matrix which would be expected to affect the 

spectra in the region 750-860 nm.  Storage might also have a similar impact.  It is 

possible that the Variety affect observed was because of the differences in ripeness in 

the relatively few samples of grapes used to prepare the samples, since ripeness (i.e. 

sugar content) will also affect the OH absorptions in the grape spectra. 

2.5 Conclusions 

Using the wavelet coefficients from the adaptive discrete wavelet transform improved 

the correct classification rates for the random forest (RF), penalized discriminant 

analysis (PDA) and multiple adaptive regression splines discriminant analysis (MARS-

DA) models, as compared to the models arising from the un-pre-processed NIR spectra.  

The best performing model was the PDA on the adaptive DWT which gave a 99.93% 

CCR.  By analyzing the adaptive DWT DPA model with a MANOVA, we identified all 

main and interaction effects between the Homogenization, Variety and Storage effects 

as statistically significant.  In analyzing the partitioned sums of squares of the 

MANOVA model, we were able to associate main treatment effects from the 

experimental design, Homogenization, Variety and Storage effects, to the respective 

discriminant axes from the PDA.  By doing this, we were also able to identify specific 

regions from the spectrum that can be associated with the different treatment effects. 
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(a) 

 

(b) 

(c) 

Figure 2.6 Inverted DWT to the original NIR spectrum of the adapted DWT PDA axes.  (a) PDA 1, 

(b) PDA 2, (c) PDA 3 
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2.6 Summary 

The objective of this study was to investigate the effects of some commonly used 

sample preparation procedures, including overnight freezing, and the type of 

homogeniser on the near-infrared (NIR) spectra of red grape homogenates.  

Homogenates (n = 284) of three red grape varieties were prepared using one of three 

types of homogenisers after one of two types of short term storage (fresh and overnight 

freezing) and then scanned in a FOSS NIRSystems6500 instrument (400-2500 nm).  The 

NIR spectral data were then analysed using various discrimination techniques, namely 

Penalized Discriminant Analysis (PDA), Multivariate Adaptive Regression Splines 

discriminant analysis (MARS-DA) and Random Forests (RF) yielding correct 

classification rates (CCR) of 63.4%, 58.6% and 45.6% respectively.  To improve the 

CCR of the discrimination models, feature extraction from the NIR spectral data was 

performed using an adaptive discrete wavelet transformation (DWT).  The DWT 

algorithm employs an adaptive wavelet basis function that maximizes the discrimination 

between the different combinations of homogenisers, storage and grape varieties.  The 

results after adaptive DWT on the NIR spectra resulted in CCR’s of 99.93%, 99.2% and 

76.4% for PDA, MARS-DA and RF, respectively.  Further analysis of adaptive DWT 

PDA via MANOVA revealed significant differences in the main and interaction effects 

of the three treatments, which were then associated with specific regions within the NIR 

spectrum. 
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Chapter 3 

 

Integrated wavelet principal component mapping for 

unsupervised clustering on near infra-red spectra 

3.1 Introduction 

Calibration methods for near infrared spectroscopy (NIRS) such as partial least squares 

(PLS) and principal component regression (PCR) are often applied to NIR data sets 

based on the assumption that the spectra are uniformly homogeneous.  This assumption 

of homogeneity is normally thought to be satisfied, especially when data has been 

collected in an experimental design such that the data is thought to be as homogenous as 

possible and as such tests for homogeneity are not typically performed.  However, if 

unknown heterogeneities do exist then the resulting calibrations at best will be sub-

optimal, or in more extreme circumstances be rendered unusable for future predictions.  

In this regard, the discovery of unknown heterogeneities within NIR calibration datasets 

provides a means of producing robust and accurate calibrations. 

 

One type of data heterogeneity considered in this chapter is the existence of unknown 

Gaussian clusters, which can be investigated by using the unsupervised clustering 

method Gaussian mixture models (GMM).  Gaussian mixture models assume that the 

data has been derived from several unknown Gaussian populations, which can be 

discovered through an automated selection process utalising the Bayes information 

criteria (BIC).  There are three challenges associated applying GMM to NIR data being: 

(1) high dimensionality – typically there are more variables (wavelengths) than 

observations, (2) the variables are highly correlated which results in near singular 

covariance matrices [8, 14] and (3) visualization of the clusters are not easily seen in a 

two or three dimensional setting due to the high dimensionality.  To overcome these 

challenges, the NIR spectra can be pre-conditioned via a feature selection procedure. 

 

Recent works in NIR spectroscopy involving the discrete wavelet transform (DWT) 

have demonstrated redundant and superfluous information can be extract from the 

spectrum using the DWT reducing the dimensionality of the NIR dataset [15, 43].  In 

addition to reducing the dimensionality of the data, the DWT extracts large and small  
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NIR spectra 

 
 

1.Wavelet feature extraction 

 

 
 

 

2. Principal component map 

 

3. Gaussian mixture modeling  

-0.2 -0.1 0.0 0.1 0.2

-0
.1

0
-0

.0
5

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

 

Figure 3.1 Flow diagram of the proposed data mining and visualization method 

 

scale ‘features’ from the spectrum, which when analyzed, typically result in more 

accurate and predictive models [7, 44].  Inspired by this, we present a novel method for 

unsupervised clustering and visualization of NIR spectra, by integrating wavelet feature 

extraction, principal component mapping (PCM) and Gaussian mixture models (GMM); 

illustrated in Figure 3.1.  The wavelet transform is used to extract features from the 

spectrum that can be visualized with PCM, and then analyzed with Gaussian mixture 

models for evidence of clusters. 

 

In this chapter, we demonstrate the effectiveness of the proposed model on two NIR 

data sets and discuss possible complications of the proposed model – with 

accompanying solutions to these complications.  Two main complications of the 
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proposed methodology are: (a) the choice of the wavelet to use in the DWT; there exist 

a multitude of wavelets, each designed to extract different features from the spectrum 

[7] and secondly, (b) which Gaussian mixture model to use.  The latter is easily resolved 

by trialing a large range of possible mixture models of various numbers of candidate 

clusters and orientations [45-48], then using a suitable fitting criterion, such as the 

Bayes Information Criteria (BIC) [48-50], to select the most likely fit.  The solution to 

the GMM problem (b), hints towards the solutions of the former problem of the wavelet 

choice. 

 

The purpose of the wavelet in this instance is to extract features from the spectra that 

will result in group segmentation on a plane, since we are using PCM to visualize the 

groups.  By extracting the desired features, we expect then to achieve GMM’s with a 

high BIC and low model uncertainty [46, 47].  With this perspective, we can trial a large 

set of wavelets, automatically assess the GMM via the BIC and model uncertainty 

values, then chose to smaller subset of wavelet/GMM models for visual inspection. 

 

The set of wavelets to be trialed raises another interesting question.  In most DWT 

applications to date, the wavelet used is selected from one of eight standard types of 

wavelets [7] mainly as a matter of convenience [5, 9, 12, 30-32].  However, it is 

possible to develop wavelets specifically for a particular application.  These application 

specific wavelets iteratively adapt themselves towards a user defined criteria and are 

generally termed adaptive wavelets [8, 13, 33, 34].  It has been demonstrated in 

previous settings that adaptive wavelets result in higher classification rates [8] and more 

accurate regression models [12] than the standard wavelets. 

 

To address this issue, we put forward two variants of the proposed model.  The first is to 

trial an exhaustive set of commonly used wavelets, a method which is done extensively 

in literature [51].  This translates to thousands of wavelet transformation trials.  The 

second variant again uses an exhaustive search set, but using adaptive wavelets and in 

doing so, using adaptive wavelets in a new and novel context in an unsupervised 

scenario.  Another favorable outcome in using adaptive wavelets is that the exhaustive 

search set is reduced to less than one hundred wavelets. 
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The chapter has been organized as follows.  First we take a brief look at the theories of 

PCM, GMM, wavelets and then adaptive wavelets.  In the experimental section, we 

introduce the NIR data sets then detail the proposed method, which includes a method 

of scrutinizing the vast sets of trialed models to produce a subset for further 

investigation by the researchers.  Finally, a combined PCM/GMM plot of the respective 

data sets and model variants are presented. 

3.2 Theory 

3.2.1 Principal component mapping (PCM) 

Principal component mapping is a projection method to visualize the variability in a 

dataset, which can lead to the discovery of unknown structures.  In this study, we are 

interested in plane (2D) mappings and for demonstrative purposes only; we restrict the 

planes to be mapped to be derived from the first two principal components.  The 

singular value decomposition (SVD); based on the covariance matrix, is used to extract 

the PCM: 

 k,n k,k) (k,k) (k,n)= Λ T

( ) (Y U V  (3.1) 

 

 k,n (k,k) (k,n)= T

( )Y Q V  (3.2) 

 

In Eqn. (3.1), the row wise data matrix, )(Y nk, , is decomposed by the into SVD form and 

in Eqn. (3.2), the first two columns of the matrices n)(k,V  and k)(k,Q  are the desired PC’s 

(principal component loadings) and the projected data points (principal component 

scores) respectively. 

 

3.2.2 Gaussian mixture models (GMM) 

Mixture models are useful tools for density estimation and as such are used extensively 

in cluster analysis applications [46, 47, 49].  The essential idea in the mixture models 

approach is that the dataset consists of ζ underlying probability distributions.  In the 

case of Gaussian mixture models, the ζ probability distributions are Gaussian.  Then the 

mixture model has the form: 
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 ( ) ( ),

1

,j i j i i

i

f x N
ζ

δ µ
=

= Σ∑  (3.3) 

 

Where ( )iiN Σ,µ  is the Gaussian distribution with a mean vector iµ  and covariance 

matrix iΣ ,  ji ,δ  is the delta function for the probability of the observation jx  belonging 

to the i
th

 Gaussian distribution.  We refer to [46] for a more comprehensive account of 

GMM theory. 

 

In situations where Eqn. (3.3) is unknown, ζ and ( )iiN Σ,µ , i=1… ζ, need to be 

estimated from empirical data. This is done by the mixture likelihood approach that 

maximizes: 
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where ji ,τ is the probability that the j
th

 observation belongs to the i
th

 Gaussian 

distribution and  
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 (3.5) 

 

When the data are two dimensional, the clusters are ellipsoidal centered at the means iµ  

while the covariances iΣ determine other geometrical characteristics such direction and 

area.  In calculating Eqn. (3.4), we consider the following parameterizations on iΣ : 

 

 TD Di i i i iηΣ = Α  (3.6) 

 

where iD is an orthogonal matrix containing the eigenvectors of  iΣ , iΑ is a diagonal 

matrix whose elements are proportional to the eigenvalues of iΣ  and iη is a scalar.  The 

orientation of the principal components of iΣ  are determined by iD , while iΑ  

determines the shape of the cluster, being either spherical of elliptical.  The size, e.g. 



 32 

area, the cluster is specified by iη , which is proportional to i

p

i Αη .  Table 3.1 shows 

the geometric interpretations of the various parameterizations of iΣ . 

 

An advantage of the GMM approach is that it allows the use of approximate Bayes 

factors to compare models [46, 47, 49].  This gives a systematic means of selecting not 

only the parameterizations of the model, but also the number of clusters ζ.  We refer the 

reader to [52] for a review and comprehensive theory of Bayes factors. 

 

Essentially, the Bayes factor is the posterior odds for one model against the other(s) 

assuming neither is favored a priori.  When using the mixture likelihood approach, the 

Bayes factor can be approximated by the Bayesian Information Criteria (BIC) [50]: 

 

 ( ) ( ) ( )1 1 12log p | const. 2 , , , ; , , k log BICMx nζ ζ ζµ µ τ τ+ ≈ Σ Σ − ≡… …
M

M L  (3.7) 

 

where ( )M|p x  is the likelihood of the data for the modelM , 

( )ζζζ ττµµ ,,;,,, 111 …… ΣΣ
M
L  is the maximized mixture likelihood for the model from 

Eqn. (3.4) and Mk  is the number of parameters to be estimated in the model. 

 

The penalty term in Eqn. (3.7) is included since for mixture models, the likelihood for a 

mixture model can only increase with increasing Mk .  Hence the likelihood cannot be 

used directly in comparing the various models.  So the penalty term is included to 

mitigate this effect. Also this penalty term favors models with parsimonious 

parameterizations and smaller number of groups. 

 

3.2.3 Wavelet transform 

The wavelet transform (WT) enables the signal (spectrum) to be analyzed as a sum of 

functions (wavelets) with different spatial and frequency properties [7].  For discretely 

sampled spectra, several methods are available implement the WT [7].  The two most 

popular are the discrete wavelet transform (DWT) and the wavelet packet transform 

(WPT), shown in Figure 3.2. 
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Table 3.1 Parameterizations of the covariance matrix  in the Gaussian model and their geometric 

interpretation 

Distribution  Area:  Shape Direction 

Spherical Equal Equal NA 

Spherical Variable Equal NA 

Ellipsoidal Equal Equal Equal 

Ellipsoidal Variable Variable Variable 

Ellipsoidal Equal Equal Variable 

Ellipsoidal Variable Equal Variable 

 

 

In Figure 3.2, we see that for a discrete spectrum, the WPT and the DWT is an iterative 

algorithm that successively applies a series of filters on the data.  These filters are called 

the low-pass filter, L, and the high-pass filter(s), H.  The low-pass filter acts as a 

smoother and typically extracts low frequency information while the high-pass filter(s) 

are akin to difference operators; extracting high frequency information.  Figure 3.3 

illustrates some of the common high-pass filters (wavelets). 

 

Two of the important properties of L and H are that they are orthogonal filters, and in 

the context of DWT and WPT, form a multiresolution framework [7].  This means that 

any combination of L and H will be orthogonal to any other different combination of L 

and H.  This is an important result, since in Figure 3.2, we can see that the DWT is a 

“sub-set” of the WPT.  Thus the features extracted from the un-shade bands in the WPT 

are unrepresented in the DWT.  For this reason, we choose to work exclusively with the 

more flexible framework of the m-banded WPT.  The remainder of this section, we 

describe how the m-band ( m 2,m≥ ∈ℤ ) wavelet packet transform (WPT) is calculated 

on discretely sampled signals of finite length.  For a more comprehensive account of 

wavelet theory, the reader is referred to [7]. 

 

For the general m-band WPT, there will be one low-pass filter and m-1 high-pass filters.  

We refer to band (l,t) as the t
th

 band ),...,1,0( lmt ∈ in level l of the WPT.  The number 

of coefficients in each band will be 1/m of that in previous level so if l levels of the 

WPT are required, then the dimensionality of the data, p, should be ,lp km k= ∈ℕ .  
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Figure 3.2 Pictorial representation of a three band wavelet packet transform, with the discrete 

wavelet transform in the shaded region.  With the original spectrum at the top of the 

pyramid, ( )[0] 0x , L the low pass filter, H1 and H2 the respective high pass filters 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3 Sample of high pass wavelet filters (a) Daubechies 4 (b) Symmlet 7 (c) Daubechies 7 and 

(d) the Haar wavelet 
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The WPT is given by the following cascading algorithm until the desired level is 

obtained: 

 

 
( ) ( )
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( ) ( ); 0, , 1
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l l l l

l l l

j i i m

im im im m

+

+ + +

= = −

 = + + − 

X W X

X X X

…

⋯
 (3.8) 

 

where L, 11 ,, −mHH …  are concatenate to form W – the wavelet matrix [7]. Also it can 

be seen that the resulting wavelet decomposition at level l+1 consists of m sub-bands.  

The inverse wavelet packet transform (IWPT) is calculated by 

 

 [ ] [ 1] [ ]( ) ( )l l lj i+ =TW X X  (3.9) 

Since 

 [ l ] [ l ] =W W I
T  (3.10) 

 

The coefficients for the objects which would lie in band (l,t) of the WPT are labeled 

( )[ ]l tX . 

3.2.4 Adaptive wavelet matrix 

The following section describes how the matrix ][l
W , in Eqn. (3.8) is generated by an 

adaptive wavelet (AW) generation algorithm.  There exist several wavelet generating 

algorithms such as Lifting [11], Angular Quadature Mirror Filtering [12], and Pollen 

Factorization [17], that design task specific wavelets, also known as adaptive wavelets.  

It is the Pollen factorization that is best suited to this particular application since it 

enables m-banded wavelets required for the WPT. 

 

Another advantage of the Pollen factorization is that the m-banded wavelet matrix in 

Eqn. (3.8) can be parameterized into q+1 normalized vectors u u u1 2, ,..., q  and v ; where 

q∈ℝ  is a smoothness parameter for the resulting wavelet.  These normalized vectors 

can be iteratively updated in order to extract user defined features – such as those which 

prove useful in unsupervised mapping.  For a comprehensive account of the theory of 

the Pollen Factorization, the reader is referred to [17]. 
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The Pollen factorization can be summarized in the following steps: 

(1) Define the integer values for m and q 

(2) Initialize the normalized vectors u u u1 2, ,..., q  and v  

(3) Construct ][l
W  from  u u u1 2, ,..., q  and v  

(4) Perform the WPT and evaluate the performance of ][l
W  

(5) Iteratively update u u u1 2, ,..., q  and v  until (4) a converge criteria is meet. 

 

In this study, u u u1 2, ,..., q  and v  are initially assigned elements from the uniform 

distribution, which in previous supervised studies as shown to converge based on 

similar optimization criteria detailed in section 3.3.7 [8, 13]. 

3.3 Experimental 

3.3.1 Data 

The first data set consists of reflectance NIR signals from three different categories of 

seagrass, Halophila ovalis, Halodule uninervis/pinifolia and Halophila spinulosa [8].  

Each species was sampled 55 times with the NIR signal sampled at 512 evenly spaced 

wavelengths ranging from 400nm to 2444nm.  To correct for particle size effects, the 

standard normal variate transform (SNV) [37] was applied to the data.  Five sample 

spectra from each species are displayed in Figure 3.4.  Notably, the spectra for the three 

species are very similar and that the researcher was unable to correctly identify the 

second category into two species, Halodule uninervis/pinifolia, which were 

amalgamated into one single category. 

 

In contrast, to the seagrass data, the second data set consists of dissimilar spectra.  The 

second data set consists of 100 absorbance NIR spectra from five different mineral 

groups, Amphilolite, Calsilicate, Granite, Mica and soil [8].  Each of the spectra were 

transformed via the convex hull transform [53], a standard procedure for geological 

samples.  Each category was sampled twenty times with the NIR signal being measured 

at 512 evenly spaced wavelengths ranging from 1478nm to 2500nm.  Five sample 

spectra from each category are shown in Figure 3.5. For both data sets, the group 

categorical information is not used as a prior in the adaptive wavelet process and is only 

supplied for illustrative purposes. 
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Figure 3.4 Five sample spectra from each category from the Seagrass NIR data set 

 

 

1500 2000 2500
60

70

80

90

100
Amphilolite

A
b
s
o
rb

a
n
c
e

1500 2000 2500
60

70

80

90

100
Calsilicate

A
b
s
o
rb

a
n
c
e

1500 2000 2500
60

70

80

90

100

A
b
s
o
rb

a
n
c
e

Granite

1500 2000 2500
60

70

80

90

100

A
b
s
o
rb

a
n
c
e

Wavelenght (nm)

Mica

1500 2000 2500
60

70

80

90

100
Soil

Wavelenght (nm)

A
b
s
o
rb

a
n
c
e

 

Figure 3.5 Five sample spectra from the five categories from the Mineral NIR data set 
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3.3.2 Wavelet Principal Component Gaussian Mixture Model Mapping (WPG) 

Figure 3.1 illustrates the outline of the proposed method, where features are extracted 

from the spectra using the wavelet packet transform (WPT) which then is mapped onto 

a plane using PCA.  The final process is fitting a Gaussian mixture model (GMM) on to 

the mapped spectra.  The following details the implementation of the WPT, PCA and 

GMM respectively for both variants of the proposed method. 

 

3.3.3 Wavelet packet transform 

In both variants, the WPT is used to select features from the spectra and in both cases, 

features (wavelet coefficients) are selected from a single band in the WPT.  This is done 

to avoid aliasing issues associated with selecting coefficients from multiple bands [7, 

54-56]. The two variants differ in two aspects of how the WPT and band selection are 

performed. 

 

The first variant (referred to as the standard variant), uses commonly available wavelet 

filters for the WPT, 35 in total, which are listed in Table 3.2.  Once a wavelet has been 

selected, the WPT is constructed to the desired level.  For both variants, l=7. So for each 

WPT, there are 255 possible bands to select from.  However, from other works [57], 

analysis on the zero
th

 band from each level, otherwise known as the scaling bands, 

typically yields similar results to that using the raw spectra [57].  Thus the scaling bands 

are removed from the selection set.   

 

From the 248 bands from the WPT, the wavelet coefficients from a single band are 

forwarded on to the PCA step.  However, since no band from this set is favoured a 

priori, the bands are systematically selected one at a time and for each band, a WPG 

model is constructed.  Alternative band selection methodologies could be used to 

incorporate wavelet coefficients from multiple bands from the WPT, such as the by 

variance and by scale algorithms [15], the WPT best bands selection algorithm [58].  

These band selection methodologies are useful for compression of the variance of the 

spectrum rather than information extraction.  To simplify the presented methodology 

and to illustrate the importance of wavelet selection, only a single band is iteratively 

selected from the WPT. 
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For the standard variant, there are 8680 WPG models to be considered.  The second 

variant (referred to as the adaptive variant) uses an adaptive wavelet for the WPT.  

Restrictions on m and q in the mathematical formulation of the adaptive wavelets [17] 

generates 70 different adaptive wavelets that can be applied to the given data sets, given 

by Table 3.3. 

 

So far, there are still 255 possible bands to select from the WPT.  However one band, 

the optimization band is favored over all the rest.  It is the wavelet coefficients from the 

optimized band that are forwarded to the PCA step.  So for the adaptive variant, there 

are 70 WPG models to be considered. 

3.3.4 Principal component analysis 

The principal component step involves mapping the wavelet coefficients on to a plane 

with the largest variability.  This reduces the dimensionality of the wavelet coefficients 

from ln m  to 2.  The PCA scores are the forwarded to the GMM step.  This step is 

primarily performed to ais in the visualization process and as such the algorithm can be 

extended without difficulty by extracting k principal components; where 1 lk n m≤ ≤ . 

3.3.5 Gaussian mixture models 

For each set of PCA score, a range of Gaussian mixture models (GMM) are fitted.  

Table 3.1 lists the various parameterizations imposed on the GMM’s, and for each 

parameterization, the number of clusters was varied from 1 through to 11.  Thus 66 

GMM are fitted for each set of PCA scores.  From this set, the GMM with the highest 

BIC score is chosen as the optimal mixed model. 

 

For the optimal GMM, the BIC value, optimal number of clusters and a 5% trimmed 

mean of ji ,τ (from Equation (4)), τ  is recorded.  A trimmed mean is used in preference 

to the actual mean to reduce the effects of abnormal spectra which may arise from 

experimental errors. 
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Table 3.2 Trialed standard wavelets 

Wavelet family Number of filter coefficients 

Daubechies  2,3,…,16 

Symlet  2,3,…,16 

Coiflet  1,…,5 

 

Table 3.3 Trialed values for m, q and l 

m q Max. level 

2 

2-3 

4-7 

8 

7 

6 

4 

4 2-6 3 

8 1-3 2 

 

3.3.6 Overall WPG model selection 

There are 8680 and 70 potential WPG models for the standard and adaptive variants 

respectively, each model based on a different wavelet band.  To identify which of the 

wavelet/band combinations result in interesting and informative unsupervised 

plot/clusters, we imposed the following criteria on each of the WPG model variants: 

(a) More that one cluster 

(b) Model uncertainty less than 2%, based on a 5% trimmed uncertainty mean. 

i.e Models with 0201 .<−τ  

(c) A BIC value in the top 10%  

3.3.7 Adaptive wavelet optimization criterion 

In section 3.2.4, the wavelet matrix is parameterized in terms of the vectors u u u1 2, , ..., q  

and v , and through an iterative updating process, can be optimized for a specific 

criterion.  This section details the optimization criterion used for the adaptive wavelet 

algorithm. 
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In this work, we wish to build a wavelet matrix that will be used for feature extraction 

prior to a 2D PCM.  Thus the criterion used should: 

(a) Relate to generic features of the data matrix that are likely to show the 

presence of groupings without prior knowledge of such groupings 

(b) Contain the relevant information in two dimensions as further analysis of the 

wavelet coefficients will be on a plane and 

(c) Optimize over a single band in the WPT. 

With these requirements in mind, we formulate an optimization criterion based on the 

eigenvalues of the wavelet coefficients from the band ( )[ ]l tX : 

 

 1 2

i

i

λ λ
λ

+

∑
 (3.11) 

 

where 1λ and 2λ  are the two largest eigenvalues of ( )[ ]l tX , the wavelet coefficients of 

band t at level l. The basis for this criterion is as follows.  If there exists Gaussian 

clusters which can be parameterized by Eqns’ (3.3) and (3.6), then the eigenvector/value 

structure of ( )[ ]l tX will be dominated by 

• The differences in the cluster means and/or 

• The largest eigenvector/values of the ζ covariance matrices [7, 10] 

Eqn (3.11) will favour the optimization of cluster separation and/or finding variability 

within clusters. 

 

To select which of the bands in the WPT to optimize the adaptive wavelet on, the 

following two rules were applied: 

(1) The scaling ( )[ ]l 0X  is excluded from the selection set – for the reasons 

previously discussed in section 3.3.3 

(2) The band that initially has the highest ratio from Eqn. (3.11) is kept as the 

optimization band. 
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3.3.8 Software 

The optimization function utilized for the AWT is the unconstrained optimizer “fminu” 

function from the Matlab Optimization Toolbox
®
 [39] and the Matlab Wavelet 

Toolbox
®
 [38] is used to perform the standard wavelet packet transform using the 

predefined wavelet filters.  Gaussian mixture models BIC/uncertainty values are 

generated in R using the mclust module [8]. 

3.4 Results and Discussion 

3.4.1 Seagrass Data 

Figure 3.6 and Figure 3.7 both show a general trend of increasing model accuracy with 

increasing BIC for both the adaptive and standard WPG models.  Using the BIC and 

model uncertainty criteria, the adaptive WPG model select 6 models out of the seventy 

trialed combinations of m and q. While 9 were chosen for the standard WPG out of the 

8680 trialed models.   

 

Visual inspection of the three adaptive models revealed very similar plots and cluster 

structures, shown in Figure 3.8, with adaptive wavelet parameters m = 2, q = 3, on the 

WPT band ( )8]1[X .  Here we can see clear evidence of clusters with the clusters 

forming a “V” structure.  Also we observe that the directions of the semi-major and 

semi-minor axes of the clusters are in the direction of the “V”. 

 

Inspection of the nine standard wavelet WPG models were not as consistent as the 

adaptive counterparts as the selected standard WPG models produced three main types 

of images (with minor variations)- shown in Figure 3.9, Figure 3.10 and Figure 3.11.  In 

all three images, we can see clear evidence of clustering, but varying numbers of 

clusters between all three models.  This illustrates the effect of different wavelets on the 

resulting image.  However, in comparing Figure 3.9, Figure 3.10 and Figure 3.11, we 

observe a unifying feature of the orientation of the clusters – they all form a “V” 

structure. 
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3.4.2 Mineral Data 

The positive trend of increasing model accuracy with increasing BIC for the standard 

WPG models is again evident for the Mineral NIR data set, in Figure 3.12.  For the 

adaptive WPG, this trend is highly extenuated with an almost linear trend, Figure 3.13.  

Using the BIC and model uncertainty criteria, the adaptive WPG model select 12 

models out of the seventy trialed combinations of m and q.  While 13 were chosen for 

the standard WPG out of the 8680 trialed models.  
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Figure 3.6 Seagrass adaptive WPG model scatter plot of the Bayesian information criteria (BIC) Vs 

classification uncertainty trimmed mean 
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Figure 3.7 Seagrass standard WPG model scatter plot of the Bayesian information criteria (BIC) 

Vs classification uncertainty trimmed mean 

 

Inspection of the adaptive models, again revealed similar PCA/GMM plots, as shown in 

Figure 3.14, which clearly show three clusters aligned on a “V”.  Further investigation 

of Figure 3.14 shows that the central cluster (in the third quadrant) consists of three sub-

groups, as shown in Figure 3.15.  This disparity in the number of clusters, arises due to 

the penalty term in the BIC – Eqn (3.7).  The BIC favors models with fewer parameters. 

Ie. Favors fewer clusters with the same parameterizations such as equal area and 

directions.  Here we can conclude that the BIC may have over penalized and that there 

are five clusters in Figure 3.14. 
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Figure 3.8 Adaptive WPG on the Seagrass data with adaptive wavelet parameters m = 2, q = 3, 

WPT band: ( )8]1[X  
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Figure 3.9 Standard WPG on the Seagrass data with wavelet parameters: Daubechies 2 filter on the 

WPT band ( )8]3[X  
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Figure 3.10 Standard WPG on the Seagrass data with wavelet parameters: Daubechies 2 filter on 

the WPT band ( )23][
X  
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Figure 3.11 Standard WPG on the Seagrass data with wavelet parameters: Daubechies 5 filter on 

the WPT band ( )67][
X  
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Figure 3.12 Mineral standard WPG model scatter plot of the Bayesian information criteria (BIC) 

Vs classification uncertainty trimmed mean 



 48 

0.00 0.05 0.10 0.15

3
5

0
4
0

0
4

5
0

5
0
0

5
5
0

5% trimmed mean in classification uncertainty

B
IC

 

Figure 3.13 Mineral adaptive WPG model scatter plot of the Bayesian information criteria (BIC) 

Vs classification uncertainty trimmed mean 

 

 

From the thirteen  standard WPG models, six exhibit similar structures and clusters as 

shown in Figure 3.16, which show evidence of three clusters forming a “V”.  Noting the 

central cluster of the “V” contains over 60% of the spectra.  The remaining standard 

WPG models, shown in Figure 3.17, resulted in a PCA/GMM plot nearly identical to 

the adaptive PCA/GMM models.  As in the adaptive WPG, the central cluster consists 

of three groups, shown in Figure 3.18. 
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Figure 3.14 Adaptive WPG on the Mineral data with adaptive wavelet parameters m = 2, q = 3, 

WPT band: ( )8]1[X  
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Figure 3.15 Optimal Gaussian mixture model on the third quadrant of Figure 3.14 
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Figure 3.16 Standard WPG on the Mineral data with adaptive wavelet parameters m = 2, q = 3, 

WPT band: ( )8]1[X  
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Figure 3.17 Standard WPG on the Mineral data with adaptive wavelet parameters m = 2, q = 3, 

WPT band: ( )8]1[X  
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Figure 3.18 Optimal Gaussian mixture model on the third quadrant of Figure 3.17 

3.5 Conclusion 

The proposed method of integration of the wavelet packet transform with principal 

component analysis and Gaussian mixture models has been shown to elucidate 

unsupervised clusters from the provided NIR spectra.  To address the issue of wavelet 

selection for the proposed method, we conducted exhaustive searches using both 

standard wavelets (8680 wavelets) from literature and adaptive wavelets (70 

combinations of adaptive wavelet parameters). 

 

The exhaustive search, using the BIC and model classification uncertainty as a filtering 

scheme, identified a small subset (<13) of wavelets for both the standard and adaptive 

wavelet approaches.  Visual inspection of the selected wavelet models, both standard 

and adaptive, provided promising results in finding clusters for the presented NIR data 

sets.  The standard wavelet method gave a range of possible clustering outcomes, with 

different number of clusters and different cluster orientations for different wavelets. 

While the adaptive wavelet method gave more consistent clusters for various 

combinations of m and q (adaptive parameterizations).   
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The consistency found using the adaptive wavelets can be view as a result of linking the 

optimization search criterion used to iterate the adaptive wavelet, with characteristic 

parameterizations of two dimensional Gaussian mixture models.  So when different 

adaptive parameters were trialed, the features extracted from spectra would still be 

favorable for unsupervised Gaussian mixtures.  Thus the different adaptive wavelets 

were extracting similar features from the spectra relevant to good group separation. 

3.6 Summary 

We introduce a new method of unsupervised cluster exploration and visualization for 

spectral datasets by integrating the wavelet transform, principal components and 

Gaussian mixture models.  The Bayesian Information Criterion (BIC) and classification 

uncertainty performance criteria are used to guide an automated search of commonly 

available wavelets and adaptive wavelets.  We demonstrate the effectiveness of the 

proposed method in elucidating and visualizing unsupervised clusters from near infrared 

(NIR) spectral datasets.  The results show that informative feature extraction can be 

achieved through both commonly available wavelet bases and adaptive wavelets. 

However, the features from the adaptive wavelets are more favourable in conjunction 

with unsupervised Gaussian mixture models through a user specified internal linkage 

function. 
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Chapter 4 

 

Bagged Super Wavelts Reduction for Boosted Prostate Cancer 

Classification of SELDI-TOF Mass Spectral Serum Profiles 

4.1 Introduction 

Since the development of large mass spectrum profiling; consisting of excess of tens of 

thousands biomarkers, modern statistical research has been focused towards distilling 

pertinent biomarkers relevant to diagnosable symptoms such as prostate cancer [59].  

The difficulties involved in parsing such large datasets are many fold, the most general 

being firstly the shear size of the dimensionality of the data and secondly the unknown 

complexity of the relationship(s) correlating the measured mass spectrum profiles and 

the observed disease states. 

 

The issue of high dimensionality and unknown model complexity has given rise to 

hybrid ensemble techniques such as Treeboost [60] and Random Forests [61] which are 

an amalgamation of a Classification and Regression Trees (CART) [62] with Boosting 

[63] and Bagging [61] respectively.  These hybrid techniques (Treeboost and Random 

Forests) are universally designed to model both non-linear and linear effects, which 

makes them suitable as initial techniques for data exploration for biomarker discovery. 

 

Treeboost operates by fitting a CART model to the data, then recursively fitting CART 

models to the residuals of the previous CART model.  This translates to fitting 

informative linear relationships between the CART models to predict the response, 

which can then lead to forming linear relationships between the independent data (M/z) 

values and the dependant values (disease status).  For moderately large number of 

variables, fitting Treeboost models become impractical due to the high computational 

cost.  One method to reduce this cost is to reduce the number of variable under 

consideration in the Treeboost model.  We use Random Forests to identify independent 

and weakly important variables, as a variable reduction method for Treeboost 
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High correlation within the spectrum profile presents another complicating issue as this 

often leads to numerical instabilities of the statistical model.  Commonly with most 

forms of spectra, the juxtapositional variables (wavelengths, M/Z ratios) contain similar 

information usually as a result of being a measurement of the same underlying physical 

process.  This effect can be taken advantage of in the form of feature extraction and 

dimension reduction, where localized features from the spectra are extracted and used as 

the inputs to the statistical model to predict the symptoms.  In this respect the wavelet 

transform can be used to extract features from spectra [15]. 

 

The wavelet transform (WT) is a projection of the spectrum onto an orthogonal basis, 

called a wavelet basis.  This is to say that the spectrum can be represented by a set of 

localised, orthogonal basis functions called wavelets.  In this the WT has a familiar 

origin with the Fourier transform (FT), whose orthogonal basis functions are the sine 

functions.  However, the DWT has a larger amount of flexibility than the FT, in the 

sense that the WT has an infinite choice of basis functions (wavelets) to choose from.  

Thus we can choose a wavelet basis that will result in good approximations of the latent 

features within the spectrum.  However, in this investigation, the features are not known 

a prior; this chapter will use a combination of discrete wavelet transforms to create a 

super-wavelet [64] over the spectra. 

 

This chapter investigates the practicality of the super-wavelet transform on large 

spectral databases.  This is achieved using a data reduction heuristic using Random 

Forests and Treeboost to build a classification model, using SELDI-TOF mass spectrum 

profiles as an illustration.  We also investigate wavelet selection for the proposed 

method by benchmarking standard wavelet types with super wavelets using random 

forests. Further benchmark comparisons using Random Forests and linear discriminate 

analysis (LDA) are provided to assess the Random Forest/Treeboost algorithm 

performance using the super wavelets. 
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4.2 Theory 

4.2.1 Discrete Wavelet Transforms (DWT) 

The discrete wavelet transform (DWT) like the Fourier transform, can be used to 

reformulate a spectrum into meaningful feature in another “space”, by mapping the 

spectrum onto a n analyzing function.  In Fourier analysis, the analyzing functions 

are the set of sine function, where as for the DWT, wavelets are the analyzing functions.  

The DWT is given by: 

 ( ) ∑∑
= =

=
l

j

kj

k

kj

l

ctx
1

,

2

0

, ψ  (4.1) 

 

where 0,0ψ  is the father wavelet, from which all the other wavelets kj ,ψ  are derived 

from, ( )tx  is the spectrum, l is the decomposition level for the DWT [15] and kjc ,  is the 

wavelet coefficient calculated by the inner product between ( )tx  and kj ,ψ : 

 ( ) kjkj txc ,, ψ=  (4.2) 

 

Unlike Fourier analysis, there are many types of analysis functions (wavelets) that can 

be used for the DWT – each resulting in different wavelet coefficients (mapped 

features).  Since we do not know which wavelets will result in the best feature 

extraction a priori for classification, this chapter will use linear combinations of wavelet 

functions, referred to as super-wavelets [64],to extract features.  We construct two super 

wavelet frames using equally sized Daubechies (4 & 12), Symlets (4 & 12) and Coiflets 

(1 & 3) wavelets. Daubechies, Symlets and Coiflets were chosen as the analysis 

functions as they all have compact support, regular and high degrees of vanishing 

moments.  The symmetry of the chosen wavelets ranges from the distinctly 

asymmetrical Daubechies wavelets to slightly symmetrical Symlets to the near 

symmetrical Coiflets [15].  An example of these wavelets is shown in Figure 4.1. 
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4.2.2 Classification and Regression Trees (CART) 

Classification and Regression Trees (CART) [62] are useful tools for uncovering 

structure in large datasets. The algorithm partitions the data set based on a set of criteria, 

and from these partitions grows a binary tree. This tree is then used to predict the 

response.  Each node within contains a splitting rule, which is determined through 

minimization of the relative error statistic (RE): 

 

 ( ) ( ) ( )RE d R Left R Right= +  (4.3) 

 

where R(Left) and R(Right) are the impurities for the left and right node defined at every 

possible decision d found from within a predictor variable x.  For the classification 

problem, the GINI index is used to define the node impurities: 

 

 1

ˆ ˆ( ) (1 )
K

mk mk

k

R m GINI p p
=

= = −∑
 (4.4) 

 

where ˆ
mkp  is the proportion of class k in node m.  The splitting rule that minimises the 

RE is then used to construct a node in the tree. 

4.2.3 Random Forests 

Random forests for classification as defined by Breiman [27] is a collection of many 

classification trees, each built on a unique bootstrapped sample of the data. The specific 

example of a random forest used by Breiman, implements randomly selected predictor 

variables or at each node in the building of each tree included within the bootstrapping. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.1 Examples of the different wavelet families: Daubechies 4 (a), Symlets 4 (b) and Coiflets 2 (c) 
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Breiman called this routine Forest-RI. Forest-RI randomizes during the split selection of 

each tree. This randomness has the effect of building new trees with different structures, 

increasing the variety of relationships modeled within the forest that in turn improves 

the overall predictive performance. The classifications are then determined by a count 

of the classifications from each tree within the forest. 

 

As each tree has the same weight within a random forest, a simple proximity can be 

formed between the observations.  This proximity is a simple count of how many times 

2 cases have been classified into the same terminal node of each tree.  Dividing this 

count by the number of trees a similarity measure ijs  is calculated between the two 

observations [27].  The implementation of random forests is the “randomForest” 

package in R. 

4.2.4 Stochastic Gradient Boosting for CART (Treeboost) 

Treeboost [60] is a stage wise linear combination of classification trees Fm  each built 

from a bootstrapped sample of the data.  The linear combination is built in a stage-wise 

manner where each new tree in grown such that it lies along the path of steepest decent 

given a specified loss function.  This gives form new updated boosted model mF  as 

recurrence relation, 

 

 1( ) ( ) ( ; )m m m mF x F x h x aρ−= +
 (4.5) 

 

where ( ; )mh x a  is the new model to be added previous boosted model 
  
F

m−1
, and mρ  is 

the weight of the new tree in the model given by, 
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 (4.6) 

 

where y is the response, 1mF −  is the previous boosted set, and the parameters ma  of 

( ; )mh x a  are found such that ( ; )mh x a  lies in the path of steepest decent.  The 

predictions of boosting are then the weighted sum of the predictions for each individual 

tree within mF . Treeboost was implemented using the Salford Systems package 

“TreeNet”. 
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4.2.5 Tree based methods for variable importance 

Random forests and boosting are a black box approaches to modelling as the 

combination of hundreds of models is too confusing to analyze individually.  To aide in 

the interpretation of these results there are several measures of variable importance that 

can be used to quickly identify the most influential variables. 

 

The CART variable importance measure is simply the reduction in impurity that a 

particular variable creates when it is split on.  The measure is primarily dependent on 

where the variable is used in the tree and is defined as: 

 
( ) ( )

t T

VIP x RE d
∈

=∑
 (4.7) 

 

where ( )VIP x  is the variable importance of x  in a node t in tree T, and ( )RE d  is the 

risk as defined by Eqn (4.3).  Random forests extend this VIP statistic to span over the 

bagged set of trees.  The random forest VIP is MSE that variable induces when used to 

form a split within a tree within a forest. 

 

The random forest VIP list is a useful tool for data reduction as it ranks the variables 

used in the forest.  It should be noted that if a variable has not been used within the 

forest, its variable importance is zero.  Therefore for a large dataset the list of important 

variables in the forest is considerably smaller than the number of variables within the 

dataset. 

4.3 Experimental 

4.3.1 Data 

Mass spectral (MS) profiles consisting of 15154 SELDI-TOF M/Z ratios from 342 

patients were collected to investigate M/Z biomarkers for the presence of prostate 

cancer.  This data was obtained from the freely available datasets available form the 

American National Cancer Institute (NIC).  Out of the 322 patients, 69 were diagnosed 

with malignant prostate cancer, 190 with benign prostate hyperplasia and the remaining 

63 patients being controls [59]. 
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Previous works on this data include [59] who, on a subset of the data ran genetic 

algorithms classifier to distinguish between 2 groups (control, cancer), training on 56 

observations (25,31) and testing on 266 observations (212, 38) groups and obtained 95 

% sensitivity and 78 % specificity.  Criticisms have been expressed on the measurement 

design of this data [65], however, we use this data for the sole purpose of demonstrating 

the methodology in section 4.3.2.  

 

Results from other authors suggest that SELDI-TOF M/Z profile can be used to 

distinguish the control, benign prostate hyperplasia and prostate cancerous status of 

patients.  Qu et al .[66], on a different SELDI-TOF dataset, used Adaboost and boosted 

decision trees and stumps also to distinguish between two patient disease status; control 

and prostate cancer.  The data used by Qu et al [66] consisted of a training set of 74 

observations (30 control and 44 cancerous prostate) and a testing set of 88 observation 

(28, 66).  Qu et al [66] achieved a sensitivity of [100 %, 93.8 %] and a specificity of 

[100 %, 93.8 %] respectively. 

4.3.2  Method 

The proposed feature extraction Treeboost methodology consists of three main phases 

highlighted in Figure 4.2: 

1. Initial feature mapping of the MS profile is performed using the super wavelet 

frames  

2. Variable reduction by 

a. Reduction of the SWF using t statistics 

b. Variable reduction using the VIP list from Random Forests 

3. Discrimination using Treeboost on the reduced extracted features from the MS 

profiles. 

 

During the first phase, the M/Z profiles are transformed using the super wavelet frame 

(SWF).  Where the SWF consists of the Daubechies (4 and 12 tap filters), Symlets (4 

and 12 tap filters) and Coiflets (4 and 12 tap filters), giving a total of six wavelets in the 

SWF.  This then results in an expansion in the dataset size by a factor of six to 

approximately 60,000 variables – which is too many variables for Random Forest or 

Treeboost.  To reduce this expansion in data size, the SWF is initially filtered using pair 

wise t-values between the three groups on each wavelet coefficient in the SWF.  
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Figure 4.2 Flow diagram of the analysis 

 

The wavelet coefficients corresponding to the largest 5% t-values are retained for 

further reduction using Random Forests. 

 

Prior to the RF reduction, the data is split into a test (30%) and training (70%) sets so 

that cross validated correct classification rates can be assessed for the RF and TreeBoost 

methods.  All random forests used in this investigation were grown to 200 trees sizes 

softly limited at a minimum terminal node size of 5. 
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The variable reduction phase using Random Forests was done using iterative 

applications of Random Forest. 

1. Initially Random Forest is performed on the entire dataset passed on from 

the t-reduction phase.  Using the VIP list from the initial RF, the top 30% 

predictive variables (wavelet coefficients) from the VIP list are removed and 

concatenated into a predictive dataset.  The remaining variables are 

concatenated into a reduced dataset. 

2. Random Forest is then used on the reduced dataset to form a new VIP list 

from which the top 30% are then removed and placed in the predictive 

dataset. 

3. Step 2 is repeated iteratively until the predictive error using the reduced 

dataset plateaus.  The convergence results are shown in Figure 4.3. 

 

The motivation behind this iterative RF selection scheme is largely due to the shear size 

of the initial (t-reduced) dataset.  As the predictor set is quite large there will be large 

amounts of redundancy, but also many various combinations of variables that give the 

same result.  If only one RF were used to reduce the dataset, then the redundant but 

informative variables would be screened out.  Successive RF's on the reduced datasets 

would capture most of the informative variables.  Once the RF variable selection has 

finished, the predictive dataset is used for analysis. 

4.3.3 Benchmarking 

We use the results from Random Forest and linear discriminate analysis as methods to 

benchmark the performance of the above methodology.  The dataset input to RF and 

LDA are the super wavelet RF reduced data that is used as the data input to TreeBoost. 

 

Benchmarking for the super wavelet is done by comparing the Random Forest 

performances of the t-reduced data from the datasets generated from each of the six 

wavelet types composing of the super wavelet.  I.e.  The super wavelet RF is compared 

to six other RF's derived from t-reduced data using one of the six wavelets used in the 

super wavelet itself. 
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4.4  Results and Discussion 

The model performances for the super wavelet reduced data are shown in Table 4.1, 

listing the correct classification rates (CCR) for the cancerous and benign groups for the 

test data and the overall CCR for the training data.  The CCR for the training data is 

used as an indication of the overall model training performance, from which in Table 

4.1, the LDA model trained best on the super wavelet data. 

 

Table 4.1 Benchmarking model performance using super wavelet 

Test set correct classification rate 
Model 

Training 

CCR Control Benign Cancer 

Treeboost 90.78 % 100 % 98.24 % 68.75 % 

LDA 100 % 89.47 % 94.73 % 90.47 % 

Random 

Forests 
93.33 % 94.73 % 98.24 % 76.12 % 

 

The CCR (cancerous and benign) for the test data are used as an indication on the 

robustness of the predictive performance of the model.  In this setting, it is more 

important to correctly classify positive cancerous patient than misclassify a positive 

benign patient.  From Table 4.1, the LDA model gave the best CCR for the cancerous 

patients, followed by the Random Forests model then Treeboost. 

 

Superiority of RF over Treeboost suggests that there is high diversity between the 

possible trees that can be built from super wavelet basis.  This diversity lends itself 

more to the averaging of the decision boundaries employed random forests, rather the 

linear combination used by Treeboost.  This diversity highlights the different profiles 

selected by each wavelet type within the super wavelet basis.  Overall however LDA 

performed for in the training set and for predicting the cancerous patients.  However 

LDA required previous data reduction to achieve this result. 

 

In investigating the role of the super wavelets; especially in exploring which wavelets 

are seemingly more useful in feature extraction, the Random Forest VIP list using the 

super wavelet, shown in Table 4.2, is analyzed.  Here it is seen that the Coiflets and 

Symlets appear most frequently and most importantly in the VIP list.  Both Symlets and 

Coiflets have a high degree of symmetry when compared to Daubechies wavelets. 
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Table 4.2 Random Forests VIP list, cropped at the top 50 % of variables 

Coefficient Mean Decrease in Accuracy 

COIF3-7635 0.76 

SYM4-241 0.74 

SYM4-2123 0.70 

SYM12-251 0.61 

COIF3-2160 0.58 

SYM4-2358 0.57 

DB4-4051 0.56 

SYM4-1885 0.55 

COIF3-250 0.52 

SYM12-2388 0.52 

COIF1-303 0.52 

DB12-1901 0.51 

DB4-246 0.50 

COIF1-7604 0.49 

SYM12-161 0.49 

COIF1-2199 0.49 

 

When comparing the RF models arising from each individual wavelet type in 
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Table 4.3, the CCR for the cancerous patients is seemingly similar for all wavelet types.  

But when viewed jointly in the super wavelet RF model, outperforms the individual 

wavelet RF models for CCR for cancerous patients.  This suggests that the information 

for the cancerous patients can be better expressed with multiple wavelets (ie a super 

wavelet) rather that a single wavelet. 

 

The M/Z ratios identified by the RF VIP list for the super wavelet are shown in Figure 

4.4.  Of those variables selected it can be seen that most lie within the 0 to 2000 M/Z 

ratios.  Some debate over the validity of the information within this region [65], 

however, other wavelet based methods on similar data have also identified M/Z ratios in 

this neighborhood [67]. 

 

The false positive prediction rates for the test data, using the super wavelet Random 

Forest, in Table 4.4 compare quite favorably to other works published on this dataset.  

[59] achieved false positive rates of 5% and 22% for cancerous and benign patients 

using a two component model (i.e. only predicting two disease states). 
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Table 4.3 Benchmarking wavelet types using Random Forest performance 

Test set correct 

classification rate Wavelet type 
Training 

CCR 
Cancer Benign 

Daubechies-4 87.56 % 97.29 % 78.26 % 

Daubechies-12 87.11 % 96.25 % 88.23 % 

Symlets-4 94.22 % 94.36 % 84.61 % 

Symlets-12 89.78 % 97.29 % 82.6 % 

Coiflets-1 90.22 % 95.18 % 88.23 % 

Coilets-3 91.11 % 94.93 % 72.22 % 

Super Wavelet 92.00 % 100 % 86.36 % 

 

Table 4.4 Percentage false positive rates using the Random Forests on the super wavelet data. 

Actual Test misclassifications  

 Control Benign Cancerous 

Control NA (1/19) = 0.052 % 0 % 

Benign 0 % NA (1/57) = 0.017 % 

Cancerous 0 % (5/21) = 23.80 % NA 

 

 

Figure 4.3 RF reduction training set CCR convergence 
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Figure 4.4 Inverse wavelet transform of the coefficients found in by Random Forests 

4.5 Conclusion 

We have presented a wavelet based method for classification of large datasets by 

employing Random Forests variable reduction and TreeBoost predictions.  In the 

demonstration given using mass spectral profiles, it was seen that a joint analysis using 

multiple wavelets resulted in a lower (no) false positive prediction rates of cancerous 

patients when compared to the results from models using a single wavelet basis.  The 

method of Treeboost with RF reduction, while not performing as well as RF alone for 

this specific data set, illustrates how variable reduction for additive CART models can 

be performed using other tree based methods to improve the computation speed of 

Treeboost. 



 67 

4.6 Summary 

Wavelet based analysis for mass spectrometry (MS) profiles of three groups of patients 

are analyzed for the purpose of developing a classification model.  The first step in our 

model uses a DWT for feature extraction, using a linear combination of Symlets, 

Daubechies and Coiflets wavelet bases - collectively known as a super wavelet.  

Random Forests and Treeboost are then used to analyze the super wavelet coefficients 

to form the classification model.  The method is illustrated using the publicly available 

prostate SELDI-TOF MS data from the American National Cancer Institute (NCI).  The 

NCI data consists of 322 MS profiles with 15154 M/Z ratios, comprising of 69 

malignant, 190 benign and 63 control patients, which we randomly divided into 70 % 

training and 30 % testing.  From the Random Forest models, the super wavelet 

performed 2.7% to 5.7% better than other single wavelet types to give a 100% test set 

prediction rate for cancerous patients. 
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Chapter 5 

 

Joint Multiple Adaptive Wavelet Regression Ensembles 

5.1 Introduction 

Wavelet pre-processing of spectral data has lead to increased predictability and model 

simplification in regression applications when compared to traditional pre-processing 

techniques like PCA or PLS.  However, the issue of wavelet selection for pre-

processing is a topic of interest since there are an infinite multitude of wavelets.  Many 

authors have identified preferences for one type of wavelet over another for a given data 

set and regression method [8, 44, 68] leading to the idealism of not all wavelets are 

made equal.  This chapter considers the challenge of wavelet basis selection for 

regression with a high number of juxta-positional explanatory variables, where the 

explanatory variables are in the form of near infra-red (NIR) spectra. 

 

Modern NIR instruments measure reflectance or transmission of a substance at several 

hundreds of equally spaced wavelengths, typically in the range of 800nm to 2500nm.  

The measured NIR spectrum curve itself is comprised of a superposition of localised 

spectral curves, each of which is not usually directly observable.  In the most simplistic 

case, the underlying spectral curves are non-overlapping which leads to a direct and 

trivial implementation of the Beer-Lambert-Bouguer law, where absorbance is 

proportional to concentration [69].  More realistically, the underlying signals overlap 

which results in a non-linear extension to the Beer-Lambert law where the signal of 

interest is usually masqueraded by a more dominate signal(s).  Feature extraction is 

typically trialled to elicit the desired signal thus reverting to the trivial case. 

 

There are two main classes of feature extraction methods which are typically used to 

improve spectral calibrations.  The first is the factor based methods such as Principal 

Component Regression (PCR) [2, 70] and Partial Least Squares (PLS) [3], where the 

spectrum is transformed into a new set of orthogonal variables without regard to the 

juxta-positional nature of the spectrum.  The second is the signal filter approach such as 

the Fourier series, where the spectrum is filtered by a frequency analyser. Here 
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frequency is meant to refer to a variable sampling frequency rather than an 

electromagnetic radiation frequency; the latter will be referred to by wavelengths. 

 

With signal filter extraction methods, the spectrum (observed signal) is thought to 

consist of a superposition of underlying signals, where the signals can be characterised 

by a known functional form. For example, in Fourier analysis, the signals functional 

form is given by the sine function combined with a phase delay.  Signal filters can be 

categorised into two classes: global and localised filters. 

 

Fourier transforms are a classic example of a global filter where the basis function of 

the filter spans over the entire space of the observed signal.  The Discrete Wavelet 

Transform (DWT) and the Gabor Transform are examples of localised signal filters, 

whose filter basis functions span a finite bandwidth which is localized to a small region 

of the observed spectrum [7].  Most spectra consist of many overlapping signals and the 

desired signal in regression applications is widely believed to be restricted to a portion 

of the measured signal.  Due to this overlapping structure, localised signal filters are 

ideal for feature extraction to improve multivariate calibrations. 

 

Unlike the Fourier transform, wavelet transforms can be created from a multitude of 

basis functions that range from smoothly varying wavelets (basis function) to seemingly 

un-wielding chaotic wavelets.  Most works to date utilise wavelet transforms that use 

mathematically derived wavelets such as Daubechies or Morlet wavelets [6, 7].  While 

Morlet and Daubechies wavelets have convenient mathematical properties, such as 

minimal phase distortion or maximum symmetry, they were not designed for unknown 

signal feature extraction as is used in multivariate calibrations.  Thus, it is more likely 

that a different wavelet basis, one derived for the task at hand, will yield a more 

favourable calibration. 

 

Wavelets, as used in the DWT, have been shown to be highly effective in improving the 

performance of calibration type problems in many fields of NIR spectroscopy [15].  In 

most applications of DWT, to spectroscopy calibration problems, a single wavelet type 

is used in the feature extraction process.  This generally assumes homogeneity of 

underlying signals across the breath of the spectrum.  However, if the underlying signals 

are heterogeneous throughout the spectrum, different wavelet basis at different parts of 
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the spectrum may offer further advantages in feature extraction for calibration 

development.  This then leads to the choice of which wavelets to use and where in the 

spectrum to apply the DWT. 

 

Choosing wavelet types can be simplified if the underlying signal is known but this is 

generally not the case.  It is known however, that if the correct wavelet type is chosen, 

the predictive performance of the model should increase.  There are wavelet generating 

algorithms which can adapt wavelets to user definable criteria in order to help target the 

correct wavelet. 

 

Adaptive wavelets are a class of wavelets which are able to traverse a large set of 

wavelets [7].  They iteratively update their function frequency and phase forms to match 

a predefined optimisation criteria.  Optimisation criteria can be defined in terms of a 

calibration statistic, thus adaptive wavelets provide a convenient basis to search for 

calibration specific wavelets.  Works on wavelet PLS calibrations [12], unsupervised 

mapping [71], clustering [8] and experimental designs [72] using spectral data have 

shown that adaptive wavelets outperform conventional wavelet types.  In this chapter, 

we will use multiple adaptive wavelets to represent features from different regions in 

the spectrum. 

 

In determining where to apply wavelets in the spectrum it is generally not known prior 

where the best predictive positions are.  In regression applications it is usually 

unnecessary to represent all features in a spectrum to form an accurate calibration.  For 

example, stepwise linear regression (SLR) iteratively includes and removes predictor 

variables so that a relatively small number of variables are used in the final predictive 

regression model. 

 

Method selection techniques like stepwise linear regression (SLR) are suitable for 

datasets with very few predictor variables but are intractable when a large number of 

variables are considered such as in a NIR dataset.  For example, if 700 wavelengths are 

used, in the first iteration of SLR, 700 models are searched with one wavelength 

selected.  In the second iteration, 244,650 models are spanned for two selected 

variables, 56,921,900 models by the third iteration and a massive 991,860,000 models 

by the fourth iteration for four chosen variables.  Modern stochastic variable selection 
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methods such as Random Forests [27], Classification and Regression Trees [73] and 

Bayesian Metropolis regression [74] offer alternative methods for discovering 

predictive models when there are a large number of variables relative to the number of 

observations. 

 

Stochastic regression methods initially search a large range of potential models to 

determine an estimate of the likelihood of variable importance.  The variable 

importance estimates are subsequently used to focus future model searches.  For 

example in a Bayesian Metropolis regression method used by Brown et al. [74], the 

posterior probability of variable importance is estimated by trialling multiple random 

Markov chain Monte Carlo (MCMC) runs before the variable importance list is used in 

a Metropolis-Hastings search algorithm to find “good” prediction models.  Typically 

many “good” models are found during the model search process, all of which can be 

used simultaneously in a model ensemble to minimise model bias and improve the 

overall model prediction on future samples [75]. 

 

In this chapter, the Bayesian Metropolis method developed by Brown et al. [74] is used 

as the variable selection and regression technique since the method focuses on selecting 

regression models with few (less than 10) variables in the final prediction models.  This 

small model criterion was imposed as it is thought that only a small number of wavelet 

extracted features would be required to build useful predictors.  The chosen regression 

method also allows for multiple constituents to be predicted simultaneously. 

 

Multiple constituent prediction models generally result in more accurate predictors 

compared to multiple single constituent models [16].  Brown et al. [16] has previously 

used single wavelets in their regression method which demonstrates a substantial 

improvement to conventional regression techniques.  The method by Brown et al [16] 

also facilitates selection of wavelet coefficients from various levels within the DWT, so 

band selection prior to regression is no longer necessary. 

 

Applying adaptive wavelets with Bayesian Metropolis regression creates a problem of 

when to optimise the adaptive wavelets.  Optimised adaptive wavelets are based on an 

initial random wavelet then adapted to maximise a goodness of fit criterion.  Naturally 

the wavelet optimisation cannot be applied to the entire spectrum, so the optimisation 
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needs to occur after variable/model selection.  Meaning that the variable selection is 

done on the features extracted using a random wavelet.  This introduces another 

stochastic component being the initial random wavelet. 

 

To overcome the random wavelet issue, multiple random wavelets with varying wavelet 

parameters are trialled.  This inturn produces many more prediction models, all of 

which include some measure of model uncertainty being the optimised wavelets and the 

position within the spectrum the wavelets are applied to.  The multiple optimised 

wavelet models can be amalgamated using ensemble methods similar to those used for 

stochastic regression. 

 

Ensemble methods are used to combine a number of models in order to reduce the 

predictive error for future samples [76].  The basic premise for ensemble modeling is 

that each individual model contains uncertainties, which in turn, inflate the error of 

future samples. Therefore, a combination of many models will lead to an averaging out 

of the inflated errors of future samples. 

 

There are many methods to form an ensemble with the most popular being: Bayes 

modal averaging (BMA), Bagging [61], Boosting (arcing) and Stacking [76].  Bayes 

model averaging combines models based on the posterior distribution of the models.  

During the model search of the Bayes Metropolis method by Brown et al., the posterior 

distribution of the models had been estimated, but only for the initial random wavelet.  

Since the adaptive wavelets are optimized after the model search is computed, the 

posterior distribution estimated by the Metropolis search is longer valid. 

 

Bagging and Boosting can overcome the limitation of the Bayes factors by using re-

sampling methods to determine model variability and thus the weighting of each 

particular optimized model, however, the time required to undertake these methods in 

this application is prohibitive.  Stacking is a least squares method of forming a linear 

combination of different predictors to arrive at an ensemble.  Stacking does not rely 

upon posterior/prior distributions and can be used in conjunction with bootstrapping 

methods to mitigate over fitting on small data sets. 
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The methodology used in this chapter is as follows: 

1. Apply a random wavelet to the spectra 

2. Select regression models based on the random wavelet coefficients 

3. Optimise the wavelet coefficients for the models in 2. 

4. Repeat steps 1-3 to represent the initial random wavelet space 

5. Form a Stacked model ensemble using the optimised wavelet models. 

 

The following sections briefly describe the theory used in the methodology, the 

parameter settings and a regression example of NIR spectroscopy. 

5.2 Theory 

5.2.1 Discrete Wavelet Transform (DWT) 

The discrete wavelet transform (DWT) [77] has become a standard tool for feature 

extraction, signal analysis and compression.  Most applications of the DWT method use 

a “two-banded” system which consists of a scaling function, ϕ , and a single wavelet 

function, ψ .  However, there exists a less popular “m-banded” DWT which utilizes the 

scaling function, ϕ , and m-1 wavelet functions, 
( ) , 1,..., 1
s

s mψ = −  [7].  The benefits for 

using the m-banded DWT include (i) the ability to use linear phase wavelets - which is 

not possible using the 2-banded DWT with orthogonal wavelets, (ii) increased 

frequency bandwidth isolation and, (iii) a larger range of possible frequencies and phase 

forms [7]. It is the latter reason for which the m-banded DWT is used in this 

investigation since the wavelet characteristics for regression are unknown and a search 

for appropriate wavelets is necessary. 

 

The formulation of the m-banded DWT is similar to the 2-banded system which 

implements an iterative cascading algorithm.  For the m-banded DWT, the cascade is 

described by the pair of equations: 

 

 ( ) ( )( ) ( ) 1,..., 1
s s

k

k

t m w mt k s mψ ϕ
∞

=−∞

− = −∑====  (5.1) 

 ( ) ( )k

k

t m mt kϕ ϕ
∞

=−∞

= −∑ ℓ  (5.2) 
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where ( )s

kw  are the wavelet filter coefficients for the s
th

 wavelet and kℓ are the scaling 

filter coefficients.  A function f is then represented by a wavelet series as 

 

 ( ) ( ) ( ) ( ) ( )
1

, , , ,

1

m
s s

j k j k j k j k

s j k k

f t d t c tψ ϕ
− ∞ ∞ ∞

= =−∞ =−∞ =−∞

= +∑ ∑ ∑ ∑  (5.3) 

 

with wavelet coefficients ( ) ( ) ( ) ( ), ,

s s

j k j kd f t t dtψ= ∫  and scaling coefficients 

( ) ( ), ,j k j kc f t t dtϕ= ∫ . Both coefficients describe features of the function f at the spatial 

location m
-j
k and the frequency proportional to m

j
 (or scale j).  A pictorial example of 

the m-banded DWT is illustrated in Figure 5.1. 

 

For a discretely sampled function, ( )1, , ; ,j

px x p m= =x … with equally spaced points, 

the DWT is implemented as a recursive multiplication of linear filters.  For illustration, 

this can be as: 

 

 =z Wx  (5.4) 

 

with W an orthogonal m-banded wavelet matrix, and z a banded vector of scaling 

coefficients and wavelet coefficients.  Different wavelet bands in z correspond to the 

different scales: j=1,…,J. 

5.2.2 Adaptive Wavelet (AW) matrix 

The following section describes how the matrix W in (5.4) is generated by an adaptive 

wavelet (AW) generation algorithm.  There exist several wavelet generating algorithms 

that design task specific wavelets, also known as adaptive wavelets, such as Lifting 

[78], Angular Quadature Mirror Filtering [12, 79], and Pollen Factorization [17].  It is 

the Pollen factorization that is best suited to this particular application since it enables 

m-banded wavelets. 
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Figure 5.1 Pictorial representation of a three banded (m = 3) discrete wavelet transform where the 

DWT has been applied twice to the original spectrum. 

 

Another advantage of the Pollen factorization is that the m-banded wavelet matrix in 

Equation (5.4) can be parameterized into q+1 normalized vectors u u u1 2, , . . . , q
 and v; 

where the number of filter coefficients in the scaling function (and the wavelet 

functions) is 1mq+ .  These normalized vectors can be iteratively updated in order to 

extract user defined features.  For a comprehensive account of the theory of the Pollen 

Factorization, the reader is referred to [17]. 

 

The Pollen factorization can be summarized in the following steps: 

(1) Define the integer values for m and q 

(2) Initialize the normalized vectors u u u1 2, , ..., q  and v  

(3) Construct W from  u u u1 2, , ..., q  and v   

(4) Perform the DWT  

(5) Iteratively update u u u1 2, , ..., q  and v  until a converge criteria is meet. 

 

In this study, u u u1 2, , ..., q  and v  are initially assigned elements from a uniform 

distribution, which in previous supervised studies are shown to converge based on 

similar optimization criteria as detailed in section 5.3 [8, 71]. 
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5.2.3 Multivariate regression model 

The basic formulation of the following multivariate regression model primarily follows 

Lindley [80]   however was also influenced by later work performed by Brown[74]. Let 

Y denote the n r× matrix of observed values of the responses and let X  be the 

n p× matrix of predictor variables.  The standard multivariate normal regression model, 

conditional on , , , and ,α B Σ X  has the form 

 

 ( )T ~ ,n nN− −Y 1 α XB I Σ  (5.5) 

 

With n1 a 1n× vector of ones, α  a 1r×  vector of intercepts, ( )1, , r=B β β…  a 

p r× matrix of regression coefficients and ( ),nN ΣI  is the matrix-variate normal 

distribution [81] defined by the shape parameters: nI , a n n× identity matrix, and Σ , 

the r r×  error covariance matrix . Without loss of generality the columns of X  have 

assumed to have been centred by subtracting their means. 

 

The unknown parameters are , , and α B Σ . A conjugate prior for model (5.5) is as 

follows [16]: first given Σ , 

 

 ( )T T

0 ~ ,N h−α α Σ  (5.6) 

and independently, 

 ( )0 ~ ,N−Β Β H Σ  (5.7) 

 

Where H is the shape parameter for matrix-variate normal distribution of 0−B B  [81].  

The marginal distribution of Σ is then 

 

 ( )~ ;IW δΣ Q  (5.8) 

 

Where ( );IW δ Q is an inverse Wishart distribution with a scale matrix Q and shape 

parameter δ  [81]. 
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Since little prior knowledge is known aboutα , we let h → ∞  to represent a vague prior 

and take  0 ,=Β 0  leaving the specification of ,  and δH Q  to incorporate prior 

knowledge of the particular application. 

 

In applying the Discrete Wavelet Transform (DWT) to the spectra, X , model (5.5) can 

be expressed as: 

 

 ( )T T ~ ,n nN− −Y 1 α XW WB I Σ  (5.9) 

Or alternatively 

 ( )T ~ ,n nN− −Y 1 α ZB I Σɶ  (5.10) 

 

Where T=Z XW is the matrix of wavelet coefficients and =B WBɶ  is a matrix of 

regression coefficients.  The DWT also affects the prior for Bɶ : 

 

 ( )~ ,NΒ H Σɶ ɶ  (5.11) 

 

With T=H WHWɶ [82]. The parameters  and α Σ are unaltered by the DWT as are their 

prior distributions in (5.6) and (5.8). 

 

In calculating Hɶ  using a single wavelet, W  corresponds to the DWT and the two-

dimensional DWT (DWT2) can be utilize to reduce the computation time [82].  

However, when multiple wavelets are used, the DWT2 method can no longer be used 

since W  no longer corresponds to the typical recursive DWT. 

5.2.4 Variable selection 

Not all wavelet coefficients in the DWT will be useful for predictive purposes, so a 

method of variable selection is used to isolated potentially predictive sets of wavelet 

coefficients.  A latent binary vector γ of length p indicates which predictor variables 

(wavelet coefficients) are to be included in the model (5.10) [74, 80].  The binary vector 

includes wavelet coefficients from all levels within the DWT.  If the j
th

 element of γ , 

j
γ  is zero, then the j

th
 column of Z is excluded from the model.   
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With the assumed prior expectation of Bɶ  set to zero, then 

 

 ( )~ ,Nγ γΒ H Σɶ ɶ  (5.12) 

 

Where  and γ γΒ Hɶ ɶ are rows and columns of   and Β Hɶ ɶ  respectably where 1
j

γ = . Rows 

and columns where 0
j

γ =  are deleted from the matrix  Under this prior, each row of 

Βɶ is modeled as having a scale mixture of the type [16]: 

 

 ( ) ( ),: 0 ,~ 1 0,j j j j jN hγ γ− +Β Φ Σɶɶ  (5.13) 

 

With ,j jhɶ  equal to the j
th

 diagonal element of Hɶ  and 0Φ being a distribution placing unit 

mass on the 1 r×  zero vector. Note, the rows of Βɶ are not independent. 

 

Choosing a binomial prior distribution, ( )π γ , for γ  takes the elements, j
γ , to be 

independent with ( ) ( )Prob 1 , Prob 0 1j j j jγ ϖ γ ϖ= = = = −  with the hypermeters 
jϖ to be 

specified.   The use of mixture priors for variable selection in multivariate regressions is 

further detailed by Brown [74]. 

5.2.5 Posterior distribution of γ  

The posterior distribution of γ given the data, ( )| ,π γ Y Z , gives a posterior probability 

to each of the possible states for the vector γ .  This posterior arises from the 

combination of a likelihood, that gives a high weight to subsets explaining a high 

proportion of the variance in the responses, Y , and a prior for γ , that penalizes large 

subsets.  The posterior distribution, ( )| ,π γ Y Z , is computed by integrating 

,  and α Β Σ from the joint posterior distribution.  With the vague prior for ( ),  h →∞α , 

the parameter is essentially estimated by the mean of Y from the calibration set. To 

simplify the formulae, the columns of Y have been mean centred.  Full details of the 

derivation of the posterior distribution for γ  is given in [74] with the main result: 
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 ( ) ( ) { } ( )
( )

/2 1 /2
T 1| , ~

r n r

g
δ

π π
− − + + −−= +

γ γ γ γ γ
γ Y Z γ H Z Z H Q γɶ ɶ  (5.14) 

 

with ( ) 1
T T T 1 T

−−= + − +
γ γ γ γ γ γ

Q Q Y Y Y Z Z Z H Z Yɶ , where  is 
γ

Z Z with the columns which 

0
j

γ =  deleted, and ( )g γ  is the relative probability of the regression for model γ .   

5.2.6 Metropolis search 

Equation (5.14) gives the posterior probability of each of the 2
p
 different γ  vectors , 

each of which represent a different subset of wavelet coefficients. Computing these 

posterior probabilities then allows “good” wavelet coefficients to be ascertained.  

 

When p is greater than approximately 25 there are too many subsets to fully compute 

( )| ,π γ Y Z . Fortunately, simulation methods can be used to find γ  vectors with 

relatively high posterior probabilities, which can then be used to identify wavelet 

coefficients with high marginal probabilities where 1.
j

γ ≈  Here a Metropolis search 

[83, 84] is used to find the high yielding γ  vectors. 

 

Since the marginal probabilities for γ  are of interest, a broad range of γ  vectors need to 

be trialed, hence the Metropolis search algorithm is employed. Metropolis searches have 

been successfully used in variable selection for regression applications by George and 

McCulloch [84], Raftery et al. [85] and Brown et al. [16]. Other searches which are 

potentially useful are simulated annealing [86] and genetic algorithms [87], where both 

methods were investigated in a similar regression application [88]. 

 

The Metropolis search starts from a randomly chosen 0γ  and then moves through a 

sequence of further values of γ .  At each step the algorithm generates a new candidate 

γ  by randomly modifying the current γ vector.  Two types of modification are used:  

1. Add or delete a component, 

2. Randomly choosing one j in the current γ  and inverting its value. The 

probability of choosing each component is .φ  

The new candidate model *γ is accepted with probability 
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( )
( )

*

min ,1
g

g

  
 
  

γ

γ
 (5.15) 

A more probable model will always be accepted; however, the scope to include less 

probable models increases the scope of the search space and hence produces a more 

accurate simulation for the marginal probabilities for .γ  

 

To ensure that the Metropolis search spans a sufficiently large search space, and does 

not permute around a local minima, multiple starting positions are used.  The multiple 

chains of γ are then concatenated to form the marginal distribution. 

5.2.7 Stacking ensembles 

The basic premise for model ensembles is: If if  are the predictions from the M 

individual models, i = 1 to M, then let f  be the mean of the amalgamated predictions.  

The 'if s  assumed to be identically distributed, share a common variance V and are 

unbiased, but not necessarily independent [89]. Therefore, 

 

 

( ) ( ) ( )

( )

2

1

1 2 ,

2 ,

N

i i j

i i j

i j

i j

Var f M Var f M Cov f f

V M M Cov f f

= <

<

= +

= +

∑ ∑

∑
 (5.16) 

 

If all 'if s  are equal then nothing is gained by averaging.  If the 'if s  are uncorrelated 

then ( )Var f V M= , so averaging is expected to work well if the 'if s  are diverse 

when ( ),i jCov f f  are small. 

Stacking is a least squares method of forming a linear combination of different 

predictors to arrive at an ensemble.  Stacking does not rely upon posterior/prior 

distributions and can be used in conjunction with bootstrapping methods to mitigate 

over fitting on small data sets.  In the simplest form, stacking restricts the ensemble to: 

 

 i i

i

f fε µ=∑  (5.17) 
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where the iµ  are the weights for each predictive model if .  Here we select iµ  with the 

following constraints to minimize the mean squared error of the ensemble: 

 

 
1

0; 1, ,

i

i

i i M

µ

µ

=

> =

∑
…

 (5.18) 

 

In minimizing the mean squared error of the ensemble, the potential to over fit on the 

training data can be mitigated by re-sampling methods [76].  In this study, bootstrapping 

was used to generate a collection of weights for each model, ,i j
µ . The weights of each 

separate model were then averaged to calculate the final weight that would be used in 

the ensemble for each model. 

 

The bootstrap used was to replace each model if  by ,i j
f  where ,i j

f  is the 3-cross fold 

estimate of if .  So for each set of cross-fold estimates, ,i j
f , a constrained stacked 

ensemble was made to generate the weights, ,i j
µ .  The final weight for the model 

ensemble, iµ , was taken as the average of forty bootstrapped estimates of ,i j
µ . 

5.3 Methodology 

To investigate the hypothesis of improving wavelet predictions using multiple wavelets, 

comparisons to similar models using single wavelets for feature extraction were made.  

The single wavelet models all follow the same methodology described in the 

introduction being: 

1. Feature extraction from the spectra by applying the single wavelet type using 

the DWT 

2. Model generation using the Bayes Metropolis regression method 

3. Forming a model ensemble using: 

a. Constrained stacking, with and without bootstrapping, and 

b. Bayes model averaging for standard wavelets 

 

Single wavelet models used in the comparison were standard wavelets from literature 

and adaptive wavelets.  The standard wavelets used were Daubechies (2 and 4 tap), 
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Coiflets (1 and 3 tap) and Myer wavelets.  The level of decomposition in the DWT for 

the single wavelets was one to four, the same used for the multiple adaptive wavelets. 

 

Bayes model averaging (BMA) [75] for the single, standard wavelets types was possible 

since no model optimization was performed after the Bayes Metropolis regression.  

Using BMA as an ensemble method for the standard wavelets gave a direct comparison 

to analysis of the same dataset found in literature [16] and was able to assess the 

effectiveness of constrained stacking.  The top 500 models from the Metropolis search, 

with the highest likelihood, were used in the model ensemble of each BMA and 

constrained stacking ensemble that was derived when using a single standard or adapted 

wavelet.  

 

Adaptive wavelet models were generated by applying following methodology: 

1. Apply a random wavelet to the spectra 

2. Select regression models based on the random wavelet coefficients 

3. Optimise the wavelet coefficients in the models in 2. 

4. Repeat steps 1-3 to represent the initial random wavelet space 

5. Form a Stacked model ensemble using the optimised wavelet models. 

 

The top forty models for each combination of m, q and J with the highest likelihood 

scores from step two were use to optimize the adaptive wavelets.  For each model the 

non-zero elements of γ  indicate an adaptive wavelet that needs to be optimized.  The 

optimization criteria used for the adaptive wavelet algorithm minimizes the mean 

squared error for each of the models such that: 

 

 ( )2

,

1

n

i iMSE Y Y nτ τ
τ =

= −∑  (5.19) 

where  

 

 
, , , ,i i j i j

j

Y b dτ τ=∑  (5.20) 
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where 
,iY τ is the model predictions for the i

th
 model, ,jd τ  is the adaptive wavelet 

coefficient for the j
th

 non-zero component of γ and τ  = 1,…,n, with n being the number 

of samples in the calibration data set, and 
,i jb  are the regression coefficients for the i

th
 

model.  For example, if the third model from step two has five non-zero components for 

γ , then five adaptive wavelets are optimized jointly to minimize the MSE. 

 

Once the wavelets for the models have been optimized, the posterior model probabilities 

are longer valid and cannot be used to determine a model ensemble using BMA. 

Consequently a constrained stacking model ensemble is formed with the forty adaptive 

wavelet models which have the same combinations of m, q and J. 

 

All combinations of m, q and J were trialed for adaptive wavelets and the top forty 

models from each combination were then used jointly to form another constrained 

stacking ensemble. 

5.3.1 Near infrared spectra data 

The methods outlined in this chapter are implemented on a reference data set widely 

available for general use within the chemometrics community.  The data set pertains to 

composition of biscuit dough and is fully described by Osborne [90].  A brief summary 

of the data follows. 

 

Biscuit dough spectra were derived from a study that investigated the feasibility of 

using NIR spectroscopy for measuring the constituents - fat, sucrose, dry flour and 

water of unbaked biscuit dough.  Two similar sample sets were made from a standard 

recipe and varied to provide a range for each of the four constituents under 

investigation.  From each sample set, a NIR reflectance spectrum from 1100 to 2498 nm 

at 2 nm increments was measured on 40 dough samples.  A total of, 78 spectra were 

recorded and divided equally into a calibration and test set.   

 

We define Y and f
Y to represent the matrices of the response variables while rows of 

X and f
X represent the NIR spectra for the calibration and validation sets respectively. 
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5.3.2 Parameter settings 

To apply various components in section 5.3, a range of parameters need to be defined 

for the: (i) adaptive wavelet algorithm (ii) Multivariate regression model and (iii) 

Metropolis search. 

5.3.2.1 Adaptive wavelet parameters 

Three parameters, m, q and J, need to be defined to implement the adaptive wavelets.  

Parameter J is the maximum number of recursive applications of the wavelet transform.  

Since it is unknown which wavelets are predictive, a large set of possible combinations 

of m, q and J are trialled.  Each set of adaptive wavelet parameters are repeated four 

times as the initial adaptive wavelet starting vectors, ui and v, are randomized. 

 

The range of values for m, q and J are limited by the sampling resolution of the 

spectrum.  At each iteration of the DWT, the signal size is reduced by a factor m, so 

maximum size of J is defined by the minimum positive integer value of Jn m . The 

number of sampling points n can be truncated to satisfy the integer requirement. 

Furthermore, the number of filter coefficients in the scaling function (and in the wavelet 

functions) is 1
f

N mq= + .  This places an addition limit on J where J

fn m N≥ .  

Abiding by these restrictions, in this study where n = 700, a range possible values for m, 

q and J are { } { } { }2, ,8 , 2, ,8  and 1, ,6… … … respectively.  As f
N  will become large for 

large values for m and q, which is impractical for small data sets, f
N was restricted to 

10≤ . 

5.3.2.2 Multivariate regression model settings 

Values for the parameters ,  and δH Q  from equations (5.7) and (5.8) need to be 

specified, as well as the hyperparameters j
ϖ for the prior distribution of ( )π γ . Since 

little information is known, vague priors are used. 

 

For Σ , let 3δ =  as this is the smallest integer value available so the expectation of Σ , 

( ) ( )2E δ= −Σ Q , exists. The scale matrix Q is chosen as rκ=Q I  with 0.05κ = , 

which is comparable in size to the expected error variances of the standardized Y given 

X.  With δ small, the choice of Q is not critical [16]. 
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Choice for H should reflect the knowledge that the B coefficients are locally correlated 

and smooth. A first-order auto regressive process with 2

,

i j

i jh σ ρ −=  was used for H, 

reflecting the prior knowledge and keeping H in a simplified form. Integrating 

,  and α Β Σ from the joint distribution given by (5.5), (5.6), (5.7) and (5.8) for the 

regression on the full non-wavelet-transformed spectra, with 0 and h →∞ =Β 0 (ie. only 

mean centering on X and SNV transformation [37] of Y)
 
results in:  

 

 
( ) ( )1 /2/2 1 /2 T 1

n rr r
f

δδ − + + −− + − −∝ K Q Y K Y  (5.21) 

where 

  

 T

n= +K I XHX  (5.22) 

 

With 0.05κ = and 3δ = , equation (5.21) is therefore a function, via H, of 2  and σ ρ .  

Values of 2 254 and 0.32σ ρ= = were derived by maximizing the type II likelihood [91] 

of equation (5.21). Once the H and the wavelet(s) W are chosen, T=H WHWɶ is 

calculated.  

 

Hyperparameters j
ϖ , for the prior binomial distribution of ( )π γ , were set to equal a 

constant value, 
jϖ ϖ= , across all values of { }1,..,j p∈ .  This assumes that, initially, it 

was unknown which wavelet coefficients would be predictive.  The value of ϖ  was 

chosen so that small subsets (ie. 'sγ with a small number of ones) would eventually 

dominate by having a higher likelihood.  This was chosen based on previous 

experiences [16] that good predictions can be done using 20 or so selected spectral 

points in similar regressions.  Hence, ϖ  in the prior for γ  was chosen so that the 

expected model size was 20.pϖ =  

5.3.2.3 Metropolis search settings 

The parameters for the Metropolis search φ  and iteration length were set to 1/2 and 

100,000 respectively. For the initial starting vector, 0 ,γ four positions were trialed over 

four different searches.  The starting vectors were (i) all even integer positions set to 

one, (ii) all odd positions set to one and (iii & iv) random sequences of ones derived 
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from a Bernoulli distribution with ( )Prob 1/ 2jγ = . Computation of ( )g γ  was done 

using the QR decomposition. 

5.3.3 Computation 

Model development was performed on a 2.4 GHz, dual quad core Intel computer with 

Windows XP as the operating system.  Matlab version 7 was used to implement the 

methodology and the Matlab Optimisation toolbox was used to optimize the adaptive 

wavelets. 

5.3.4 Analysis by previous methods 

For all the analyses reported, the spectral data and response variables were mean 

centered with respect to the calibration data set.  The responses were also scaled to give 

each of the variables unit variance in the calibration set.  This pre-processing the data 

does not influence the analysis of the previous methods, it only serves to simplify the 

prior specifications for the prior settings. 

 

Table 5.1 Mean squared errors of the validation set using six calibration methods 

Method Fat Sugar Flour Water 

SMLR 0.044 1.188 0.722 0.221 

Decision theory 0.076 0.566 0.265 0.176 

Wavelet decision theory 0.059 0.466 0.351 0.047 

Wavelet decision theory 

(Best model) 

0.063 0.449 0.348 0.050 

PLS 0.151 0.583 0.375 0.105 

PCR 0.160 0.614 0.388 0.106 

 

Osbourne et al. [90] used step-wise multiple linear regression (SMLR) on the individual 

constituents to form four calibrations. The mean squares of error (MSE) of the 

validation set is listed in Table 5.1.  The quoted MSE has been converted back to the 

original scale the calibration set. 

 

Brown et al. [92] fitted a multivariate Bayesian decision approach, row two in Table 

5.1, and later improved the method with the addition of a DWT using a Daubechies 
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four-tap filter (row three in Table 5.1) and a Bayes model averager [16]. The best 

individual model from [16] is shown in row four, Table 5.1. 

 

As a comparison to other standard methods, Brown et al. [16] derived calibrations using 

partial least-squares (PLS) and principle component regression (PCR), shown in rows 

five and six respectively of Table 5.1. 

5.4 Results and Discussion 

Coiflet, Daubechies and Meyer wavelets were trialed within the DWT Metropolis 

search algorithm, Table 5.2.  There was no universal best wavelet type or DWT level 

that catered for all of the constituents, as the different wavelets at different DWT levels 

resulted in varying performances for each separate constituent.  The best constrained 

stacking model mean squared error (MSE) for each constituent was 0.0322, 0.3404, 

0.1816 and 0.0292 for fat, sugar, flour and water respectively. These are more favorable 

than the previous methods documented in Table 5.1. 

 

Re-sampled constrained stacking (RCS) gave better predictive results than Bayes model 

averaging (BMA) for nearly all wavelet types which supports similar studies where 

BMA and stacking are compared [93].  Individual models in both the BMA and RCS 

models contained very few wavelet coefficients, with typically two to seven wavelet 

coefficients populating each Bayes regression, Figure 5.2.  Re-sampled constrained 

stacking used fewer models and wavelet coefficients in the ensemble resulting in 

simpler ensembles than BMA, Table 5.3. 

 

Re-sampling within the constrained stacking algorithm resulted in a more robust 

predictor, but with a more complex ensemble when compared to constrained stacking 

without re-sampling, Figure 5.3.  Constrained stacking with and without re-sampling 

were shown to lower MSE, however the re-sampling constrained stacking resulted in a 

substantially lower MSE for the validation set (table withheld).  The MSE for 

constrained stacking using Coiflet 1, level 4 was 0.100, 0.957, 0.579 and 0.047 for fat, 

sugar, flour and water respectively which is, for some constituents, almost double the 

MSE of the re-sampling constrained stacking, Table 5.2. 

Re-sampled constrained stacking (RCS) over the entire set of standard wavelets, i.e. 

using multiple standard wavelets, gave a prediction worse than most single wavelet 
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(type) RCS ensembles, where the predictive MSE for the multiple standard wavelet 

RCS ensemble was 0.112, 0.817, 0.414 and 0.064 for fat, sugar, flour and water 

respectively.  The decrease in performance for the multiple standard wavelet case is 

most likely due to the sheer number of individual models incorporated into the 

ensemble, near 10,000 in total.  This problem of an over excess of models in the 

ensemble transcends the initial regression problem. 

 

Adaptive wavelet RCS ensembles performed similarly to the standard wavelet types, 

Table 5.4, and with different adapted wavelet basis are better suited to different 

constituents.  Each of the RSC ensembles in Table 5.4 (each row) consisted of forty 

individual models which made the problem of forming a multiple wavelet RCS 

ensemble tractable.  Computation time for all of the standard wavelet models was 

approximately two hours and approximately six hours for all of the adaptive wavelet 

models. 

 

The joint adaptive wavelet re-sampled constrained stacking ensemble (JAWRCSE) 

resulted in predictive MSE values of 0.0385, 0.3245, 0.2105 and 0.0280 for fat, sugar, 

flour and water respectively.  This is currently the best single joint predictor for all the 

constituents and the best predictor for fat, sugar and water, with the Coiflet (1) level 1 

providing slightly better predictive MSE for flour.  The JAWRCSE provides a more 

accurate predictive ensemble than those formed from the adaptive wavelets sets listed as 

rows in Table 5.4, and the RCS ensembles derived from standard wavelets, Table 5.2. 

 

Overall there are 156 adaptive wavelet regression models in the resultant JAWRCSE, 

coming from all of the adaptive wavelet sets in Table 5.4, Figure 5.4.  Relatively few 

models are selected from each adapted set of wavelet parameters; however the 

JAWRCSE is far superior to ensembles formed from the adaptive wavelets sets listed as 

rows in Table 5.4. 
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Table 5.2 Re-sampled constrained stacking and Bayes model averaging (BMA) mean squared error 

of the validation data for each constituent using standard wavelets. 

DWT Constrained Stacking BMA 
Wavelet 

Level Fat Sugar Flour Water Fat Sugar Flour Water 

1 0.0432 0.3404 0.1816 0.0373 0.1969 1.0325 0.4967 0.0772 

2 0.0739 0.4011 0.2502 0.0401 0.2461 1.2431 0.6481 0.0934 

3 0.0723 0.3634 0.2224 0.0392 0.2733 1.2139 0.5133 0.0814 
Coifelt 1 

4 0.0774 0.4229 0.2470 0.0292 0.4150 1.0749 0.4318 0.0851 

1 0.0322 0.3664 0.2140 0.0402 0.1703 0.7201 0.3258 0.0858 

2 0.0500 0.5038 0.2749 0.0461 0.2275 1.4164 0.6303 0.1042 

3 0.0502 0.5387 0.3097 0.0505 0.2424 0.9878 0.4272 0.0758 
Coiflet 3 

4 0.0398 0.5846 0.3121 0.0642 0.2177 0.9798 0.3901 0.0621 

1 0.0463 0.4043 0.2315 0.0456 0.1843 1.2351 0.5523 0.0831 

2 0.0543 0.6352 0.4045 0.0635 0.2415 1.6753 0.7006 0.0806 

3 0.0657 0.5008 0.3050 0.0421 0.2899 0.9731 0.3867 0.0546 
Daubechies 2 

4 0.0644 0.3906 0.2398 0.0399 0.2270 0.9847 0.4722 0.0666 

1 0.0488 0.3413 0.1973 0.0384 0.2009 1.3859 0.6199 0.1024 

2 0.0569 0.4886 0.2233 0.0491 0.2150 1.1851 0.5007 0.0677 

3 0.0506 0.4185 0.2014 0.0468 0.2123 0.9537 0.3964 0.0680 
Daubechies 4 

4 0.0631 0.3566 0.1979 0.0528 0.2483 1.0164 0.4351 0.0597 

1 0.0429 0.3825 0.2399 0.0364 0.2010 1.2969 0.5650 0.0888 

2 0.0557 0.6300 0.4601 0.0426 0.2202 1.6131 0.9360 0.0900 

3 0.0701 0.5573 0.3615 0.0501 0.2332 1.3628 0.5873 0.0779 
dmey 

4 0.0579 0.5101 0.2932 0.0525 0.3475 1.0842 0.4045 0.0692 

 

Table 5.3 Number of models and wavelet coefficients used in the ensembles where constrained 

stacking resulted in the lowest predictive MSE for each constituent. 

Constrained Stacking BMA 
Constituent Wavelet 

 models  wavelets models  wavelets 

Fat Coifelt (3), level 1 341 344 500 407 

Sugar Coifelt (1), level 1 313 331 500 338 

Flour Coifelt (1), level 1 313 331 500 338 

Water Coiflet (1), level 4 312 332 500 417 

 

Table 5.4 Re-sampled constrained stacking mean squared error of the validation data for each 

constituent using adaptive wavelets. 

Constrained Stacking 
m q J 

Fat Sugar Flour Water 

4 2 2 0.0592 0.3718 0.2994 0.0246 

3 3 1 0.0856 0.8002 0.7073 0.0353 

2 4 2 0.0782 0.3859 0.3016 0.0315 

2 3 3 0.0517 0.4503 0.2689 0.0428 

3 3 2 0.0771 0.3870 0.2683 0.0385 
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Figure 5.2 Number of wavelet coefficients in best 500 Bayes regression models generated by the 

Metropolis search using Coiflet 3, level 1 as the DWT 

 

 

Figure 5.3 Constrained stacking ensemble weights for Coiflet (1) DWT level 4, (a) without 

resampling (b) with re-sampling 
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Figure 5.4 Constrained stacking ensemble weights for multiple adaptive wavelet combinations (a) 

without resampling (b) with resampling. Individual adaptive wavelet combinations (sets) 

corresponding to the rows in Table 5.4 are indicated in parenthesis  

 

 

Figure 5.5 Adapted wavelets from different wavelet parameters used in the JAWRCS ensemble 
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Figure 5.6 Adaptive wavelet weighting resulting from two independent models within an ensemble 

using a similar region of the spectrum.  An offset is added to one of the adapted wavelets for clarity 

 

Adapted wavelet ensembles in both Table 5.4 and the JAWRCS ensemble contain 

wavelets with varying wavelet characteristics that vary dependant upon position within 

the spectrum it is to be applied on, Figure 5.5.  It was also observed from the JAWRCS 

that those models with a high ensemble model weighting typically had similar 

optimized wavelets within the model, Figure 5.6.  This trend was observed for various 

wavelet filter lengths when a similar region of the spectrum was selected during the 

Metropolis Bayes regression search. 

 

5.5 Conclusion 

Re-sampled constrained stacking (RCS) ensembles, coupled with a discrete wavelet 

transform, a Bayes variable regression and a Metropolis search, were effective in 

producing predictive models for spectral data.  The choice of wavelet within the 

algorithm was important as different discrete wavelet transforms (DWT) give rise to 

different predictive performances.  There was no standard wavelet that resulted in the 

best RSC ensemble as was also the case with adaptive wavelets. 
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The use of the Bayes Metropolis search was useful in finding regions in the spectrum to 

use as starting points for the adaptive wavelet algorithm, however, the full usefulness of 

the Bayes posterior distributions approach were effectively nullified due to the 

optimization effect of the wavelets after the Bayes search.  Alternative simpler variable 

selection methods such as Random Forests [27] or Classification and Regression Trees 

[73] could be used to form the initial point for the adaptive wavelets. 

 

Joint adaptive wavelet RCS (JAWRCS) gave a single best multiple response ensemble 

with better predictive MSE than models using a single wavelet for feature extraction. 

The JAWRCS ensemble was composed of adapted wavelets derived from multiple sets 

of m, q and J.  The different wavelets in the JAWRCS ensemble did utilize different 

information within the spectrum as the various wavelets had different characteristics, 

(i.e. shapes) dependant on the position within the spectrum. 

 

A RCS ensemble using multiple standard wavelets did not result in a better ensemble 

compared to single standard wavelet RCS ensembles.  The most likely cause for the 

poor performance of the multiple standard wavelet RCS ensemble was due the large 

amount of models (more than the number of wavelengths in the original data) 

considered in the RCS ensemble.  This does not preclude the possibility that a 

permutation of standard wavelet DWT’s that would give a superior RCS ensemble 

exists, but that the number of permutations of standard wavelets to consider is 

prohibitive.  This is where adaptive wavelets have a definite advantage in that a large 

range of permutations of wavelet types can be tractably searched to produce a very good 

multiple wavelet, multiple response, RCS ensemble. 
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5.6 Summary 

Multiple adaptive discrete wavelet transforms were applied during a multiple regression 

of spectroscopic data for the purpose of investigating the hypothesis – does the use of 

different wavelets, at different points, within a spectrum, elucidate predictive capability.  

 

The model investigated was a constrained stacking regression ensemble with individual 

regression models chosen initially by a Bayes Metropolis search. The ensemble 

approach provided the ability to combine different regression models that used different 

types of wavelets.  Models were applied to a publically available dataset, pertaining to 

biscuit dough, of near infrared spectra, that were measured by a FOSS 5000, and 

laboratory measurements of the fat, flour, sugar and moisture content.  

 

The resultant model, which is referred to as a joint multiple adaptive wavelet regression 

ensemble (JMAWRE), was found to be the superior predictive model when compared to 

models that used standard wavelets as part of the regression ensembles. The JMAWRE 

was also superior when compared to other models from literature that used the same 

publicly available NIR dataset. 
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Chapter 6 

 

Binomial Tree Factorization of the Matrix Polynomial 

Product with Shift Orthogonal Matrices 

6.1 Introduction 

High multiplicity wavelets (HMW) have highly desirable characteristics in many areas 

of signal analysis such as compression [7], noise reduction [7] and feature extraction [8, 

71, 72].  However, due to the complexity of constructing high multiplicity wavelets, 

they are rarely applied with preference given to the simpler two banded wavelet. 

 

The theory of HMW is well documented and several approaches to generate HMW have 

been derived, the primary algorithms being Sweldons Lifting [78], Vaidyanathan’s 

quadrature mirror filter banks [79] and Kautsky’s matrix polynomial product [17]. All 

three algorithms rely on the Z-transform of the polyphase wavelet matrix [7] but of the 

three algorithms, Kautsky’s method can be reformulated into conventional matrix 

nomenclature with the inclusion of the matrix polynomial product.  We investigate the 

use of the matrix polynomial product, as used by Kautsky, to further simplify generating 

high multiplicity wavelets. 

6.2 Theory 

The matrix polynomial product can be defined in both the standard matrix nomenclature 

and in the Z-transform notation. Initially both methods are defined, with a focus on the 

standard matrix notation to be used later on. The Z-transform will be used to assist 

defining the meaning of the matrix polynomial product. 

 

Using standard matrix notation, the matrix polynomial product between two matrices 

( )0 1 q
=A A A A…  and ( )0 1 p

=B B B B… , that consist of square m by m sub-matrices is 

 

 ( )0 1 p q+= = ◊C C C C A B…  (6.1) 

 

with the m by m sub-matrices of C  defined by 
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j j k k

k

−=∑C A B  (6.2) 

 

The polynomial product is more readily seen using the Z-transform. We let 

( ) ( )0 1 qz z zℑ =
0 1 q

A A A A…  represent the Z-transform of the poly-phase matrix A  [7].  

The Z-transform of eqn. (6.1) is 

 

 ( ) ( ) ( )( )0 1 0 1q pz z z z z zℑ = ℑ ◊ =
0 1 q 0 1 q

C A B A A A B B B… …  (6.3) 

 

Upon expansion and equating the powers z  in eqn. (6.3), we obtain the poly-phase 

form of C  

 

 ( ) j j k k j

j j j k k j k k

j j

z z z z−
− −ℑ = = =∑ ∑C C A B A B  (6.4) 

 

The inverse Z-transform of eqn. (6.4) gives eqn. (6.2). 

 

Now we wish to focus on the creation of a matrix ( )0 1 q
=W W W W…  where the m by 

m sub-matrices satisfy the shift orthogonality conditions [17] 

 

 *

,0

0

, 0,1, ,
q k

j j k k

j

k qρδ
−

+
=

= =∑W W I …  (6.5) 

 

where *

iW  denotes the conjugate transpose of iW  and ,0kδ  is the Kronecker delta. This 

means that rows of W  all have the same norm, ρ , are orthogonal to each other and 

orthogonal to themselves when shifted by a multiple of m.   Matrices of this form are 

generally referred to as m-banded quadrature mirror filter banks [7], which are used 

extensively in signal processing and wavelet analysis. 

 

Matrices with shifted orthogonality conditions can be factorized into a series of linear 

factors (symmetric projections), iP , using the matrix polynomial product [10, 17, 94]. 
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 ( ) ( ) ( )1 1 2 2 q q= ◊ ◊ ◊ ◊W H P P P P P Pɶ ɶ ɶ…  (6.6) 

 

 ( )1

q

j j j== ◊W H P Pɶ  (6.7) 

 

where i i= −P I Pɶ  is the complement symmetric projection to iP  and H is an unitary 

matrix.  The multiple matrix polynomial product term, ( )1

q

j j j=◊ P Pɶ  in eqn. (6.7), leads 

to a binomial tree representation for eqn. (6.6), which will be shown in section 5.3. 

6.3  Expansion of the multiple matrix polynomial product 

Let ( )0 1 2 3=W W W W W so that the multiple matrix polynomial product is 

 

 ( ) ( ) ( ) ( )3

1 1 1 2 2 3 3j j j== ◊ = ◊ ◊ ◊W H P P H P P P P P Pɶ ɶ ɶ ɶ  (6.8) 

 

upon expansion the jW terms are given as 

 

 
( )
( )

0 1 2 3

1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3

=

= + +

= + +

=

W HP P P

W H P P P P P P P P P

W H P P P P P P P P P

W HP P P

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 

 

This can be re-expressed as 

 

 
{ }

{ }

{ }

0

3

1

1

2 3

2

1 1 ,

1 2 3

3

1 1 1 , ,

j

j

i j

i j i

i k j

i k i j i k

i k z j

i k i z k j i k z

∈Θ

= ∈Θ−

= = + ∈Θ−

= = + = + ∈Θ−

=

=

=

=

∏

∑ ∏

∑∑ ∏

∑∑ ∑ ∏

W H P

W H P P

W H P P P

W H P P P P

ɶ

ɶ ɶ

ɶ ɶ ɶ
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where { }1,2,3Θ = and 
{ }0

j

j∈

=∏ P I .  The ordering priority of iP  still exists, however, for 

ease of interpretation and printability we have relaxed the order but the innermost 

summation can still be expanded using conventional notation by including multiple 

product summations.   

The reasoning for this notation is so that higher jW  terms can be iteratively expressed 

in terms of iW  where i j< .  An example given for 1W . Let 0 0 j

j∈Θ

= =∏W K P then 

{ }

( )
{ }

{ } { }

{ }

( )

3

1

1

3

1

3 3

1 1

3 3

1 1

1 0

;

3

i j

i j i

i j i i

i j i

j i j

i ij i j i

j j

i ij i j

= ∈Θ−

= ∈Θ−

= =∈Θ− ∈Θ−

= =∈Θ− ∈Θ

=

 
= − = −  

 

 
= −  

 

 
= −  

 
= −

∑ ∏

∑ ∏

∑ ∑∏ ∏

∑ ∑∏ ∏

W H P P

H I P P P I P

H P P P

H P P

H K K

ɶ

ɶ

 

where 
{ }

3

1

1

j

i j i= ∈Θ−

=∑ ∏K P . Similarly ( )2 1 02 3= − +2W H K K K , with 

{ }

2 3

2

1 1 ,

j

i k i j i k= = + ∈Θ−

=∑∑ ∏K P .  

If ( )0 1 q=W W W W… , then ; 1, 2, ,j j q=W … can be expressed as 

 

 ( ),0 ,1 1 , , 0j j j j j j n j n j ja a a a− −= + + + + +W H K K K K… …  (6.9) 

where 

 
{ }1 2 1 3 2 1 1 2

1 2 3

1 1 1 1 , , ,j j j

q n q n q n q

n j

i i i i i i i j i i i−

− + − + − +

= = + = + = + ∈Θ−

= ∑ ∑ ∑ ∑ ∏K P
…

…  (6.10) 

and 

 ( ), 1
n

j n

q j n
a

n

− + 
= −  

 
 (6.11) 

Proof: 

For ( )0 1 q=W W W W… , the j
th

 term can be expressed as 
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{ }

1 2

1 2 1 3 2 1 1 2

1 2 3

1 1 1 1 , , ,
j

j j j

q j q j q j q

j i i i k

i i i i i i i k i i i−

− + − + − +

= = + = + = + ∈Θ−

 
 =
 
 
∑ ∑ ∑ ∑ ∏W H P P P P

…

ɶ ɶ ɶ… …  (6.12) 

 

The parenthesis component of (6.12) can be expanded using i i= −P I Pɶ  

 

 ( )( ) ( )
{ }

1 2

1 1 1 2

1

1 1 , , ,
j

j j j

q j q

i i i k

i i i k i i i−

− +

= = + ∈Θ−

− − −∑ ∑ ∏I P I P I P P
…

…… …  (6.13)  

 
{ }

2 1 2 1 2

1 1 1 2

1

1 1 , , ,
j j

j j j

q j q

i i i i i i i i k

i i i k i i i−

− +

= = + ∈Θ−

 = − − − + + + ∑ ∑ ∏1
I P P P P P P P P P

…

… … … …   

 

{ }

{ }

{ }

{ }

1 1 1 2

2

1 1 1 2

1 2 1 3 1

1 1 1 2

1 2

1 2

1

1 1 , , ,

1

1 1 , , ,

1

1 1 , , ,

, , ,

j j j

j

j j j

j j

j j j

j

j j

q j q

k

i i i k i i i

q j q

i i i k

i i i k i i i

q j q

i i i i i i k

i i i k i i i

i i i k

i i k i i i

−

−

−

−

− +

= = + ∈Θ−

− +

= = + ∈Θ−

− +

= = + ∈Θ−

= ∈Θ−

=

 + − − − 

 + + + 

+ +

∑ ∑ ∏

∑ ∑ ∏

∑ ∑ ∏

∏

1

I P

P P P P

P P P P P P P

P P P P

…

…

…

…

…

… …

… …

… … …

1 1

1

1 1j

q j q

i −

− +

= +
∑ ∑

 (6.14) 

 

 

{ }

{ }

{ }

0
1 1 1 1

1
1 1 1 1

2
1 1 1 1

0 1 1

1 1 1 1 , ,

1 1 1

1 1 1 1 , ,

1 1

1 1 1 , ,

n n j j j w

n n j j j w

n n j j j w

j

q j q j n q

j

w i i i i i j i i

j

q j q j n q

j

w i i i i i j i i

q j q j n q

j

i i i i i j i i

− −

− −

− −

 
 

− + − + + 

= = = + = + ∈Θ− + Ω

 
 

− + − + + 

= = = + = + ∈Θ− + Ω

− + − + +

= = + = + ∈Θ− + Ω

=

−

+

∑ ∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∏

∑ ∑ ∏

P

P

P

…

…

…

… …

… …

… …

( )
{ }

( )
{ }

1 1 1 1

1 1 1 1

2

1

1 1

1 1 1 1 , ,

1 11

1 1 1 1 , ,

1

1

n
n n j j j w

j
n n j j j w

j

w

j

n q j q j n q
n

j

w i i i i i j i i

q j q j n q
j

j

w i i i i i j i i

− −

− −

 
 
 

=

 
 

− + − + + 

= = = + = + ∈Θ− + Ω

− + − + +

= = = + = + ∈Θ− + Ω

+ + −

+ + −

∑ ∑

∑ ∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∏

P

P

…

…

… … …

… … …

 (6.15) 
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where n

wΩ  is a cyclic set of the 
j

n

 
 
 

permutations containing n elements of the indices 

; 1, ,ki k j= … , and 0 n j≤ ≤ . For brevity, we introduce j

nZ  represent the term 

containing n permutations of the q P  matrices.  

 

 ( )0 1

j j j

j j= + + +W H Z Z Z…  

 ( )
{ }1 1 1 1

1 1

1 1 1 1 , ,

1
n

n n j j j w

j

n q j q j n q
nj

n j

w i i i i i j i i− −

 
 

− + − + + 

= = = + = + ∈Θ− + Ω

= − ∑ ∑ ∑ ∑ ∏Z P
…

… …  (6.16) 

In j

nZ  there are 
j q

n j

  
  
  

 elements and 
q

j n

 
 − 

 components in set { }1, , n

j wi iΘ− + Ω… .  

Also the union of the 
j

n

 
 
 

 sets of  { }1, , n

j wi iΘ− + Ω…  is equal to { }1, , j ni i −Θ− …  - 

which corresponds to j n−K .  Additionally, due to the cyclic permutation set n

wΩ , the 

elements in { }1, , j ni i −Θ− …  are repeated equally across the sets { }1, , n

j wi iΘ− + Ω… . 

Thus, j n−K is repeated 
j q q q j n

n j j n n

− +      
=      −      

 times in j

nZ . So 

 

 ( ) ,1
nj

n j n j n j n

q j n
a

n
− −

− + 
= − = 

 
Z K K  (6.17) 

hence  

( ),0 ,1 1 , , 0j j j j j j n j n j ja a a a− −= + + + + +W H K K K K… …  

 

Analyzing eqn. (6.10), nK is equal to the n
th

 row sum of the binomial tree formed by the 

iP  matrices.  

6.4 Example 

Consider the case where ( )0 1 2 3=W W W W W  so that q equals three and 

( )3

1j j j== ◊W H P Pɶ .   The binomial tree for this example is given in Figure 6.1. 
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Figure 6.1 Binomial tree expansion of the projection matrices Pi used to construct the Kn matrices. 

 

Now 
n

K  is the row sum of the n
th

 level (the root node is n=q) and using eqn (6.11) to 

calculate 
,j n

a  we have: 

 

0 1 2 3

1 1 2 1 3 2 3

2 1 2 3

3

=

= + +

= + +

=

K P P P

K P P P P P P

K P P P

K I

 (6.18) 

And: 

 
( )
( )
( )

0 0

1 1 0

2 2 1 0

3 3 2 1 0

3

2 3

2 3

=

= −

= − +

= − + −

W HK

W H K K

W H K K K

W H K K K K

 (6.19) 

6.5 Conclusion 

By investigating the properties of the multiple matrix polynomial product on matrices 

comprising of square symmetric projection matrix with its complement, we have 

developed simple recursive algorithm utilizing a binomial tree to construct m-banded 

quadrature mirror filter banks.  

 

This binomial tree structure for generating adaptive wavelets is more readily understood 

given the familiarity of the binomial theorem in the scientific community.  This then 

enables a wider audience the ability to generate computer code for the binomial tree 

factorisation, which is relatively simple compared alternative algorithms such as 

Lifting, Qraduature Mirror filter Banks and the original formulation of matrix polyphase 

multiplication. 

I
 

1
P  

2
P  

3
P  

1 2
P P  

1 3
P P  

2 3
P P  

1 2 3
P P P  
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Chapter 7 

 

Conclusion 

The Discrete Wavelet Transform (DWT) is a valuable tool for improving descriptive 

modelling of juxta-positional data, such as near infrared (NIR) spectra or SELDI-TOF 

mass spectra.  A key factor in the application of DWT is wavelet basis selection.  

Selecting the correct wavelet basis, or wavelet bases, results in superior models 

compared to using a wavelet based upon convenience or random guessing.  Adaptive 

wavelet generation algorithms can be used to target appropriate wavelets for the 

modelling process at hand. 

 

Use of adaptive wavelet algorithms by the spectroscopic community has been scarce 

with very few applications appearing in literature.  Reasons why adaptive wavelets have 

not been widely adopted include a perceived increase in model complexity and a 

general unfamiliarity with wavelet basis selection.  In order to increase the use of 

adaptive wavelet algorithms within the spectroscopic community, this thesis 

investigated five key aspects of adaptive wavelet basis selection for spectroscopic data 

analysis: 

6. Integration of adaptive wavelets with modern data analysis techniques 

7. Generation of adaptive wavelet optimisation criteria for the four main types of 

data modelling: experimental design analysis, unsupervised classification, 

supervised classification and regression analysis. 

8. Automation of adaptive wavelet parameter selection 

9. Investigation of feature heterogeneity within in a spectrum by using both 

adaptive and standard multiple wavelets and, 

10. Generation of adaptive wavelets using a simplified binomial tree algorithm 

7.1 Integration of adaptive wavelets 

A wide range of current modern data analysis techniques were integrated with adaptive 

wavelets in Chapters 2, 3 and 5.  Techniques illustrated in this thesis include: 

• Penalised Discriminate Analysis (PDA) – Chapter 2 

• Random Forests (RF) – Chapter 2 

• Principal component analysis (PCA) – Chapter 3 
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• Gaussian Mixture Models (GMM) – Chapter 3 

• Multivariate Regression – Chapter 5 

• Stacking – Chapter 5 

 

In Chapters 2 and 3, a relatively straight forward method was used to integrate adaptive 

wavelets with each of the respective data analysis techniques. A single superlative 

adaptive wavelet was chosen and applied to the NIR spectrum to produce wavelet 

coefficients (extracted features) which were subsequently used as input for a traditional 

data analysis technique. 

 

A superlative adaptive wavelet was chosen from a set of optimised adaptive wavelets 

which were initially random wavelets with different adaptive wavelet parameters.  The 

random wavelets were updated to maximise an optimisation criteria.  The adaptive 

wavelet with parameters corresponding to the highest value from the optimisation 

process was chosen as the superlative wavelet. 

 

In both Chapters 2 and 3, model performance was enhanced by integrating a single 

superlative adaptive wavelet with the respective analysis technique.  In Chapter 2, a 

repeated measures experimental design of wine gape homogenates was analysed via 

measuring the correct classification rates of penalised discriminate analysis (PDA), 

multiple adaptive regression splines (MARS) and random forests (RF), with and 

without prior transformation using the adaptive discrete wavelet transform (ADWT).  

The correct classification rates for all methods were substantially improved by the use 

of the ADWT compared to standard wavelets and traditional pre-processing methods 

such as the SNV transform. 

 

Chapter 3 demonstrated an unsupervised clustering example of NIR spectra.  A single 

superlative adaptive wavelet combined with Gaussian Mixture Models (GGM) were 

used to elucidate unknown clustering within the data.  The number of clusters was 

consistent when using adaptive wavelets with high optimisation scores, whereas with 

standard wavelet types, the number of clusters varied depending on which standard 

wavelet was used. 
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The method of integrating a single, superlative adapted wavelet is relatively simple and 

enhances traditional NIR data analysis methods.  Chapter 5 employed an alternative 

strategy for adaptive wavelet integration where the optimisation of the wavelets is a part 

of the analysis method rather than a strictly pre-treatment method such as in Chapters 2 

and 3. 

 

Chapter 5 illustrated how adaptive wavelets can be integrated with chemometric 

methods that have stochastic components such as variable selection and regression 

coefficient determination.  Due to the stochastic nature of the methods being integrated 

with adaptive wavelets, an iterative approach was used to integrate adaptive wavelets 

with the chosen chemometric method.  In Chapter 5, adaptive wavelets were combined 

with Baysian multivariate regression. 

 

The method employed to combine Baysian multivariate regressing with adaptive 

wavelets in Chapter 5 was to apply a random wavelet basis to the data and perform a 

stochastic regression model search to identify predictive models that contain a small 

number of wavelet coefficients.  The wavelet coefficients, typically less than five, were 

then jointly optimised by allowing assigning an adaptive wavelet to each wavelet 

coefficient.  This iterative method differs substantially from that used in Chapters 2 and 

3 where the optimisation of the wavelet basis contains all wavelet coefficients. 

 

A joint optimisation approach was used in Chapter 5 because the stochastic regression 

model search identifies important interrelationships between the wavelet coefficients 

rather than important individual wavelet coefficients.  A less predictive regression 

model was generated when wavelet coefficients are optimised individually compared to 

joint optimisation or even to the initial random wavelet. 

 

The iterative approach of integrating adaptive wavelets in Chapter 5 is better suited to 

chemometric methods that contain heuristics which use very few variables, such as tree 

based methods or variable selection algorithms.  The pre-treatment method used in 

Chapters 2 and 3 is better adapted to projection based chemometric methods that utilise 

all available variables (wavelet coefficients) simultaneously; methods like principal 

component analysis and partial least squares. 
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7.2 Adaptive wavelet optimisation criteria 

The optimisation criteria used for adaptive wavelets typically mimic the role of the 

chemometric method which the adaptive wavelets are being integrated with.  Three 

adaptive wavelet criteria were presented in this thesis representing optimisation criteria 

that can be used for experimental design analysis, unsupervised classification, 

supervised classification and regression applications. 

 

In Chapter 2, the optimisation criteria was designed to generated wavelet coefficients 

that maximise differences in NIR spectra that are associated with an experimental 

design.  This was achieved with the optimisation criteria based on the two largest 

eigenvalues of the matrix product between the inverse within group covariance matrix, 

1

w

−Σ , and the between group covariance matrix, 
B

Σ .  Using two eigenvalues was 

important from information mapping perspective as two dimensions facilitate maximum 

group separation with a minimum of within group variation. 

 

The optimisation criteria used in Chapter 2 is very versatile as 
B

Σ  can be adapted to 

reflect supervised classification applications.  For supervised classifications 
B

Σ is 

derived from the known groups.  A simple modification can also be used for 

unsupervised classification, where, in Chapter 3, the optimisation criterion was to 

maximise the two largest eigenvalues of the covariance matrix of the discrete wavelet 

transformed spectra.  This criterion resulted in wavelet coefficients that contained the 

largest amounts of variations from the spectra. 

 

The optimisation criteria in Chapters 2 and 3 are not dependent on the modelling 

procedure used after application of the DWT.  So, while the optimisation criteria in 

Chapters 2 and 3 reflect the modelling method, it is not dependent on the modelling 

method.  Chapter 5 on the other hand, the optimisation criteria was dependant on the 

modelling method. 

 

In Chapter 5 the optimisation criterion was to minimise the mean squared error (MSE) 

of prediction of a regression model.  To determine the MSE associated with particular 

wavelet coefficients (or wavelets), a regression model needed to be constructed and the 
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MSE evaluated.  In this way the optimisation of the adaptive wavelets is totally 

dependent on the modelling method. 

 

A result of the dynamic relationship between the wavelet parameters and modelling 

methods is that there are no convenient mathematical properties of the wavelet 

transformed spectra, such as eigenvalues, which can be used as an optimisation 

function.  The optimisation criteria used in Chapter 5 was a lazy function.  A lazy 

function simply computes the score to evaluate the effectiveness of the current state.  

Optimisation of lazy functions is quite simple where the current state is perturbed then 

re-evaluated to determine partial derivatives required to optimise parameters. 

 

Optimisation of lazy functions can lead to localisation, or sub-optimal results, and are 

generally slower than functions with more mathematical structural form.  Localisation is 

not much of a problem as it can be mitigated by changing perturbation step sizes and/or 

initial starting values, as was done in the optimisation algorithms used in Chapter 5. 

 

This thesis demonstrated how simple mathematical properties of the discrete wavelet 

transformed data, like eigenvalues, can be utilised as optimisation criteria.  This type of 

optimisation criteria mimics the role of subsequent modelling but is independent of the 

modelling method.  When it not possible to decouple the adaptive wavelet optimisation 

criteria from the modelling method, a lazy approach can be taken which evaluates the 

goodness of fit of the wavelet coefficients jointly with the modelling method.  The lazy 

approach makes generating optimisation criteria extremely easy, but at the expense of 

speed and optimisation complexity. 

7.3 Adaptive wavelet parameter selection 

The adaptive wavelet algorithm investigated in this thesis has three parameters, m, q and 

J, along with a set of q + 1 unit length vectors, each containing m – 1 elements.  The 

parameter m defines the number of bands used in the DWT, q defines the length of the 

wavelet, J is the number of iterations (or level) of the DWT and the q + 1 vectors define 

the wavelet filter coefficients (wavelets) used for the DWT.  During the adaptive 

wavelet algorithm, m, q and J are fixed and the q + 1 vectors are updated to optimise 

some predefined criteria. 
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Methods for selection of the adaptive wavelet parameters in Chapters 2 and 3 are very 

similar where a single set of adaptive wavelet parameters were ultimately chosen, 

whereas is Chapter 5 an ensemble of adaptive wavelet parameters was used.  In 

Chapters 2, 3 and 5, the parameters m, q and J were very influential on the resulting 

adapted wavelets.  In contrast the initial choice of the q + 1 vectors was not critical in 

Chapters 2 and 3, but was important in Chapter 5. 

 

In Chapters 2 and 3 the q + 1 vectors were initially randomised then updated to optimise 

the specified optimisation criteria in each chapter respectively.  The initial staring 

position of vectors was not critical as several randomised starting positions typically 

converge to produce similar wavelet filter coefficients.  This result is more an effect of 

modern optimisation routines as most optimisation routines check for localised 

minimums/maximums by introducing large perturbations then re-optimising the system.  

In effect, the optimisation routines used create many initial starting positions 

themselves, which makes the initial randomised starting vectors defined by the user less 

critical than previously thought. 

 

Parameter selection of m, q and J in Chapters 2 and 3 was the critical component that 

determined the performance differences in the adaptive wavelet algorithm.  In Chapter 

2, a superlative set of parameters was chosen by trialling a set of parameters.  The 

parameter set with the highest adapted wavelet optimisation criteria was selected as the 

superlative set.  Chapter 3 used a similar approach with a single set of adaptive wavelet 

parameters being chosen by trialling approximately seventy sets of adaptive wavelet 

parameters.  However in Chapter 3, the superlative set was chosen not by the 

optimisation criteria, but by using the Bayes Information Criteria (BIC) of the Gaussian 

Mixture Model (GMM) that the DWT data was applied to.  In using the BIC, the 

superlative set of adaptive wavelet parameters produces the most informative GMM; 

which is not necessarily the same set of parameters with the best optimisation criteria 

score. 

 

Chapter 2 illustrated how the optimisation criteria alone can be used to select the 

adaptive wavelet parameters while Chapter 3 demonstrates how a goodness of fit of the 

resulting model can appropriately select the wavelet parameters.  In both Chapters 2 and 
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3, the critical parameters were m, q and J.  These parameters were also important in 

Chapter 5 as well as the initial selection of the q + 1 vectors. 

 

In Chapter 5 the initial random the q + 1 vectors was used to determine sets of wavelet 

coefficients for regression models and the wavelet coefficients were subsequently 

jointly optimised.  Choice of the initial random the q + 1 vectors influenced which sets 

wavelet coefficients was selected.  Changing the initial set of starting the q + 1 vectors 

lead to different sets of wavelet coefficients being selected; and ultimately a different 

adapted wavelet regression model.  Because of the dependence on the initial the q + 1 

vectors, multiple randomised starting positions were used for each set of m, q and J 

parameters. 

 

Adaptive wavelet parameter selection in Chapter 5 was dependent on the full set of 

adaptive wavelet parameters.  Additionally, the adaptive wavelet parameters used 

greatly influenced which wavelet coefficients were selected in subsequent regression 

modelling.  Here, the wavelet parameters can be viewed as another stochastic 

component in the modelling process.  So rather than chose a single set of wavelet 

parameters, like in Chapter 3, a stochastic approach was taken that used all of the 

trialled adaptive wavelet parameters simultaneously. 

 

A re-sampled stacked ensemble was used to amalgamate and weight all the models 

adapted from the various trialled adaptive wavelet parameters.  Using the ensemble 

approach, individual regression models with varying adaptive wavelet parameters were 

identified as being more important than other regression models with different adaptive 

wavelet parameter sets and initial starting (vector) positions.   

 

Some sets of m, q and J resulted in more predictive models which could serve as a guide 

to further improvements for parameter selection.  For example, trialling more random 

starting q + 1 vectors with m, q and J parameters that have a higher proportion of 

predictive models in the ensemble.  Using an ensemble approach in Chapter 5 made 

prior selection of adaptive wavelet parameters less of a critical issue than in Chapters 2 

and 3. 
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7.4 Multiple wavelets 

Chapters 4 and 5 investigated homogeneity of underlying signals in spectra by using 

multiple wavelets.  Multiple standard wavelets were used in Chapter 4 for a supervised 

classification case study of SELDI-TOF mass spectra, whereas in Chapter 5 both 

multiple standard wavelets and adaptive wavelets were applied in a NIR multivariate 

regression example.  In both Chapters 4 and 5, using multiple wavelets improved the 

quality of data analysis compared to using a single wavelet. 

 

Using multiple wavelet bases in both Chapters 4 and 5 posed a problem of generating an 

excessive amount of extracted features.  Each wavelet generates p wavelet coefficients, 

so x wavelets will generate xp wavelet coefficients.  Because of this expansion effect, 

data reduction methods were an integral part in the application of multiple wavelets.  In 

Chapter 4 data reduction heuristics were used while ensemble methods were applied in 

Chapter 5. 

 

Chapter 4 combined wavelet coefficients from six standard wavelets, composed of two 

types of Daubechies, Coiflets and Symmlets wavelets, applied to mass spectral (MS) 

profiles consisting of 15154 SELDI-TOF M/Z ratios from 342 patients; which were 

diagnosed with malignant prostate cancer, benign prostate hyperplasia or as healthy.  

Each application of the DWT produced 15154 wavelet coefficients.  In applying the six 

different standard wavelets, 90924 wavelet coefficients were produced.  The number of 

wavelet coefficients resulting from using multiple wavelet bases greatly exceeds the 

number of samples.  A variety of data reduction techniques were applied to the multiple 

wavelet coefficients before data analysis using Classification and Regression Trees 

(CART). 

 

Simple heuristics, pair-wise t-test and then the variable importance (VIP) list used in 

Random Forests, were used to reduce the large number of wavelet coefficients to a 

much smaller, predictive set.  Simple random forests, consisting of trees with four or 

five branches, were then iteratively generated on the wavelet coefficients from the t-

tests.  Classification and Regression Trees using wavelet coefficients from multiple 

standard wavelets produced more favourable models than those produced with a single 

wavelet basis.  This outcome gave some evidence to support the hypothesis that the 
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localised information embedded in the MS data is better approximated by different 

wavelets at different positions along the spectrum. 

 

Scope of the standard wavelets used in Chapter 4 was limited to small subset of the of 

the three most commonly used wavelet families, Daubechies, Symlets and Coiflets.  

This limited sub-set of wavelets did illustrate that using multiple wavelet transforms at 

different positions along the spectrum does improve the performance of the modelling 

process compared to using a single wavelet. 

 

Chapter 5 used both multiple standard wavelets and multiple adaptive wavelets in a 

multivariate regression example.  As in Chapter 4, using multiple wavelets increased 

multiplied the number of wavelet coefficients so that some form of variable reduction 

was necessary.  In Chapter 5 a Metropolis-Hastings search was used to produce 

numerous sparse regression models, which effectively reduced the number of wavelet 

coefficients. 

 

The Metropolis-Hastings search generated many potentially useful regression models.  

Rather than select a single model, an ensemble of all potential models was formed using 

re-sampled constrained stacking.  Re-sampled constrained stacking was useful in 

determining how regression models from different wavelets compare with one another. 

 

In Chapter 5, using multiple standard wavelets did not improve model performance 

compared to models derived from a single standard wavelet.  Re-sampled constrained 

stacking (RCS) over the entire set of standard wavelets, i.e. using multiple standard 

wavelets, gave a prediction worse than most single wavelet RCS ensembles.  The 

decrease in performance for the multiple standard wavelet case is most likely due to the 

sheer number of individual models incorporated into the ensemble, near 10,000 in total. 

 

The problem of an over excess of models in the ensemble transcends the initial 

regression problem, which subsequently favoured the single wavelet case.  This does 

not preclude the possibility that a permutation of standard wavelet DWT’s would give a 

superior RCS ensemble, but that the number of permutations of standard wavelets to 

consider is prohibitive.  This is where adaptive wavelets have a definite advantage over 

standard wavelets where a large range of permutations of adaptive wavelet types can be 
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tractably searched to produce a very good multiple wavelet, multiple response, RCS 

ensemble. 

 

Ensembles using multiple adaptive wavelets, derived from a single set of adaptive 

wavelet parameters, performed very comparably to the best of the standard single 

wavelet model ensembles.  However, an ensemble using multiple adaptive wavelets that 

span multiple adaptive wavelet parameters was superior to any of the single standard or 

adaptive wavelet ensemble models.  The different wavelets in the superior multiple 

adaptive wavelet ensemble utilized different information within the spectrum as the 

various wavelets had different characteristics, (i.e. shapes) dependant on the position 

within the spectrum. 

 

Using multiple wavelet transforms in Chapters 4 and 5 supports the supports hypothesis 

of homogeneity of underlying signals within the spectrum.  Multiple wavelet transforms 

can be used to improve feature extraction leading to gains in model development. 

7.5 Binomial tree algorithm for adaptive wavelets 

The Pollen factorisation of m–banded discrete wavelet transformed (DWT) was 

reformulated into a binomial tree algorithm in Chapter 6.  Optimised wavelets produced 

the binomial formulation were identical to the previous Pollen factorised method.  By 

recasting the adaptive wavelet algorithm in to a more widely familiar theory, it is 

envisioned that more independent groups can produce computer code utilising adaptive 

wavelet in new chemometric research. 

7.6 Future considerations 

Many of the methods presented in Chapters 2 – 5 are computationally intensive and 

involve at least one optimisation component.  To this end, additional validation 

techniques could be used to increase the robustness and generalisation of the proposed 

methods.  Validations techniques that could be used are (a) the use of independent 

validation, training and/or calibrations data sets (b) cross validation methods and (c) 

bootstrapping.  These validation methods could be used to assist in the selection of the 

adaptive wavelet parameters, m, q and l, band selection and finally model development. 
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Other possible avenues for subsequent investigation in the topic of adaptive wavelet 

transforms for spectroscopic analysis include extending the methods outlined in Chapter 

5, which was a regression application, to the areas of unsupervised and supervised 

classification as well as the analysis experimental designs.  Another avenue of research 

is in the optimisation of adaptive wavelets. 

 

During this thesis, the issue of which parameters to use for the adaptive wavelet 

algorithm arose in every chapter.  A numerical, but brute force, approach was adopted 

in the latter chapters however a less computative solution exists in the phase forms of 

wavelets themselves. 

 

Adaptive wavelets with a small number of wavelet filter coefficients are a sub-set of 

their longer counterparts; provided they both have the sample multiplicity (same 

number of m-banded wavelets).  This means that when a portion of the spectrum has 

been analysed by a particular adaptive wavelet, then the simplex of higher order 

wavelets is effectively reduced.  This approach would reduce the number of 

permutations for the ADWT parameters required and lessen the search time/space.  The 

branching across ADWT parameter sets is then also possible; which would be useful 

when one set of parameters has identified a useful portion of the spectrum then further 

optimisation (at the same position in the spectrum) across different ADWT parameter 

sets would be possible – reducing the need to trials so many initial ADWT parameters. 
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Appendix 1 Equation Chapter  1 Section 1 

 

Beer-Lambert-Bouguer Law of Absorption 

The macroscopic description optical absorption is defined as: the decrease in intensity 

of a light beam per unit path length at a given position, z, in the absorbing medium is 

proportional to the instantaneous value of the intensity at that position: 

 

 
( ) ( ) ( ) ( )

dI z
z c z I z

dz
ε− =  (A1.1) 

 

Where ( )I z is the instantaneous intensity of the light beam at position z, ( )zε is the 

specific absorptivity at z, and ( )c z is the concentration of the absorbing medium at z. 

 

For real media, composed of independent absorbing centres (molecules), Eqn (A1.1) is 

only valid if (i) the size of  the absorbing molecules in  the solution is negligible with 

respect to the wavelength of the monochromatic light ( )iλ (ii) the number of molecules 

in solution is large enough to permit the definition of a statically meaningful mean 

concentration of molecules per unit volume (iii) that a single molecular species is 

absorbing the light and (iv) the specific absorptivity, ( )zε , is isotropic; meaning the 

probability of (the mean) light absorption is invariant to the polarization of the light 

beam. 

 

The concentration of the medium is dependant on two main factors (1) temperature and 

(2) state of the medium.  Temperature plays a critical role as, when in a state of 

equilibrium, the distribution of the number of molecules occupying the i
th

 energetic state 

follows the Boltzmann distribution: 

 

 ( )exp /
upper

lower

N
E kT

N
= −∆  (A1.2) 
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Where Nlower
 
and Nlower is the number of molecules occupying the different energy 

states, upper lowerE E E∆ = − , T is the temperature in degrees Kelvin, k is Boltzmann’s 

constant: 23 11.38 10 JK− −× .  If the temperature were to increase, then where would be 

more molecules occupying higher energetic states which would lead to an increase 

absorption of the lower frequencies as changes in quantum numbers is quite typically 

3≤  and E∆  for small changes in the quantum numbers at the higher energy levels is 

smaller than those experienced by the lower energy levels such as the ground state.  

Thus the concentration of the absorbing medium is temperature dependant. 

 

The state (gas, liquid, solid) of the medium as influences the concentration of the 

absorbing medium since certain types of IR absorption are dependant on free body 

rotation.  In the gaseous state, a molecule is able to undergo rotation-vibration 

interaction which results in the fine structure component in many of the fundamental 

frequencies, vi. However, in the liquid phase, the rotation of the molecule can be 

inhibited by the presence of other molecules so that the fine structure is no longer well 

defined and is usually evident as a broadening of the fundamental frequencies. 

 

In the solid phase, the rotation-vibration interaction can be inhibited completely so that 

only the fundamental frequencies are seen.  In addition to the change in the rotation-

vibration interaction with respect to the state, there is also a change in the value of the 

fundamental frequencies.  Typically there is a change of 0-5% in the value of the 

fundamental frequencies, ν , where gas liquid soildν ν ν≥ ≥ . 

 

For near-infrared spectroscopy, the wavelength range,λ , is in the region 100µm-1µm, 

where as the typical molecular radius is of the order of 1nm; approximately one 

thousandth the wavelength.  Scattering or bifringence in the transmitted light is of no 

observable consequence. 

 

The second condition regarding the distribution of particles is commonly found in 

biological settings where the absorbing particles (proteins, nucleic acids, porphyins, etc) 

are contained within organic cells such as membranes.  These large particles are held in 

suspension in a non-absorptive media.  The localized macroscopic concentration of 

particles within the media is continuously in flux determined by the Gibbs 
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thermodynamic potential.  The effect of a Gibbs distribution of absorbing particles is a 

flattening of the absorption spectra which is wavelength dependant: 

 

 
( ) ( ) ( )

2

2.303 1
1

2

susp sol q
A A

k

ε
λ

− 
= − 

 
 (A1.3) 

 

Where ε , the specific absorptivity is assumed constant, k is a constant of 

proportionality, λ is the wavelength of light, q is the probability of observing a particle 

in a volume of size: 

 2v k pλ=  (A1.4) 

 

Where p is the optical path-length. The effect of q is to average out signals originating 

in v due to the finite nature of light. In near-infrared spectroscopy, λ is relatively large 

and the probability of finding an absorptive particle in v is nearly always equal to one. 

Consequently the flatting effect is not observed for molecules in suspension, however, it 

would be observed in systems containing large particles in suspension (as indeed would 

the scattering effect). Hence, ( )c z can be regarded as a constant, c, for NIRS of 

molecular sized absorption. 

 

The effect on the absorption due to ( )zε  can be characterized the level of anisotropic 

behaviour of (a) the absorption species; being a deformation of dipole, molecular 

covalent bond in NIRS and (b) the statistical distribution of the polarization of the 

incident light beam; being either coherently polarised or unpolarised. The interaction 

between the molecule and an incident photon (light particle or quanta) is uniquely 

determined by two factors (a) the frequency of the photon and (b) the angle of incidence 

between the photon and the dipole.  If the energy of the incident photon matches the 

energy required to de-form the dipole, then the dipole will absorb the photon.  The 

probability that a matching photon will be absorbed then depends on the angle of 

incidence: 

 

 ( ) 2cosp θ θ=  (A1.5) 
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Where θ is the angle of incidence an p(θ) is the probability of absorption.  For the cases 

where either the dipole is randomly orientated or the incident light is unpolarised, then 

( )zε is isotropic and is a constant,ε .  If the dipole is in a plane perpendicular to the 

unpolarised light (by means of an external electrical field), but the axes of the dipole is 

randomly orientated in the plane, then the specific absorptivity is again constant but 

greater than the aforementioned case by a factor of 3/2 [95].  However, if the dipole 

axes are all parallel and the incident light is in a plane perpendicular to these axes, the 

specific absorption is no longer constant but follows a log-linear relationship where the 

maximum amount of light absorbed ever exceeds 50% of the incident light. 

 

Most applications of NIRS is done in the absence of a controlling external field (so the 

dipoles are randomly orientated) with either polarised or polarized light sources (lamps 

and lasers respectively) so that the specific absorptivity, ε , is constant throughout the 

analysed medium. 

 

When both ( )zε and ( )c z  are invariant over the path-length, the optical absorption 

then follows the Beer-Lambert law (after integrating Eqn (A1.1)): 

 

 i i iA c pε=  (A1.6) 

 

Where iA  is the absorbance of the i
th

 wavelength, c is the concentration of bζ , ie is the 

coefficient of absorptivity and ip is the optical path-length, 
0

il

dz∫ .  For fixed path-length 

Eqn (A1.6) is Beer’s Law: 

 

 i iA ce=  (A1.7) 

 

Beer’s Law can be readily interpreted as a linear regression between the observed 

spectra and the concentration: 

 i

i

A
c

e
=  (A1.8) 
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