ResearchOnline@JCU

This is the Accepted Version of a paper published in the journal Global Change Biology

Pike, David A. (2014) Forecasting the viability of sea turtle eggs in a warming world. Global Change Biology, 20 (1). pp. 7-15.

http://dx.doi.org/10.1111/gcb.12397

This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving

1	10 September 2013
2	FORECASTING THE VIABILITY OF SEA TURTLE EGGS IN A WARMING
3	WORLD
4	
5	David A. Pike
6	School of Marine and Tropical Biology and Centre for Tropical Environmental &
7	Sustainability Sciences, James Cook University, Townsville Australia; Email:
8	david.pike22@gmail.com
9	
10	Accepted manuscript (GCB-13-0786.R1) for publication in Global Change Biology
11	Paper type: Primary Research Article
12	Running head: Sea turtle egg viability and climate change
13	
14	Keywords: Caretta caretta, ecological niche modeling, fitness, loggerhead turtle,
15	precipitation, egg incubation, temperature
16	

17	Abstract
18	Animals living in tropical regions may be at increased risk from climate change
19	because current temperatures at these locations already approach critical physiological
20	thresholds. Relatively small temperature increases could cause animals to exceed these
21	thresholds more often, resulting in substantial fitness costs or even death. Oviparous species
22	could be especially vulnerable because the maximum thermal tolerances of incubating
23	embryos is often lower than adult counterparts, and in many species mothers abandon the
24	eggs after oviposition, rendering them immobile and thus unable to avoid extreme
25	temperatures. As a consequence, the effects of climate change might become evident earlier
26	and be more devastating for hatchling production in the tropics. Loggerhead sea turtles
27	(Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to
28	tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the
29	tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong
30	correlations between empirical hatching success and habitat quality allowed global
31	predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate
32	change, many sea turtle populations nesting in tropical environments are predicted to
33	experience severe reductions in hatchling production, whereas hatching success in many
34	temperate populations could remain unchanged or even increase with rising temperatures.
35	Some populations could show very complex responses to climate change, with higher relative
36	hatchling production as temperatures begin to increase, followed by declines as critical
37	physiological thresholds are exceeded more frequently. Predicting when, where, and how
38	climate change could impact the reproductive output of local populations is crucial for
39	anticipating how a warming world will influence population size, growth, and stability.
40	

41	Introduction
42	Ambient temperatures are warmer in many tropical regions than elsewhere, which
43	allows a wide range of ectotherms to use the external environment to maintain body
44	temperatures near their physiological optimum (Deutsch et al. 2008; Huey et al. 2009;
45	Kearney et al. 2009; Sinervo et al. 2010; Sunday et al. 2011; Tewksbury et al. 2008). As a
46	consequence, the maximum temperature that individual species can withstand has coevolved
47	with preferred body temperature; generally, tropical species live closer to their physiological
48	optimum than closely-related temperate species (Deutsch et al. 2008; Grigg & Buckley 2013;
49	Sunday et al. 2011). Exceeding this optimum, however, can be costly and dangerous. The
50	safety margin between the optimal temperature range and lethal maximum is often quite
51	narrow (Huey et al. 2009; Tewksbury et al. 2008; Vickers et al. 2011), and climate change
52	could make it more difficult for some tropical species to avoid overheating (Deutsch et al.
53	2008; Kearney et al. 2009; Logan et al. 2013; Sinervo et al. 2010; Tewksbury et al. 2008). In
54	temperate environments, many species are living below their optimal temperatures much of
55	the time, and increases in temperature are predicted to benefit a wide range of physiological
56	processes (Deutsch et al. 2008; Hays et al. 2010; Katselidis et al. 2012; Kearney et al. 2009;
57	Sinervo et al. 2010). This may also be the case for some tropical species, depending on
58	interactions among habitat use, preferred body temperature, and critical thermal maximum
59	(Logan et al. 2013; Storch et al. 2005). Through the same mechanism, species distributed
60	across a wide range of different climatic conditions (e.g., latitude, altitude, canopy cover,
61	water depth) may be able to adaptively respond to climate change, depending on how
62	temperature increases interact with important physiological thresholds at local spatial scales
63	(Fossette et al. 2012; Witt et al. 2010). These patterns make understanding when, where, and
64	how local populations will experience the effects of climate change a difficult task, especially
65	for widespread species.

66	Mobile organisms may be able to ameliorate some of the impacts of warming by
67	changing activity patterns (Fossette et al. 2012; Huey et al. 2009; Kearney et al. 2009;
68	Schofield et al. 2009; Sinervo et al. 2010), habitat use (Kearney et al. 2009; Logan et al.
69	2013), or dispersing to limit thermal stress (Pike 2013b; Witt et al. 2010). For example, many
70	large marine species select for temperature at spatial scales spanning microhabitats to regions,
71	which can influence seasonal and daily movements and activity patterns (Rasmussen et al.
72	2007; Schofield et al. 2009). The opportunity to avoid stressful thermal conditions may be
73	much more restricted during life stages when mobility is limited (Godley et al. 2001; Hawkes
74	et al. 2007; Hays et al. 2003; Mitchell et al. 2008; Telemeco et al. 2013; Telemeco et al.
75	2009). If the thermal environment becomes unfavourable, organisms with limited mobility
76	may be unable to avoid stressful temperatures (e.g., by shade seeking, altering activity times,
77	etc.) and thus may be at increased risk of physiological stress and possibly death. In fact, the
78	physical locations of immobile life stages may depend upon external factors, such as nest-site
79	placement by the mother (Hays et al. 1995; Wood & Bjorndal 2000) and local environmental
80	conditions (Godley et al. 2001; Hawkes et al. 2007; Hays et al. 2003; Pike 2013a). Females of
81	many species select nest sites based on temperature, because of its direct effects on embryonic
82	development, incubation duration, hatchling body size, and offspring survival (Ackerman
83	1997; Davenport 1997; Telemeco et al. 2013; Telemeco et al. 2009). In some cases, however,
84	climate change could alter the landscape such that the microhabitat characteristics formerly
85	selected by females become rare or unavailable (Katselidis et al. 2012; Mitchell et al. 2008;
86	Telemeco et al. 2013; Telemeco et al. 2009; Witt et al. 2010). This could lead to widespread
87	changes in nest temperatures, which could directly alter hatchling phenotypes (including sex
88	for species with temperature-dependent sex determination; Fuentes & Porter 2013; Godley et
89	al. 2001; Hawkes et al. 2007; Hays et al. 2003; Telemeco et al. 2009, 2013) or increase
90	embryonic mortality (Tapilatu & Tiwari 2007).

91	Research into the direct effects of climate change on the vulnerable egg stage of
92	terrestrial animals has focused on the sex ratios of the offspring in species with temperature-
93	dependent sex determination. Primary sex ratios can directly influence population growth
94	rates, and chronically-biased sex ratios could lead to population bottlenecks or even
95	population collapse (Hays et al. 2003; Katselidis et al. 2012; Witt et al. 2010). To date,
96	however, a much more important aspect has been overlooked: survival of the embryos. If
97	temperatures inside the nest exceed the point at which embryonic survival decreases
98	substantially, this could be magnify any potential demographic consequences associated with
99	skewed sex ratios or other sublethal temperature effects. Large-scale egg mortality due to
100	overheating already has been observed on some tropical sea turtle nesting beaches (Tapilatu &
101	Tiwari 2007), and widespread changes in hatchling phenotypes have been predicted for a
102	range of reptiles (Fuentes & Porter 2013; Godley et al. 2001; Hawkes et al. 2007; Hays et al.
103	2003; Katselidis et al. 2012; Mitchell et al. 2008; Telemeco et al. 2009, 2013; Witt et al.,
104	2010). To date, however, we have almost no understanding of how climate change could
105	influence offspring production, mediated through hatching success of the eggs, across the
106	entire distribution of widespread species. Thus, our understanding of how climate change
107	could influence life history and population demography of ectotherms is limited.
108	Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living
109	reptile, spanning temperate to tropical latitudes in both hemispheres (Pike 2013a).
110	Loggerhead sea turtles generally nest sympatrically with the other six species of sea turtle, but
111	are distributed further north and south. Sea turtle nesting beaches are at risk from sea level
112	rise, which could reduce the amount of nesting habitat available and increase the water table,
113	both of which could reduce habitat quality and reproduction (Fish et al. 2005, 2008; Fuentes
114	et al. 2011). The embryos of all sea turtle species show similar functional responses to
115	temperature (i.e., fixed upper lethal temperatures of 35°C; Ackerman 1997; Davenport 1997;

- 116 Witt *et al.* 2010), which led me to predict that the local effects of climate change on hatching
- 117 success would be most pronounced in tropical regions. To understand how climate change
- 118 could impact loggerhead sea turtle reproduction, I predicted spatial and temporal patterns of
- egg hatching success across the geographic range of this widespread species.

121	Materials and Methods
122	Modeling approach.— I used MaxEnt version 3.3.3k (Phillips et al. 2006; Phillips & Dudík
123	2008) to model loggerhead sea turtle nesting distributions under current and predicted future
124	climate scenarios. This approach combines environmental variables with known nesting
125	locations and randomly-selected background locations to predict the potential distribution of
126	nesting using the principle of maximum entropy (Phillips et al. 2006; Phillips & Dudík 2008).
127	Model input consisted of 933 georeferenced nesting beach locations for loggerhead turtles
128	(compiled from State of the World's Sea Turtles and the Wider Caribbean Sea Turtle
129	Conservation Network; Dow Piniak & Eckert 2011; Pike 2013a) and nine climate variables
130	(mean daily range in temperature, isothermality, maximum temperature of the warmest
131	month, annual temperature range, precipitation seasonality, and precipitation of the wettest,
132	driest, warmest, and coldest quarters; Hijmans et al. 2005). These climate variables
133	encompass broad annual and seasonal patterns of temperature and rainfall globally (Pike
134	2013a), and thus are relevant to loggerhead sea turtle nesting, which shows strong
135	geographical variation in seasonality (reviewed by Dewald & Pike 2013). Climate variables
136	covered land areas at a resolution of 4km x 4km, which was restricted to within ~8km (two
137	grid cells) of the ocean to improve model performance (Pike 2013a, 2013b).
138	MaxEnt uses these climatic predictor variables to quantify the probability of sea turtle
139	nesting occurring in each grid cell, ranging from 0 to 1, with values near 0.5 representative of
140	average habitat quality (Phillips & Dudík 2008). The climatic predictor variables were used to
141	discriminate nesting and non-nesting locations using threshold relationships. I used 10-fold
142	crossvalidation to randomly partition the full set of nesting locations into 10 approximately
143	equal datasets. During each of 10 model runs, nine of the data partitions are used to train the
144	model and these results are tested against the tenth partition (for full details on the process of
145	model building, testing, and selection see Pike 2013a, 2013b). For all analyses I used the

146 median habitat suitability value across all 10 runs of the model.

147	I calibrated distribution models using current climatic conditions (averaged over
148	~1950-2000; for full details on climate data, see Hijmans et al. 2005), and projected the final
149	model onto future predicted climate surfaces. I used four climate change models (Canadian
150	Centre for Climate Modelling and Analysis, Commonwealth Scientific and Industrial
151	Research Organisation, Hadley Centre for Climate Prediction and Research (UK), and
152	National Institute for Environmental Studies) under three emission families (A1, A2A, B2A)
153	that encompass the central 80% of climate change predictions for 2020, 2050, and 2080 (total
154	of 36 future scenarios; Intergovernmental Panel on Climate Change 2007; Special Report on
155	Emission Scenarios, 2000). These estimates encompass current rates of temperature increase
156	(i.e., a 2-7°C increase by 2100; Special Report on Emission Scenarios, 2000), and thus are a
157	good approximation of the range of conditions likely to be experienced in the coming
158	decades. The A2A family predicts a temperature increase within the range of 2.0-5.4°C,
159	relative to 1980-1999 (best estimate = 3.4°C; Special Report on Emission Scenarios, 2000).
160	The B2A family predicts a temperature increase within the range of $1.4-3.8$ °C (best estimate =
161	2.4°C; Special Report on Emission Scenarios, 2000). The A1 family is intermediate to these
162	high and low predictions.
163	I explored how climate change could influence the maximum temperature of the
164	warmest quarter (i.e., summer, during which many loggerhead sea turtle populations are
165	nesting; Dewald & Pike 2013) at two spatial scales: (1) regional (temperate vs tropical
166	latitudes) and (2) among spatially and biologically distinct populations that differ in
167	conservation status and threats (Regional Management Units, defined and delimited by
168	Wallace et al., 2010). Loggerhead turtles encompass eight Regional Management Units, two
169	of which span both temperate and tropical latitudes. For each loggerhead nesting beach I

170 extracted temperature data from the spatial climate datasets. These temperatures and predicted

- hatching success (see below) were compared among regions and Regional Management Unitsunder different climate scenarios.
- 173

174	Empirical hatching success.— I used published loggerhead hatching success data from
175	undeveloped nesting beaches ($n = 21$), expressed as the mean proportion of eggs hatching
176	from each clutch (Pike 2008, 2009). These beaches were categorized as temperate or tropical
177	based on latitude (tropical locations range between 23°26'16"N and 23°26'16"S), and habitat
178	quality was estimated using the MaxEnt habitat suitability score for current climatic
179	conditions. These hatching success data were obtained from different studies conducted in
180	different years and averaged over varying time intervals, but are the best currently available
181	(Pike 2008, 2009). To test for differences in egg viability between temperate and tropical
182	beaches, I used ANOVA with nesting beach location (temperate or tropical) as the factor and
183	hatching success as the dependent variable. I used logarithmic regression to test for an
184	empirical relationship between habitat suitability and hatching success.
185	
186	Forecasting hatching success.— Species distribution modeling is a powerful way to derive a
187	single measure of local habitat quality (i.e., suitability, probability of occurrence) across the
188	geographic range of a species from complex environmental datasets (Phillips & Dudík 2008).
189	These measures of habitat quality can be linked to population-level ecological traits, such as
190	genetic diversity (Dubey et al. 2013), abundance (Kulhanek et al. 2011), maximum
191	population size (VanDerWal et al. 2009), or offspring production (Brambilla & Ficetola
192	2012), and predicted across the landscape under current and future climate scenarios (Dubey
193	et al. 2013). I created spatial and temporal predictions of hatching success using the
194	
	regression equation relating habitat suitability to hatching success. I extracted hatching

- 196 known tropical and temperate nesting beaches under current climatic conditions and climate
- 197 change scenarios (n = 433 nesting beaches; global climate datasets often are missing data for
- small islands, on which some sea turtle populations nest; Pike 2013a). To visualize these
- 199 predictions in geographic space, I created maps showing the change in future hatching success
- 200 relative to current predicted hatching success.

202	Results
203	Only 26.6% of loggerhead sea turtle nesting beaches worldwide are located in tropical
204	latitudes (n = 248 of 933); the remaining 73.4% of nesting beaches are in temperate climates.
205	Currently, ambient temperatures on loggerhead sea turtle nesting beaches located in tropical
206	climates are significantly warmer than those located in temperate climates ($F_{1,475} = 98.64$, $P <$
207	0.0001; Fig. 1a). Tropical nesting beaches also produce significantly fewer hatchlings per nest
208	than do temperate nesting beaches ($F_{1,19} = 7.19$, $P = 0.01$; Fig. 1b), providing strong support
209	for a broad link between ambient temperatures and hatching success. These findings imply
210	that climate change impacts on hatching success could be dependent upon how close current
211	temperatures are to lethal, and the magnitude of local temperature increase. The effects of
212	climate change on loggerhead sea turtles could thus differ regionally (temperate vs tropics),
213	vary among spatially and biologically-distinct populations, and even among individual
214	nesting beaches.
215	The quality of loggerhead sea turtle nesting habitat (as estimated by MaxEnt species
216	distribution modeling) is significantly and positively related to empirical egg hatching success
217	(logarithmic regression; n = 21 undeveloped nesting beaches, $R^2 = 0.525$, $F_{1,19} = 21.02$, $P =$
218	0.0002; Supporting Information Fig. S1). Habitat quality explains over 50% of the variation in
219	hatching success among populations, and thus provides a strong measure of reproductive
220	output. Hatching success was only weakly correlated with latitude, revealing that geographic
221	location is a poor predictor of habitat quality ($R^2 = 0.12$, $F_{1,16} = 2.19$, $P = 0.160$).
222	Under current climatic conditions, loggerhead sea turtle nesting beaches do not
223	frequently exceed temperatures that are lethal for incubating eggs (Godley et al. 2001;
224	Katselidis et al. 2012); however, by 2080 the maximum temperature during the nesting season
225	could exceed lethal levels at over half of tropical nesting beaches (Fig. 2). Under future
226	climate change scenarios, a much lower proportion of temperate nesting beaches are expected

227 to regularly exceed lethal temperatures as compared to tropical nesting beaches, despite both 228 regions experiencing a similar magnitude of temperature increase (Fig. 2). This effect is 229 because temperate nesting sites initially were cooler, and thus require a larger temperature 230 increase to exceed lethal for developing embryos (Fig. 2). Under climate change, loggerhead 231 turtles nesting in temperate environments are predicted to maintain high levels of hatching 232 success overall, which could increase in those sites that have relatively low hatching success 233 under the A1 and A2A future climate families for 2020-2080 (Fig. 3). By contrast, predictions 234 from tropical nesting sites suggest that hatching success will decline overall during the same 235 period (Fig. 3). The average predictions for all climate change scenarios produced remarkably 236 similar hatching success estimates for both tropical and temperate locations within future time 237 intervals (Fig. 2). 238 Nesting beach temperatures and hatching success show similar patterns between 239 temperate and tropical nesting sites at even more local scales; individual spatially- and 240 biologically-distinct populations in temperate locations generally have lower maximum 241 temperatures and higher predicted hatching success than those in tropical locations (Fig. 1c). 242 This pattern is also evident in the two individual populations that span both temperate and 243 tropical latitudes (Fig. 1d). Overall, this strongly suggests that the impacts of climate change 244 could differ substantially within and between populations, whether or not those populations 245 are classified at local or regional scales.

246

247	Discussion
248	Understanding when, where, and how climate change will manifest, and to what
249	degree, is crucial for ensuring the adequate conservation of imperiled species. One important,
250	and understudied, aspect of climate change is how it will influence long-term population
251	dynamics in terms of reproductive success, offspring production, and population demography.
252	A necessary first step is an understanding of whether macro-scale environmental features
253	contribute to successful reproduction, and how. The hatching success of loggerhead sea turtle
254	eggs is strongly related to habitat quality, estimated using measures of seasonal variability in
255	temperature and precipitation. Tropical nesting beaches experience significantly warmer
256	ambient temperatures than do temperate beaches, and thus produce relatively fewer hatchling
257	turtles per nest (Fig. 1). In some populations, climate change may not substantially alter
258	hatching success of the eggs, whereas other populations could show either dramatic
259	reductions or more complex responses, whereby hatching success initially increases with
260	moderate warming but declines over the longer-term as warming continues (Fig. 3). These
261	possible outcomes are likely a result of the wide geographic distribution across which
262	loggerhead sea turtles nest, which is limited by physiological constraints of temperature and
263	moisture on embryonic development (Pike 2013a). Overall, a regional conservation and
264	management focus may be necessary to protect widespread and endangered species from
265	climate change, which is difficult when populations span geopolitical boundaries across both
266	terrestrial and marine environments (Wallace et al. 2010; Witt et al. 2010).
267	Visualizing hatching success in geographic space reaffirms broad differences in the
268	hatching success of eggs from temperate and tropical loggerhead sea turtle populations;
269	hatching success was generally predicted to be highest in temperate locations (e.g.,
270	southeastern United States, Mediterranean) and lowest in tropical locations (e.g.,
271	Central/South America, Australasia; Fig. 3). Hatching success in the Caribbean and

272 Australasian regions is not expected to show a marked change by 2020, whereas hatching 273 success could increase in the Mediterranean Sea (Fig. 3). By 2050, however, hatching success 274 is predicted to decline overall at many sites worldwide, which could continue through 2080 275 (Fig. 3). The Mediterranean Sea is predicted to have the largest geographic area showing an 276 increase in hatching success, whereas the Caribbean and Australasian regions could show 277 declines by more than 15% in some cases (Figs. 1-3). These patterns highlight some of the 278 complex spatial, temporal, and population-specific impacts of climate change on reproduction 279 in widespread species.

280 Although some of the predicted reductions in hatching success may not seem large 281 (e.g., changes of a few percentage), other more subtle temperature effects on embryonic 282 development could have strong and direct impacts on population characteristics. The sex of 283 sea turtle embryos is determined by incubation temperature during development, and even 284 slight increases in sand temperatures could alter population-specific sex ratios or other 285 morphological characteristics (Fuentes & Porter 2013; Godley et al. 2001; Hawkes et al. 286 2007; Hays et al. 2003; Witt et al. 2010). This has led to speculation that some sea turtle 287 nesting beaches will produce biased hatchling sex ratios, such that some geographic regions 288 mainly produce males, and others mainly produce females (Fuentes & Porter 2013; Hawkes et 289 al. 2007). The longer-term patterns of inter-annual variability in hatchling phenotype, and 290 how these integrate over the extended generation time of sea turtles, are an important research 291 area (Katselidis et al. 2012). Recent evidence from male turtles, however, suggests that their 292 ability to breed annually with multiple females could help buffer any negative demographic 293 consequences of skewed adult sex ratios (Hays *et al.* 2010; Wright *et al.* 2012). 294 Habitat quality, generated using maximum entropy relationships among temperature

and precipitation, explained more than half of the variation in hatching success among

296 loggerhead sea turtle populations globally. This is exceptional explanatory power when

297 considering that local factors intrinsic to characteristics of the mother and nesting habitat 298 influence nest temperature, including patterns of nest-site selection (e.g., by females selecting 299 for sand albedo, aspect, slope, or other factors among and within beaches; Hays et al. 1995, 300 2001; Wood & Bjorndal 2000). Nest depth also plays important roles in incubation 301 temperature, which in turn directly influences hatching success and hatchling sex and 302 phenotype (Ackerman 1997). Although current research has yet to tackle how these aspects 303 influence microclimatic conditions within nests worldwide, recent advances in mechanistic 304 modeling approaches may offer one potential solution (Fuentes & Porter 2013). Mechanistic 305 modeling also can be used to predict much more subtle seasonal effects of nest temperature 306 on hatchling fitness, to better integrate predictions of these variables over timescales relevant 307 to sea turtle ecology (e.g., decades). At present, however, our understanding of how climate 308 variability will impact the temporal pace of hatchling production and phenotype is limited to 309 broad predictions averaged over discrete time intervals. More subtle seasonal and inter-annual 310 patterns have, to date, received little research attention, but this natural variation has the 311 potential to buffer the impacts of climate change (Katselidis et al. 2012). Likewise, testing 312 climate change predictions is essential to refining models to increase explanatory power. The 313 hatching success predictions that I have generated can now be tested against field data and 314 refined as empirical datasets become available and climate change predictions are updated. 315 Although published data on hatching success are lacking for other sea turtle species (Pike 316 2008, 2009), these results provide a baseline prediction for other species because current 317 evidence suggests that sea turtles have fixed thermal reaction norms (Ackerman 1997). 318 Females of most oviparous species are selective in where they place their eggs, 319 favouring microhabitats that will reduce hatching time and maximize hatching success and 320 offspring fitness (e.g., warmer nest temperatures; Huang & Pike 2011). This has led to 321 speculation that nesting females could compensate for the effects of climate change by

322	continuing to locate microhabitats that maximize fitness (Mitchell et al. 2008; Telemeco et al.
323	2009, 2013). The sandy, sun-exposed beaches upon which sea turtles nest can experience high
324	temperatures (Katselidis et al. 2012; Tapilatu & Tiwari 2007), but we do not yet understand
325	whether maternal nest-site selection could compensate for temperature increases under
326	climate change. Data from other, smaller reptile species that dig shallower nests suggest that
327	morphological constraints on the ability to dig deeper nests could limit potential adaptive
328	responses to climate change, and lead to skewed sex ratios and increased embryonic mortality
329	(Katselidis et al. 2012; Mitchell et al. 2008; Telemeco et al. 2013). This is also a concern in
330	sea turtles (Katselidis et al. 2012), although their ability to dig extremely deep nests (>1m
331	below the surface) could provide a mechanism by which females can buffer their developing
332	offspring from climate change (Mitchell et al. 2008; Telemeco et al. 2013).
333	
334	Conclusions
335	The most direct impacts of climate change will come from the interactive effects of
336	multiple stressors, which for many ectotherms will be the diverse impacts of temperature on
337	all aspects of life history and ecology. Integrating the varied effects of temperature on
338	embryonic survival, hatchling phenotype, and habitat use of marine life stages with other
339	stressors is the only way to effectively prepare for the ecological effects of climate change.
340	Doing this collectively within a single modeling framework is extremely difficult due to the
341	complexity of responses at different spatial and temporal scales for the different life stages.
342	An alternative approach may be to integrate the body of accumulating information on
343	different threats using a vulnerability assessment framework or resilience indices (e.g.,
344	Fuentes et al. 2011, 2013). Novel integration of disparate predictions of climate change and
345	anthropogenic stressors are crucial towards a fuller understanding of how we are changing the
346	face of biodiversity.

- 348 Acknowledgements: I am grateful to the thousands of dedicated volunteers and staff who
- 349 contributed nesting beach locations. For facilitating data access, I thank Bryan Wallace,
- 350 Andrew Dimatteo, and Brian Hutchinson (State of the World's Sea Turtles,
- 351 <u>http://seaturtlestatus.org</u>), and Wendy Dow Piniak and Karen Eckert (Wider Caribbean Sea
- 352 Turtle Conservation Network, WIDECAST, <u>www.widecast.org</u>;
- 353 <u>http://seamap.env.duke.edu/widecast/</u>). I appreciate the constructive comments of two
- anonymous reviewers, whose comments improved an earlier draft.

356	References
357	Ackerman RA (1997) The nest environment and the embryonic development of sea turtles. In:
358	The Biology of Sea Turtles. (eds Lutz PL, Musick JA) pp Page. Boca Raton, CRC
359	Press.
360	Brambilla M, Ficetola GF (2012) Species distribution models as a tool to estimate
361	reproductive parameters: a case study with a passerine bird species. Journal of Animal
362	<i>Ecology</i> , 81 , 781-787.
363	Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis Report.
364	In: Contribution of Working Groups I, II and III to the Fourth Assessment Report of
365	the Intergovernmental Panel on Climate Change (ed Core Writing Team, Pachauri
366	RK, Reisinger A). Geneva.
367	Davenport J (1997) Temperature and the life-history strategies of sea turtles. Journal of
368	<i>Thermal Biology</i> , 22 , 479-488.
369	Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR
370	(2008) Impacts of climate warming on terrestrial ectotherms across latitude.
371	Proceedings of the National Academy of Sciences, 105, 6668-6672.
372	Dewald JR, Pike DA (2013) Geographical variation in hurricane impacts among sea turtle
373	populations. Journal of Biogeography, in press.
374	Dow Piniak WE, Eckert KL (2011) Sea turtle nesting habitat in the Wider Caribbean Region.
375	Endangered Species Research, 15, 129-141.
376	Dubey S, Pike DA, Shine R (2013) Predicting the impacts of climate change on genetic
377	diversity in an endangered lizard species. Climatic Change, 117, 319-327.
378	Fish MR, Cote IM, Gill JA, Jones AP, Renshoff S, Watkinson AR (2005) Predicting the
379	impact of sea-level rise on Caribbean sea turtle nesting habitat. Conservation Biology,
380	19 , 482-491.

381	Fish MR, Cote IM, Horrocks JA, Mulligan B, Watkinson AR, Jones AP (2008) Construction
382	setback regulations and sea-level rise: Mitigating sea turtle nesting beach loss. Ocean
383	and Coastal Management, 51, 330–341.
384	Fossette S, Schofield G, Lilley MKS, Gleiss A, Hays GC (2012) Acceleration data reveals the
385	energy management strategy of a marine ectotherm during reproduction. Functional
386	<i>Ecology</i> , 26 , 324-333.
387	Fuentes MMBP, Pike DA, Dimatteo A, Wallace BP (2013) Resilience of marine turtle
388	regional management units to climate change. Global Change Biology, 19, 1399-1406.
389	Fuentes MMPB, Limpus CJ, Hamann M (2011) Vulnerability of sea turtle nesting grounds to
390	climate change. Global Change Biology, 17, 140-153.
391	Fuentes MMPB, Porter WP (2013) Using a microclimate model to evaluate impacts of
392	climate change on sea turtles. Ecological Modelling, 251, 150-157.
393	Godley BJ, Broderick AC, Downie JR et al. (2001) Thermal conditions in nests of loggerhead
394	turtles: further evidence suggesting female skewed sex ratios of hatchling production
395	in the Mediterranean. Journal of Experimental Marine Biology and Ecology, 263, 45-
396	63.
397	Grigg JW, Buckley LB (2013) Conservatism of lizard thermal tolerances and body
398	temperatures across evolutionary history and geography. Biology Letters, 9.
399	Hawkes LA, Broderick AC, Godfrey MH, Godley BJ (2007) Investigating the potential
400	impacts of climate change on a marine turtle population. Global Change Biology, 13,
401	923-932.
402	Hays GC, Adams CR, Mortimer JA, Speakman JR (1995) Inter-beach and Intra-beach
403	thermal variation for green turtle nests on Ascension Island, South-Atlantic. Journal of
404	the Marine Biological Association of the United Kingdom, 75, 405-411.
405	Hays GC, Ashworth JS, Barnsley MJ et al. (2001) The importance of sand albedo for the

406	thermal conditions on sea turtle nesting beaches. OIKOS, 93, 87-94.
407	Hays GC, Broderick AC, Glen F, Godley BJ (2003) Climate change and sea turtles: a 150-
408	year reconstruction of incubation temperatures at a major marine turtle rookery.
409	Global Change Biology, 9, 642-646.
410	Hays GC, Fossette S, Katselidis KA, Schofield G, Gravenor MB (2010) Breeding periodicity
411	for male sea turtles, operational sex ratios, and implications in the face of climate
412	change. Conservation Biology, 24, 1636-1643.
413	Hijmans RJ, Cameron SE, Parra JL, Jones P, Jarvis A (2005) Very high resolution
414	interpolated climate surfaces for global land areas. International Journal of
415	<i>Climatology</i> , 25 , 1965-1978.
416	Huang W-S, Pike DA (2011) Climate change impacts on fitness depend on nesting habitat in
417	lizards. Functional Ecology, 25, 1125-1136.
418	Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez Pérez HJ, Garland T (2009)
419	Why tropical forest lizards are vulnerable to climate warming. Proceedings of the
420	Royal Society B: Biological Sciences, 276, 1939-1948.
421	Katselidis KA, Schofield G, Dimopoulos P, Stamou GN, Pantis JD (2012) Females First?
422	Past, present and future variability in offspring sex-ratio at a temperate sea turtle
423	breeding area. Animal Conservation, 15, 508-518.
424	Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to
425	buffer "cold-blooded" animals against climate warming. Proceedings of the National
426	Academy of Sciences, 106, 3835-3840.
427	Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the
428	abundance and impact of invasive species: application to the common carp. Ecological
429	Applications, 21, 203-213.
430	Logan ML, Huynh RK, Precious RA, Calsbeek RG (2013) The impact of climate change

431	measured at relevant spatial scales: new hope for tropical lizards. Global Change
432	Biology, n/a-n/a.
433	Mitchell NJ, Kearney MR, Nelson NJ, Porter WP (2008) Predicting the fate of a living fossil:
434	how will global warming affect sex determination and hatching phenology in tuatara?
435	Proceedings of the Royal Society B: Biological Sciences, 275, 2185-2193.
436	Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species
437	geographic distributions. Ecological Modelling, 190, 231-259.
438	Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: new extensions
439	and a comprehensive evaluation. <i>Ecography</i> , 31 , 161-175.
440	Pike DA (2008) Natural beaches confer fitness benefits to nesting marine turtles. <i>Biology</i>
441	<i>Letters</i> , 4 , 704-706.
442	Pike DA (2009) Natural beaches produce more hatchling marine turtles than developed
443	beaches, despite regional differences in hatching success. <i>Biology Letters</i> , 5, 268-269.
444	Pike DA (2013a) Climate influences the global distribution of sea turtle nesting. Global
445	Ecology and Biogeography, 22, 555-566.
446	Pike DA (2013b) Forecasting eange expansion into ecological traps: climate-mediated shifts
447	in sea turtle nesting beaches and human development. Global Change Biology, in
448	press.
449	Rasmussen K, Palacios DM, Calambokidis J et al. (2007) Southern Hemisphere humpback
450	whales wintering off Central America: insights from water temperature into the
451	longest mammalian migration. Biology Letters, 3, 302-305.
452	Special Report on Emission Scenarios (2000) Special Report on Emissions Scenarios: A
453	special report of Working Group III of the Intergovernmental Panel on Climate
454	Change (eds Nakićenović N, Swart R). Cambridge.
455	Schofield G, Bishop CM, Katselidis KA, Dimopoulos P, Pantis JD, Hays GC (2009)

456	Microhabitat selection by sea turtles in a dynamic thermal environment. Journal of
457	Animal Ecology, 78 , 14-22.
458	Sinervo B, Méndez-De-La-Cruz F, Miles DB et al. (2010) Erosion of lizard diversity by
459	climate change and altered thermal niches. Science, 328, 894-899.
460	Storch S, Wilson RP, Hillis-Starr Z-M, Adelung D (2005) Cold-blooded divers: temperature
461	dependent dive performance in wild hawksbill turtles Eretmochelys imbricata. Marine
462	Ecology Progress Series, 293, 263-271.
463	Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in
464	ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823-1830.
465	Tapilatu RF, Tiwari M (2007) Leatherback turtle, Dermochelys coriacea, hatching success at
466	Jamursba-Medi and Wermon Beaches in Papua, Indonesia. Chelonian Conservation
467	and Biology, 6 , 154-158.
468	Telemeco RS, Abbott KC, Janzen FJ (2013) Modeling the effects of climate change-induced
469	shifts in reproductive phenology on temperature-dependent traits. The American
470	Naturalist, 181, 637-648.
471	Telemeco RS, Elphick MJ, Shine R (2009) Nesting lizards (Bassiana duperreyi) compensate
472	partly, but not completely, for climate change. Ecology, 90, 17-22.
473	Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science,
474	320 , 1296-1297.
475	Vanderwal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental
476	niche: environmental suitability estimated from niche models predicts the upper limit
477	of local abundance. American Naturalist, 174, 282-291.
478	Vickers M, Manicom C, Schwarzkopf L (2011) Extending the cost-benefit model of
479	thermoregulation: high-temperature environments. American Naturalist, 177, 452-461.
480	Wallace BP, Dimatteo AD, Hurley BJ et al. (2010) Regional management units for marine

481	turtles: a novel framework for prioritizing conservation and research across multiple
482	scales. PloS One, 5, e15465.
483	Witt MJ, Hawkes LA, Godfrey MH, Godley BJ, Broderick AC (2010) Predicting the impacts

484 of climate change on a globally distributed species: the case of the loggerhead turtle.

```
485 The Journal of Experimental Biology, 213, 901-911.
```

486 Wood DW, Bjorndal KA (2000) Relation of temperature, moisture, salinity, and slope to nest

487 site selection in loggerhead sea turtles. *Copeia*, **2000**, 119-128.

- 488 Wright LI, Stokes KL, Fuller WJ et al. (2012) Turtle mating patterns buffer against disruptive
- 489 effects of climate change. *Proceedings of the Royal Society B: Biological Sciences,*
- **4**90 **279**, 2122-2127.
- 491

492	Figure Legends
493	Figure 1: Maximum temperatures during the warmest quarter of the year (summer, when
494	many sea turtle populations are nesting) are higher on tropical beaches than on temperate
495	beaches (a) and are higher on tropical Regional Management Unit (Wallace et al. 2010)
496	beaches than on temperate Regional Management Unit beaches (c). Data from the literature
497	reveal that loggerhead nests from temperate regions have higher hatching success than those
498	laid on tropical nesting beaches (b). Median hatching success of temperate beaches is 28.7%
499	higher than tropical beaches. Predictions of hatching success generated from Maxent
500	modeling were higher for temperate Regional Management Unit beaches than for tropical
501	Regional Management Unit beaches (c). The lower bound of each box represents the first
502	quartile, the middle is the median, the upper bound is the third quartile and the error bars
503	represent minimum and maximum values.
504	
505	Figure 2: Change in predicted (a) maximum temperature during the warmest quarter of the
506	year (summer, when many sea turtle populations are nesting) and (b) hatching success,
507	averaged under climate change emission families and shown for tropical and temperate
508	nesting beaches. The lower bound of each box represents the first quartile, the middle is the
509	median, the upper bound is the third quartile and the error bars represent minimum and
510	maximum values.
511	
512	Figure 3: Maps forecasting loggerhead turtle hatching success and the change in hatching
513	success under climate change, both spatially (Caribbean Sea, Mediterranean Sea, and
514	Australasia) and temporally (under current and future predicted climates). Shown across the
515	top row are predictions of hatching success under current climatic conditions (divided into six

516 quantiles) and the remaining panels show changes in hatching success relative to current

- 517 conditions (divided into 5% intervals). Negative values indicate a decline in hatching success
- 518 and positive values indicate an increase hatching success under future conditions. Future
- 519 conditions were averaged among the different emission scenarios, resulting in one prediction
- 520 for each of 2020, 2050, and 2080. Hatching success was predicted using the regression
- 521 equation from the relationship between habitat suitability (estimated through MaxEnt
- 522 modeling) and empirical hatching success.

Maximum temperatures during the warmest quarter of the year (summer, when many sea turtle populations are nesting) are higher on tropical beaches than on temperate beaches (a) and are higher on tropical Regional Management Unit (Wallace et al., 2010) beaches than on temperate Regional Management Unit beaches (c). Data from the literature reveal that loggerhead nests from temperate regions have higher hatching success than those laid on tropical nesting beaches (b). Median hatching success of temperate beaches is 28.7% higher than tropical beaches. Predictions of hatching success generated from Maxent modelling were higher for temperate Regional Management Unit beaches than for tropical Regional Management Unit beaches (c). The lower bound of each box represents the first quartile, the middle is the median, the upper bound is the third quartile and the error bars represent minimum and maximum values. 398x299mm (300 x 300 DPI)

Change in predicted (a) maximum temperature during the warmest quarter of the year (summer, when many sea turtle populations are nesting) and (b) hatching success, averaged under climate change emission families and shown for tropical and temperate nesting beaches. The lower bound of each box represents the first quartile, the middle is the median, the upper bound is the third quartile and the error bars represent minimum and maximum values.

406x403mm (300 x 300 DPI)

Maps forecasting loggerhead turtle hatching success and the change in hatching success under climate change, both spatially (Caribbean Sea, Mediterranean Sea, and Australasia) and temporally (under current and future predicted climates). Shown across the top row are predictions of hatching success under current climatic conditions (divided into six quantiles) and the remaining panels show changes in hatching success relative to current conditions (divided into 5% intervals). Negative values indicate a decline in hatching success and positive values indicate an increase hatching success under future conditions. Future conditions were averaged among the different emission scenarios, resulting in one prediction for each of 2020, 2050, and 2080. Hatching success was predicted using the regression equation from the relationship between habitat suitability (estimated through MaxEnt modeling) and empirical hatching success. 229x180mm (300 x 300 DPI)