Development and validation of a numerical model for steel roof cladding subject to static uplift loads

Lovisa, Amy C., Wang, Vincent Z., Henderson, David J., and Ginger, John D. (2013) Development and validation of a numerical model for steel roof cladding subject to static uplift loads. Wind & Structures, 17 (5). pp. 495-513.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.12989/was.2013.17.5...
 
2
9


Abstract

Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

Item ID: 28990
Item Type: Article (Refereed Research - C1)
Keywords: finite element analysis; corrugated steel roof cladding; wind loading; testing; validation
ISSN: 1598-6225
Date Deposited: 18 Feb 2014 05:53
FoR Codes: 09 ENGINEERING > 0905 Civil Engineering > 090506 Structural Engineering @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970109 Expanding Knowledge in Engineering @ 100%
Downloads: Total: 9
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page