ResearchOnline@JCU

This is the **Submitted Version** of a paper published in the Biological Journal of the Linnean Society:

Elphick, Melanie J., Pike, David A., Bezzina, Chalene, and Shine, Richard (2013) *Cues for communal egg-laying in lizards (Bassiana duperreyi, Scincidae)*. Biological Journal of the Linnean Society, 110 (4). pp. 839-842.

http://dx.doi.org/10.1111/bij.12174

Cues for communal egg-laying in lizards (Bassiana duperreyi, Scincidae) MELANIE J. ELPHICK¹*, DAVID A. PIKE^{1,2}, CHALENE BEZZINA¹ and RICHARD SHINE¹ ¹School of Biological Sciences A08, University of Sydney, NSW 2006, Australia ²Current address: School of Marine and Tropical Biology, Centre for Tropical Environmental & Sustainability Science, James Cook University, Townsville 4811, Australia *Corresponding author. E-mail: melanie.elphick@sydney.edu.au Tel: +612-9351-3996, fax: +612-9351-5609 Running title: Oviposition-site choice in a skink Manuscript Revised manuscript (BJLS-2913) for consideration as a Short Research Article in Biological Journal of the Linnean Society 25-6 June-August 2013

ABSTRACT

27	Animals may aggregate either because the presence of conspecifics provides information
28	about habitat suitability, or because the presence of conspecifics directly enhances individual
29	viability. For a female lizard, the advantage of laying her eggs in a communal nest may entail
30	either information transfer (hatched eggshells show that the site has been successful in
31	previous seasons) or direct physiological benefits (recently-laid eggs can enhance water
32	transfer from availability to other eggs). We tested the relative importance of these two
33	mechanisms in the three-lined alpine skink (Bassiana duperreyi Gray, 1838) by offering
34	gravid females a choice between sites with hatched eggshells versus freshly-laid eggs.
35	Females selectively oviposited beside fresh eggs. In this species, early-nesting females use
36	information transfer (presence of old eggshells) as a nest-site criterion, but later nesters switch
37	to a reliance on direct benefits of conspecific presence (presence of freshly-laid eggs).
38	
39	ADDITIONAL KEYWORDS: aggregation - oviposition site choice - proximate cues -
40	reproduction.

41

25

INTRODUCTION

43	In many animal species, individuals aggregate even when resources are widely distributed.
44	The costs and benefits of actively selecting sites that contain high densities of conspecifics
45	have attracted considerable research, much of it oriented around antipredator tactics
46	(Magurran & Higham, 1988; Magurran, 1990). Selecting an already-occupied site may
47	enhance fitness of the newly arriving individual either because of information transfer
48	(evidence that the site confers specific benefits, because of the traits of conspecifics already
49	there) or because of a benefit to conspecific presence per se (e.g., predator detection or
50	satiation: Brown, 1978; Krause & Ruxton, 2002; Uetz et al., 2002). The same two broad
51	eategories of explanations can be applied to many other cases of animal aggregation. For
52	example, communal egg-laying is very common in reptiles (known in > 480 species: Doody,
53	Freedberg & Keogh, 2009; Pike et al., 2010). This behaviour reflects active maternal
54	preference rather than being an accidental by-product of limited nest-site availability (Brown
55	& Shine, 2005; Radder & Shine, 2007). Although many adaptive advantages for communal
56	oviposition have been suggested (Graves & Duvall, 1995; Doody et al., 2009), most can be
57	divided into either information transfer (i.e., the presence of already-hatched eggs suggests
58	that this is an appropriate nest-site) or direct benefits (e.g., predator satiation;, metabolic
59	heating from other eggs;-, hydric exchange between adjacent eggs).
60	We can experimentally test between t <u>T</u> hese two hypotheses because they make different
61	predictions about the proximate cues stimulating communal oviposition. If information
62	transfer is most important, empty eggshells (which document successful hatching in a
63	previous season) should be more attractive than freshly-laid eggs; whereas if benefits of
64	physical exchange or simultaneous hatching are most important, freshly-laid eggs (which may
65	influence hatchling viability directly) should be more attractive than empty eggshells. We

Formatted: Font: Italic

3

66	conducted an experimental study to distinguish between these alternatives, using a montane	
67	scincid lizard.	
68		
69	MATERIAL AND METHODS	
70	STUDY SPECIES AND COLLECTION	
71	Bassiana duperreyi is a medium-sized (to 175 mm total length) scincid lizard that is widely	
72	distributed found in cool climate montane areas of southeastern Australia (Cogger, 2000). In	
73	the Brindabella Range 40 km west of Canberra, Australian Capital Territory (148°50'E,	
74	35°21'S; 1000–1800 m asl), females produce a single clutch of 3 to 9 eggs each year, during	
75	early summer (late November/early December: Shine, Elphick & Harlow, 1997; Shine, 1999;	
76	Shine & Elphick, 2001). Oviposition is highly-synchronous and concentrated in sun-exposed	
77	sites, typically clearings within the eucalypt forest (Shine, Barrott & Elphick, 2002; Telemeco	
78	<u>et al., 2010</u>). Nests are laid beneath rocks and logs, making it possible for investigators to	F
79	locate natural nests (Shine et al., 2002; Du and& Shine, 2010). Communal nesting is	
80	common; in the field at least 64% of nests are laid in communal nests, and in the laboratory	
81	77% of females selected nest-sites containing hatched eggs as opposed to alternative identical,	
82	but empty, nest-sites (Radder & Shine, 2007).	
83		
84	EXPERIMENTAL PROTOCOL	
85	We hand-collected gravid female skinks from the Brindabella Range in early December over	
86	three austral summers (November-December 2008, 2009, 2012; $n = 40$ females in total), and	
87	brought them back to the laboratory. One day later, the lizards were measured (snout-vent	
88	length, SVL) and individually marked using a non-toxic paint pen for identification. We then	
89	randomly assigned skinks to identical experimental enclosures $(n = 8)$, with two females per	
90	tub. These large tubs (60 x 40 x 20 cm) contained a sand substrate (2 cm deep), two water	

Formatted: Font: Italic

91	dishes, and three "shelters" (inverted square flower pot drip trays 12 x 12 x 2.5 cm, with a
92	small "door" cut out of one side to allow lizard ingress or egress). Shelters were evenly
93	spaced within each tub, and they were randomly assigned to three treatments: (1) "no eggs"
94	shelters contained a mound of moist vermiculite (-200 kPa) only, (2) "hatched eggs" shelters
95	contained a mound of moist vermiculite plus four hatched eggshells from the previous year's
96	hatchlings, and (3) "fresh eggs" shelters contained a mound of moist vermiculite plus four
97	recently-laid eggs (each marked to distinguish them from eggs laid by females in the
98	experimental tubs). Fresh eggs were obtained from gravid females that were not used as part
99	of this experiment, and eggs were replaced every few days to ensure that they were fully
100	hydrated and viable. Tubs were placed beneath mercury vapour bulbs set to a 14 hr on:10 hr
101	off light cycle that provided an average temperature in each tub of 32°C during the day,
102	falling to 20°C overnight. Temperatures were similar among the three types of shelters
103	(repeated-measures ANOVA on vermiculite temperatures beneath each shelter collected at
104	30-min intervals over a 24-h period; treatment effect: $F_{2,21} = 0.39$, $P = 0.68$; time * treatment
105	interaction: $F_{94,987} = 0.94$, $P = 0.63$). Gravid females were offered crickets twice weekly and
106	water was always available.
107	Tubs were checked twice daily for newly-laid eggs. We recorded which female laid the
108	eggs (based on maternal mass loss) and where the eggs were laid. Every day we rebuilt the
109	vermiculite mounds and re-moistened them. All females were released at their point of
110	capture within a month of collection.
111	
112	DATA ANALYSIS

Data were examined using the software program JMP 9.0 (64-bit edition; SAS Institute, Cary,
NC). We used a contingency table analysis to test the null hypothesis that females would lay
their eggs randomly with respect to available nest-site cues (i.e., no eggs, hatched eggshells,

6

116

or fresh eggs), and ANOVA to compare maternal body sizes between treatments. All data 117 conformed to the relevant assumptions of the statistical tests that were used. All pP-values are 118 two-tailed; we used an alpha level of 0.05 throughout.

Formatted: Font: Italic

119 120

RESULTS

121 All females laid their eggs beneath the shelters within nine days of commencing the

experiment. Gravid lizards selected nest-sites non-randomly ($n = 40, \chi^2 = 10.85, d.f. = 2, P < 10.85$) 122

123 0.01); most oviposited in the shelter containing freshly-laid eggs (Fig. 1a). If we restrict this

124 comparison to females that laid with freshly-laid eggs vs. hatched eggs, females nested

significantly more often with freshly-laid eggs ($\chi^2 = 5.12$, d.f. = 1, P < 0.05; Fig. 1b). 125

126 Maternal body size did not significantly influence nest-site selection ($F_{2,39} = 1.38$, P = 0.26;

127 mean SVLs per treatment range from 69.2 cm [with freshly-laid eggs] to 72.4 mm [in empty

128 shelters]), suggesting that maternal age (and hence, prior experience) did not influence these 129 results.

- 130
- 131

DISCUSSION

132 Radder and Shine (2007) showed that nesting Bassiana duperreyi prefer to lay their eggs in 133 sites with old hatched eggshells rather than similar sites lacking such cues; but the current 134 study shows that sites with freshly-laid conspecific eggs are even more attractive. Hence, 135 fitness benefits from the proximity of conspecifics may outweigh the advantages of 136 information transfer about previous events, if both cues are available. 137 Laying beside other eggs provides a direct fitness benefit in this species, because an 138 egg's physical contact with other eggs during incubation modifies water exchange and hence 139 enhances offspring viability (Radder & Shine, 2007). This direct link between oviposition 140 choice and offspring fitness thus-may favour a stronger maternal response to freshly-laid eggs

141	than to old eggshells. Hence, communal oviposition in our study species may have arisen as a	
142	result of both of the advantages/processes outlined in the Introduction. In the absence of other	
143	cues (as must be the case for females ovipositing early in each annual nesting season), a	
144	reproducing female selectively oviposits beside already-hatched eggshells (Radder & Shine,	
145	2007), and hence benefits through information transfer (that site was successful in previous	
146	years, so is likely to be successful again). Once some females have laid, however, their eggs	
147	confer a direct physiological benefit to the eggs of any later-ovipositing female (because of	
148	modified hydric dynamics within the nest: Radder & Shine, 2007) and thus, the proximate	
149	cues from newly-laid eggs become more important than cues from hatched shells.	
150	Communal oviposition might incur costs as well as benefits. For example, later-arriving	
151	females might disturb earlier-laid clutches, or the resultant high densities of hatchlings in	
152	small areas might exacerbate intraspecific competition (Doody <i>et al.</i> , 2009). Also, communal	Formatted: Font: Italic
153	nests might be easier for egg-predators to locate, especially if they are laid in the same sites	
154	year after year. Another potential cost involves the build-up of pathogens and parasitoids that	
155	may accumulate in the soil and attack eggs laid in subsequent years (by fungi in sea turtle	
156	nests - Patino-Martinez <i>et al.</i> , 2012; by beetles in snake nests - Blouin-Demers &	Formatted: Font: Italic
157	Weatherhead, 2000). However, hatching success of eggs is high in our study system (pers.	
158	obs.), suggesting that these potential disadvantages of communal oviposition are too weak to	
159	outweigh the advantages.	
160	Communal oviposition in the same sites year after year might incur costs as well as	
161	benefits. LOOK AT DOODY'S REVIEW ARE THERE OTHER COSTS IDENTIFIED???	
162	For example, the resultant high densities of hatchlings in small areas might exacerbate	
163	competition among those animals. In practice, high dispersal abilities probably minimize any	
164	impact of this factor for <i>Bassiana</i> . Also, local egg-predators might learn the locations of nests,	Formatted: Font: Italic
165	thereby increasing egg mortality. We have not recorded predation by vertebrates on <i>Bassiana</i>	Formatted: Font: Italic
105	mercely mercusing egg moranty. We have not recorded predation by vertebrates on passiana	

166	eggs however, so this is unlikely to be important in our study species. A third potential cost	
167	involves the build up of fungal pathogens, that could accumulate in the soil and attack eggs	
168	laid in subsequent years. This scenario has been documented in sea turtles, especially in	
169	repeatedly-used hatcheries (Patino-Martinez et al. 2012). ***DIDN'T WEATHERHEAD	F
170	RECORD THIS IN SNAKE NESTS TOO IN CANADA?? However, fungal infection of eggs	
171	appears to be rare in our study system (pers. obs.), again reducing the potential disadvantages	
172	of communal oviposition.	
173	Future work could usefully explore the proximate basis for maternal discrimination	
174	between empty nests versus those with old eggshells versus those with recently-laid eggs.	
175	Female insects can use chemical cues to detect the presence of freshly-laid eggs (e.g.,	
176	Laurence & Pickett, 1985; McCall, 1995), and female reptiles may have similar abilities. The	
177	lesser response to eggshells than eggs seen in the present study may simply reflect a disparity	
178	in the magnitude of stimulus, with eggs retaining a strong chemical signature for some period	
179	after oviposition. The diversity of reptile taxa that exhibit communal egg-laying suggests	
180	there will be equal diversity in both the proximate cues and adaptive forces that result in this	
181	behaviour (Doody et al., 2009). Maternal decisions about communal oviposition thus may	
182	offer an excellent model system in which to explore the relative importance of information	
183	transfer versus conspecific presence in eliciting animal aggregations.	
184		
185	ACKNOWLEDGEMENTS	
186	We thank the late Raju Radder for his inspirational input to our thinking about this topic; he is	
187	sorely missed. We also thank two anonymous reviewers for their helpful comments. The	
188	manuscript has been greatlyimproved by their input. The work was funded by the Australian	
189	Research Council, and conducted under approvals from the University of Sydney Animal	

8

Formatted: Font: Italic

190	Care and Ethics Committee (L04/7-2007/3/4665 and L04/8-2010/3/5361). Lizards were		
191	collected under ACT Parks and Wildlife Permits (LT2008298, LT2009355, and LT2012588).		
192			
193	REFERENCES		
194	Blouin-Demers G, Weatherhead PJ. 2000. A novel association between a beetle and a	_	Formatted: Font: Not Bold
195	snake: parasitism of <i>Elaphe obsoleta</i> by <i>Nicrophorus pustulatus</i> , <i>Ecoscience</i> 7: 395-		Formatted: Font: Not Bold, Italic
106			Formatted: Font: Not Bold
196	<u>397.</u>	\mathbb{N}	Formatted: Font: Not Bold, Italic
197	Brown GP, Shine R. 2005. Nesting snakes (Tropidonophis mairii, Colubridae) selectively		Formatted: Font: Not Bold
			Formatted: Font: Not Bold, Italic
198	oviposit in sites that provide evidence of previous successful hatching. Canadian		Formatted: Font: Not Bold
199	<i>Journal of Zoology</i> 83: 1134–1137.		
200	Brown JL. 1978. Avian communal breeding systems. Annual Review of Ecology and		
201	<i>Systematics</i> 9: 123–155.		
202	Cogger H. 2000. The reptiles and amphibians of Australia. Sydney: Reed Books.		
203	Doody JS, Freedberg S, Keogh JS. 2009. Communal egg-laying in reptiles and amphibians:		
204	evolutionary patterns and hypotheses. Quarterly Review of Biology 84: 229-252.		
205	Du W-G, Shine R2010 Why do the eggs of lizards (Bassiana duperreyi, Scincidae) hatch	_	Formatted: Font: Bold
206	sooner if incubated at fluctuating rather than constant temperatures?- Biological Journal		Formatted: Font: Not Bold, Italic
207	of the Linnean Society 101: 642-650.		
208	Graves BM, Duvall D. 1995. Aggregation in squamate reptiles associated with gestation,		
209	oviposition, and parturition. Herpetological Monographs 9: 102–119.		
210	Krause J, Ruxton GD. 2002. Living in groups. Oxford, UK: Oxford University Press.		
211	Laurence BR, Pickett JA. 1985. An oviposition pheromone in Culex quinquefasciatus Say		
212	(Diptera: Culicidae). Bulletin of Entomological Research 75: 283–290.		
213	Magurran AE. 1990. The adaptive significance of schooling as an anti-predator defence in		

fish. Annales Zoologie Fennici 27: 51-66.

Formatted: Font: Bold 220 J. 2012. How do hatcheries influence embryonic development of sea turtle eggs? Formatted: Font: Bold Formatted: Font: Bold Experimental analysis and isolation of microorganisms in leatherback turtle eggs. 221 Formatted: Font: Bold Formatted: Font: Bold 222 Journal of Experimental Zoology 317A: 47–54. Patino Martinez et al. 2012 Formatted: Font: Italic 223 Pike 3DA, Webb JK, Shine R. -2010. -Nesting in a thermally challenging environment: nest-Formatted: Font: Bold Formatted: Font: Bold 224 site selection in a rock-dwelling gecko, Oedura lesueurii (Reptilia: Gekkonidae). Formatted: Font: Bold Biological Journal of the Linnean Society 99: 250-259. 225 Formatted: Font: Not Bold, Italic 226 Radder RS, Shine R. 2007. Why do female lizards lay their eggs in communal nests? 227 Journal of Animal Ecology 76: 881–887. 228 Shine R. 1999. Egg-laying reptiles in cold climates: determinants and consequences of nest 229 temperatures in montane lizards. Journal of Evolutionary Biology 12: 918–926. 230 Shine R, Elphick MJ. 2001. The effect of short-term weather fluctuations on temperatures 231 inside lizard nests, and on the phenotypic traits of hatchling lizards. Biological Journal 232 of the Linnean Society 72: 555–565. 233 Shine R, Barrott EG, Elphick MJ. 2002. Some like it hot: effects of forest clearing on nest 234 temperatures of montane reptiles. Ecology 83: 2808–2815. 235 Shine R, Elphick MJ, Harlow PS. 1997. The influence of natural incubation environments on the phenotypic traits of hatchling lizards. *Ecology* **78**: 2559–2568. 236 237 Telemeco R, Radder RS, Baird TA, Shine R. -2010. -Thermal effects on reptile 238 reproduction: adaptation and phenotypic plasticity in a montane lizard.- Biological 239 Journal of the Linnean Society 100: 642-655.

215 Magurran AE, Higham A. 1988. Information transfer across fish shoals under predator

216 threat. Ethology 78: 153-158.

217 McCall PJ. 1995. Oviposition aggregation pheromone in the Simulium damnosum complex.

218 Medical and Veterinary Entomology 9: 101–108.

219 Patiño-Martínez J, Marco A, Quiñones L, Abella E, Muriel-Abad R, Diéguez-Uribeondo

Formatted: Font: Bold Formatted: Font: Not Bold, Italic

10

Formatted: Font: Bold

240 Uetz GW, Boyle J, Hieber CS, Stimson Wilcox R. 2002. Antipredator benefits of group

- 241 living in colonial web-building spiders: the 'early warning' effect. *Animal Behaviour*
- **63:** 445–452.

243

FIGURE LEGEND

247	Figure 1. A gravid lizard (Bassiana duperreyi) laying her eggs with the fresh eggs already
248	present beneath the experimental shelter (A), and the percentage of female lizards laying in
249	each shelter type (B). Dashed line at 33% indicates the percentage of females expected to lay
250	eggs in each treatment under the null hypothesis that females do not actively select nest-sites.
251	Females nested significantly more often in sites with freshly-laid eggs than in sites with no
252	eggs, or older eggshells (see text for analyses).
253	