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Abstract

Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic
ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one
challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how
far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North
America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already
the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i)
to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of
invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential
distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained
from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current
range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas
of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between
USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv
showed only limited changes compared with the current potential distribution. These results allow detection of potential
contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of
suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about
possible means of spread, focusing on different geographical scales.
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Introduction

One of the most important human impacts on a wide range of

ecosystems is the introduction of alien species (e.g. [1–4]), this

being a problem of particular concern in aquatic ecosystems [5,6]

with possible impacts at different levels of organisation [7]. Alien

species are a non-random subset of the aquatic biota and, although

insects dominate the world’s freshwater ecosystems, they are

almost unrepresented in the lists of alien species [8,9]. In this sense,

examples of the distribution, major impacts and vectors of invasive

plants, fishes, mollusc and decapods are quite numerous (see [9]

and references therein). However, the scientific knowledge on alien

aquatic insects and their effects on biodiversity and ecosystems

processes is very scarce. This is especially true for species

considered to be of little importance for the economy and the

general public [10].

Trichocorixa verticalis verticalis is one of the few strictly aquatic

insects (i.e., all their life cycle stages are aquatic) that can be

considered as an ‘‘alien’’ species because it has been moved outside

of its native range, following the definitions of Rabitsch [11] and

Strayer [9].

Trichocorixa verticalis verticalis (Fieber, 1851) (hereinafter Tvv) is a

small corixid (Hemiptera) (,5.5 mm) originally distributed in

North America and the Caribbean islands. However, this boatman

has been recorded as an alien species in South Africa, New

Caledonia, Morocco, Portugal and Spain, being the only water

bug recognized so far as an alien species in Europe [11,12]. The

invasion of Tvv seems to be more widespread in the Palearctic,

where it has been present in the Iberian Peninsula since at least
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1997 and was first reported in Andalucı́a (Spain) by Günther [13].

It has since been recorded from various areas of southern Portugal

[14], south-west Spain [15–17 and Authors unpublished data] and

Morocco [18].

The success of this corixid as an alien species has been mainly

attributed to its capacity: i) to live in brackish and saline waters in

both the juvenile and adult phases [19], ii) to be passively-

transported [20], and iii) to survive partial desiccation, extreme

salinity or freezing in the egg stage [21]. Although this species is

considered euryhaline [20,22], it usually inhabits highly mineral-

ized water bodies like ponds or coastal wetlands. Furthermore, Tvv

is the only corixid found in the open sea [23]. Adults of Tvv also

have a good ability to fly overland, which is likely to explain their

colonization of closed-basin lakes in south-west Europe (e.g.

numerous isolated lakes and temporary ponds throughout

Andalusia [16]).

Whether this corixid is causing loss of native aquatic inverte-

brate populations is still partially unclear and under study, but it is

the dominant hemipteran in many of the invaded sites where it is

found [16,17] and where it reproduces it is more abundant than

native corixids [16]. Thus, the establishment of this species out of

its native range could be considered as a threat to aquatic

biodiversity, especially for local corixid species. This species also

has the potential to cause major changes across food webs via

trophic cascades, being one of the few predators that can survive in

highly mineralized aquatic ecosystems [24].

Since prevention of invasions is the most cost-effective way to

avoid biodiversity loss and nature conservation problems [25,26],

one challenge in biological invasions is to understand the limits of

the fundamental niche of the species, since this information allows

us to map the set of places where the species might inhabit (i.e., the

potential distribution). Identification of environmentally suitable

areas for invasive species can offer great opportunities for

preventing or slowing invasions [27,28]. For this purpose,

ecological niche modelling has recently been used to identify the

potential distributions of a number of invasive species and provide

information to decision-makers (e.g. [29–31]). These models are

designed to identify the environmental conditions in which species

can maintain populations, and then to project these suitable

conditions into geographical space, leading to spatial hypotheses

on potential distribution (e.g. [30,32]). These models are often

coupled to climate-change models to predict how the geographic

ranges of species could shift following changes in environmental

conditions (e.g. [33–37]).

This study aims to estimate the potential distribution of Tvv

according to the conceptual and methodological guidelines

proposed by Jiménez-Valverde et al. [38]. We used complemen-

tary techniques (derived from distribution and physiology) to

obtain areas of potential distribution of Tvv (i.e., zones with

invasion risk at a global scale), taking into account both current

and future climatic conditions (a climate change scenario for the

year 2100).

This study represents the first attempt to estimate potential

areas of invasion by Tvv and may be considered a useful tool to

understand and prevent future invasions of this taxon in aquatic

ecosystems worldwide.

Methods

Different modelling methods may be arranged along the

gradient of potential-realized distribution according to their ability

to model any concept (potential distribution refers to the places

where a species could live, while realized distribution refers to the

places where a species actually lives; see Jiménez-Valverde et al.

[39]). Since the required complexity of the modelling technique

strongly depends on the precise aims, in this study we decided to

use a multidimensional-envelope procedure (MDE) because it

provides a picture close to the potential distribution (not the

realized one; see Araújo & Peterson [40] for a review on uses and

misuses of this procedure).

When estimating species’ fundamental niches, single procedures

are likely to misrepresent the true range of climatic variation that

those species are able to tolerate [41], and it is recommendable to

consider multiple methodologies [42]. Here, the potential distri-

bution of Tvv was estimated applying a multidimensional envelope

procedure (MDE) based on both i) climatic data obtained from

observed occurrences, and ii) thermal physiological data derived

from experimental analyses. Potential distributions can be briefly

considered here as the regions in which the climatic conditions are

suitable for a species, according to its observed occurrences and

physiological limits ([38,43], for details).

Estimating Potential Distribution from Occurrences (PDO)
We used an established procedure which maximizes the

capacity to represent geographically the potential distribution of

a species based only on distributional data [30,38,44].

Biological and Climatic Data
Because species distribution models that do not incorporate

global data could misrepresent potential distributions [44], we

compiled all available distributional data of Tvv from the literature.

This included published records in more than 100 years of

research (1908–2011), unpublished data from sampling in invaded

areas (mainly the Iberian peninsula), and data from environmental

agencies’ reports and the GBIF (Global Biodiversity Information

Facility, [45]). Records with taxonomic uncertainties, or doubtful

or imprecise localities, were not considered in the development of

predictive maps. The dataset gathered contained 152 records

(species/date/locality) for Tvv, including both native and invaded

zones (Fig. 1). As the spatial units for this study were grid cells at a

resolution of 0.4u, these records were summarized in a total of

thirty occurrences (0.4u grid cells).

Climatic data were obtained from WORLDCLIM, version 1.3

(http://www.worldclim.org) [46]. WORLDCLIM contains cli-

matic data obtained by interpolation of climate station records

from 1950–2000. Nineteen climatic variables were used as

predictors (see Table S1 in Supporting Information). Data from

all these variables were extracted at the same resolution (0.4u) as

biological data.

Selecting Relevant Variables and MDE Procedure
We used a multidimensional envelope procedure (MDE) to

obtain a map with the potential distribution of Tvv. Firstly, and

because MDE procedures are highly dependent on the number of

selected predictors [47], we estimated climatic variables consid-

ered to be relevant for the species distribution. The minimum set

of climatic variables needed to explain the occurrence of Tvv was

calculated using ecological-niche factor analysis in the Biomapper

package (ENFA; [48,49]). This procedure computes uncorrelated

factors that can explain both species marginality (the distance

between the species optimum and the average climatic conditions

in the study area) and specialization (the ratio of the ecological

variance in the climate of the study area to that associated with the

focal species). Factors were retained or discarded based on their

eigenvalues relative to a broken-stick distribution [48]. Climatic

variables selected as relevant predictors were those showing the

highest correlations (factor scores .0.30) with the retained ENFA

factors.

Current and Future Potential Distribution of Tvv
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Then, the maximum and minimum scores (extreme values) for

all these relevant climatic variables were calculated in all cells with

observed presence of Tvv, selecting as suitable grid squares all

those with climatic values falling within that range and designating

as unsuitable all cells outside it. Distributional information from

both the native range and invaded regions is recommended to

improve prediction maps [38,50]. Thus, the extreme values were

used to derive a binary distributional hypothesis about the areas

having climatically suitable conditions (potential distribution),

assuming that recorded occurrences reflect the full spectrum of

climatic conditions in which the species can survive and

reproduce. Then a map with the potential distribution (PDO) for

Tvv was obtained.

Estimating Potential Distribution from Physiological Data
(PDPH)

The potential distribution of a species can be considered to be

the regions in which the climatic conditions fall within its thermal

limits. Data on upper thermal limits (UTL) and lower thermal

limits (LTL) were used to define Tvv’s thermal biology. These

thermal limits were assessed by means of thermal ramping

experiments (Coccia et al. unpublished data) and were obtained

considering the extreme values from different combinations of

temperature and conductivity during acclimatization.

These values were considered because they are the most reliable

and repeatable measures of thermal limits in aquatic insects.

Following the same procedure as above, suitable grid squares were

considered as all those meeting two conditions: i) lower value of

‘‘maximum temperature of the warmest month’’ (MaxTWM) than

UTL and higher value of ‘‘minimum temperature of the coldest

month’’ (MinTCM) than LTL; i.e., the thermal values falling

within the range designated as suitable by physiological experi-

ments. In the same way, following the same procedure as above, a

binary potential distribution map was derived from these

physiological thermal limits (PDPH).

Refining the Potential Distribution Map
To be conservative, we combined the potential distribution

maps showing the climatically inhabitable areas for Tvv using both

methods into a single map (PDCL). This new map showed all areas

than can be considered as climatically suitable for Tvv (under

current climatic conditions), considering at least one of the two

procedures used (PDCL = PDO+PDPH). Then, as this species

mostly inhabits water bodies related with coastal environments,

the PDCL map was refined using altitude data as a surrogate of

marine-related environments. Therefore, we removed all areas

(grid cells) that presented an altitude higher than the highest

altitude at which the species has been detected. We thus obtained

a final potential distribution map (PDCR) showing the climatically

suitable (under current conditions) lowland areas (Fig. 2).

Climatic Optimum Distances
To obtain a continuous value of climatic suitability within the

PDCR, we calculated Mahalanobis distances (a measure of

Figure 1. Current known distribution of Trichocorixa verticalis verticalis. Map of native (triangles) and invaded (circles) distribution areas of
Trichocorixa verticalis verticalis, with a close-up of the Iberian Peninsula and Morocco.
doi:10.1371/journal.pone.0059757.g001

Current and Future Potential Distribution of Tvv
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multidimensional non-Euclidean distance, MD) from each cell to

the mean of the hypervolume of the selected variables, with

reference to the species presence records. This procedure has been

widely used in spatial ecology (e.g. [51,52]). The same predictors

selected by ENFA were used to obtain MD. This process has

previously been proposed as a useful tool to estimate area

favourability for a species [53], and was carried out using Statistica

8.0 software [54]. Thus, the final representation of the potential

distribution for Tvv is a map with continuous values of

favourability (or climatic suitability) within its potential distribu-

tion, ranging from 0 (low suitability) to 100 (high suitability) (Fig. 3).

Future Potential Distribution
The extreme values found above (those obtained from both

current distribution and physiology) were projected with respect to

a future climate scenario, to estimate the potential dynamics of

invasion risk areas through time (i.e., combining current (PDCR)

and future (PDF) model outputs, see Fig. 4). Effects of climate

change on the potential distribution were predicted considering a

climate change Community Climate Model scenario (CCM3) for

the year 2100. This prediction assumed a scenario of CO2

duplication in the atmosphere [55], and is approximately

equivalent to the average of the current scenarios proposed by

The Intergovernmental Panel on Climate Change [56]. Projected

changes in aquatic habitats under climate change are based on the

fact that land-based variables could be representative of climatic

conditions found in inland waters, since the temperatures in these

two systems are strongly correlated [57,58], especially in shallow

waterbodies in lowland areas [59] where Tvv lives.

Figure 2. Current potential distribution. Map of worldwide potential distribution of Trichocorixa verticalis verticalis based on current climatic
conditions.
doi:10.1371/journal.pone.0059757.g002

Figure 3. Climatic suitability within the current potential distribution. Map of worldwide current potential distribution of Trichocorixa
verticalis verticalis. showing the climatic favorability from red (very high suitability) to light blue (very low suitability). These values were calculated
applying Mahalanobis distances within the area defined in Fig. 1.
doi:10.1371/journal.pone.0059757.g003

Current and Future Potential Distribution of Tvv
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Results

Potential Distribution Under Current Climatic Conditions
Isothermality (BIOCLIM3) and Temperature Annual Range

(BIOCLIM7) were the most relevant climatic variables identified

by ENFA, and therefore these variables were used in the MDE

procedure. Isothermality is defined by the relationship between

Mean Diurnal Range and Temperature Annual Range, and is a

quantification of how large the day-to-night temperature oscilla-

tion is in comparison to the summer-to-winter oscillation (see

[46]). Both variables presented negative signs, indicating that Tvv

preferably inhabits aquatic habitats in areas with relatively

constant temperature and with limited variation during the year.

These climatic preferences are generally related to coastal areas,

where the physical properties of the sea allow a smoothing effect of

extreme temperatures.

Tvv presented a broad potential distribution under current

climatic conditions (PDCR) around the world (see Fig. 2). This

corixid seems to have inhabitable conditions in temperate areas,

mainly in coastal areas where Isothermality and Temperature

Annual Range are generally limited (Fig. 3). Nevertheless, broad

areas in South America, Australia, Asia and Europe present a priori

suitable conditions for the establishment of the species. Within this

PDCR, the areas with higher suitability are coastal areas of Europe

(including the Mediterranean islands), Turkey, Tunisia, Egypt,

Myanmar, India, Argentina, Uruguay, Australia, New Zealand,

the western boundary between USA and Canada, some areas of

the Arabian Peninsula and the Persian Gulf (see Fig. 3).

Potential Distribution Under Climate Change
Under the CCM3 scenario, the future climatic suitability of Tvv

is very similar to the current potential map (Fig. 4). In general, it

seems that the potential dynamics of invasion risk areas through

time will be low, since almost all potential cells were maintained,

with only a few additions and subtractions. In this sense, the

models estimated an expansion towards higher latitudes that is

visible mainly in Eastern Europe and Asia (e.g., the Baltic

Republics and Ukraine), and to a lesser extent in North America.

At the same time, this shift towards northern latitudes was

accompanied by a reduction of suitable areas in Africa (mainly

Algeria), and the loss of suitability in some cells of North America

(USA and Canada).

Discussion

Areas of Risk Invasion and Conservation Implications
The potential distribution maps produced here represent the

first attempt to estimate the global potential distribution of the

alien boatman Trichocorixa verticalis verticalis. The most effective way

to deal with introduced species, short of keeping them out, is to

discover them early and attempt to eradicate or at least contain

them before the extent of spread and proliferation reaches the

critical threshold [60,61]. Among our findings, one of major

concern is the detection of areas highly suitable for Tvv in global

biodiversity hotspots. Areas like the Mediterranean basin, North-

ern Africa, New Zealand, the Indo-Burma Region and, to a lesser

extent, the Atlantic forest in South America, are particularly

important given the high suitability of invasion for Tvv. These

areas are considered important for worldwide conservation

according to different global biodiversity priority templates such

as the biodiversity hotspot concept [62], crisis ecoregions [63] and

Global 200 biologically valuable ecoregions [64]. Our results are

useful for detecting the potential connection zones between the

current distribution areas (native or invaded) and other suitable

areas. These zones should be kept under observation as the most

likely future areas of invasion. Thus, major efforts (sampling

programs, trade vigilance, biomonitoring efforts) are recom-

mended to prevent future invasions of aquatic ecosystems in these

potential areas, especially in high-risk potential contact zones (e.g.

coastal wetlands in France, Italy, some areas of Northern Africa

and numerous Mediterranean islands).

Western Europe has been already highlighted as a recipient

area sensitive to invertebrate biological invasions [65,66]. Strictly

within the Mediterranean basin; it is interesting to note that there

are so far few records of Tvv. To date records nearby are

concentrated in Andalusian wetlands (Spain), the Algarve

(Portugal) and in the Atlantic coast of Morocco, all to the west

of the Strait of Gibraltar. However, samples from the Smir

Figure 4. Future potential distribution of Trichocorixa verticalis verticalis. This map shows the worldwide future potential distribution of
Trichocorixa verticalis verticalis. Predictions were based on the Community Climate Model scenario (CCM3) for the year 2100. The concordance
between current and future periods is shown in green. Areas labeled in brown are new areas with environmental suitability for future conditions,
while yellow cells represent areas where suitable climatic conditions are predicted to be lost in the future.
doi:10.1371/journal.pone.0059757.g004
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wetland (eastern Morocco; L’Mohdi et al. [18]) within the

Mediterranean basin support the possibility that this corixid can

colonize extensive areas within this basin. In Spain, Portugal and

Morocco, numerous records are from protected areas such as

National Parks (Doñana National Park, Southern Spain), Ramsar

sites (Andalusian and Moroccan wetlands) or nature reserves

(Algarve, Portugal). Biological invasions in protected areas are of

global concern [67,68] and illustrate the difficulty of managing

and controlling alien species, especially invertebrates.

Invasive species coupled with climate change represent two of

the most pervasive aspects of global environmental change [69].

Generally, at regional scales, a shift of species’ ranges towards

higher altitudes and latitudes in accordance with their thermal

preferences represents the most expected ecological impact of

climatic change [70], as detected for several aquatic macroinver-

tebrates [71]. However, in the case of Tvv, potential dynamics of

invasion risk areas (Fig. 4) considering future climate changes seem

to be quite limited. This may be due to the low variability in the

climatic conditions of the coastal areas and also because this

species seems to have limited capacity to colonize water bodies in

areas at high altitude. However, this restriction appears more

related with habitat availability than with the apparently wide

thermal tolerance of Tvv. Nevertheless, further experiments are

needed to confirm the sensitivity response to temperature changes

of this species.

Possible Ecological Impacts and Means of Dispersal
Although insect species are extremely rare among aquatic

invaders [8], Tvv presents traits that enable it to be an important

aquatic insect invader: wide potential distribution (also in a climate

change context), close relationship to coastal and transitional

ecosystems which are less sensitive to drought [19–22], ability to

exploit habitats with a high level of human impact [17], and

possible capacity to be passively-transported by ships or birds (as

eggs, larval and adult stages).

Humans have historically facilitated the spread of aquatic

invasive species through intentional stocking, infrastructure

construction, releases from aquaria and trade routes [72].

International trade has been reported to be among the most

important vectors of alien species [73]. Recently, Diez et al. [74]

suggested that extreme climatic events, like strong winds, large

waves and high-magnitude storms, may further promote the

transport, introduction and establishment of non-native species,

since these events often create resource pulses that non-native

species are able to utilize. Furthermore, migratory waterbirds are

another plausible means by which invertebrates can colonize new

areas [75].

In this sense, several studies have considered two potential

means of dispersal for Tvv: one at an intercontinental scale (e.g.,

from America to Europe or Africa), and another at a more local

scale (e.g., from Spain to Morocco and vice-versa or among

nearby wetlands). Some studies have suggested that the presence of

this corixid outside its native zone may be explained by the

introduction of the fishes Gambusia affinis, especially in South Africa

and New Caledonia [76,77], or Fundulus heteroclitus, particularly in

Spain (SW Europe) [14]. However, the maritime trade, which

represents 90% of international trade [78], may potentially play a

crucial role in dispersing Tvv. Ships can transport entire coastal

organism assemblages across oceanic barriers and into bays,

estuaries, and inland waters [79,80]. Alien invertebrates are often

transported on the surface of container ships or inside containers,

as well as in ballast waters or attached to submerged objects

including ballast tanks [81–83]. Invertebrate propagules may

suffer extreme conditions during transport [84], but the wide

thermal and salinity tolerance [19 and Coccia et al. unpublished

data] of Tvv, together with its capacity to survive partial

desiccation and to overwinter at the egg stage [21,85], may allow

it to survive in these environmental conditions.

Furthermore according with the BWM Convention [86] ships

entering Mediterranean waters from the Atlantic Ocean (Straits of

Gibraltar) should undertake ballast water exchange before

entering the Mediterranean Sea. This procedure could be another

option to explain the Atlantic records of Tvv in invaded zones

(Portugal, Spain and Morocco).

Our results suggest that major maritime trade routes between

commercial harbours, especially in the Atlantic (e.g., New York,

Buenos Aires), as well as in Europe and Asia [87], are potential

routes of Tvv spread. In the era of trade globalization and

intensification of shipping trade, this dispersal mechanism is likely

to be especially important in countries with emerging economies

such as India, United Arab Emirates and China. Their rapid

economic development, including an explosive growth in interna-

tional trade, has already increased the potential for new

introductions [88]. These new and relevant links in international

trade may affect pathways for the spread of aquatic alien species,

particularly euryhaline ones from coastal and transitional aquatic

ecosystems, such as Tvv. Gaps in border controls were demon-

strated to be related to alien insect invasions [89], so major efforts

in terms of trade vigilance and ballast water management are

recommended to prevent future spreads of Tvv.

Small-scale dispersal of species is mainly due to natural means

such as passive transport by wind [20] or migratory waterbirds

[75,90]. Waterbirds have already been shown to disperse dipterans

[91,92], and corixid eggs can be abundant in their faeces within

the Tvv range [93], although their viability after gut passage has

not been assessed. Birds could accelerate spread across high-risk

potential contact zones between currently invaded areas (e.g.,

Spain and Morocco) and potential areas of invasion with high level

of suitability, such as coastal wetlands of France, North Africa, and

Mediterranean islands. Large numbers of migratory waterbirds

move through SW Spain and Morocco [94], making this flyway a

potential major invasion route for Tvv between Africa and Europe.

Moreover, invasion of alien species is considered among the

major threats to wetland ecosystems in a worldwide context, also

under future global change [95]. Whether this species is

contributing or not to the loss of aquatic macroinvertebrate

populations in some ecosystems is still under study [17], but it is

already the dominant species in several invaded saline wetlands

[16]. Furthermore, environmental disturbances generally influence

the invasion success of aquatic organisms [96], and Tvv appears to

be better than native corixids at coping with human impacts and

exploiting artificial wetlands [17]. In this sense, and considering

the wide potential geographic range and possible capacity to be

passive-transported, the establishment of this species outside of its

native range may be considered as a threat to aquatic macroin-

vertebrate biodiversity, especially to native corixid species.

A negative impact on other invertebrates is also possible. Tvv is

the only corixid present in several salt pan complexes in south-west

Spain, and research in its native range shows it has the potential to

limit the distribution of brine shrimp Artemia, the dominant grazer

regulating phytoplankton abundance in these hypersaline systems

[24]. Given the extensive overlap between the predicted distribu-

tion of Tvv and the current distribution of Artemia at a global scale

[97], the spread of Tvv has the potential for a major impact on the

distribution and abundance of brine shrimp.

Current and Future Potential Distribution of Tvv

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e59757



Prospects for the Future
Strong efforts are required to survey carefully the aquatic

ecosystems in areas that are suitable for Tvv, according to our

models. In many parts of the world, little attention is paid to

corixids, and Tvv is still not present in taxonomic keys used outside

North America. For this reason, it is likely that many existing

populations outside the native range have so far been overlooked.

Indeed, retrospective study of old samples confirmed that Tvv has

been in the Iberia peninsula since at least 1997, but no one

realized it was present prior to Günther [13]. The maps provided

by this study can be used as a tool (combined with new field

research) to reduce uncertainty in geographically or taxonomically

questionable records coming from areas identified as suitable by

our model. This could be the case of Trichocorixa verticalis reported

without subspecies level (Tv) in Cuba [98] or Western Canada

[99], since our maps have shown these areas to be highly suitable

for Tvv presence (Fig. 2). Others records of Tv were recently

reported in saline wetlands of north-western Iran [100], which our

maps did not detect as a suitable area for Tvv invasion. These

records necessarily require more research effort to clarify

taxonomic doubts at the sub-species level, as correct taxonomic

information is crucial for modeling studies on invasive species.

Once these records (or new future records) are confirmed, they can

be incorporated into our model to improve estimates of Tvv

potential distributions.

On the other hand, genetic studies are advisable to establish

whether the populations in South Africa and New Caledonia, or

Europe and Africa, have a common origin, and clarify whether

there have been multiple introductions from the native range.

Furthermore, genetic studies are also required to clarify the

separation of Tv into subspecies, and to address possible

differences in their capacities to be invasive.
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Paniagua C, et al. (2009) Monitoring the invasion of the aquatic bug Trichocorixa

verticalis verticalis (Hemiptera: Corixidae) in the wetlands of Doñana National Park
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