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Abstract

The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-
associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple
weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite
various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum
hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-
based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions
to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found
strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria
pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential
(represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and
intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning
classifier achieved ,72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30,
2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size,
sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via
qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics
of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak
preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian
decline.
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Introduction

Amphibian chytrid fungus, Batrachochytrium dendrobatidis (hereaf-

ter Bd), is the infective agent of the pandemic amphibian disease

chytridiomycosis [1], which has been implicated in global

amphibian declines and extinctions [2–4]. Seasonal and eleva-

tional variation in the presence and prevalence of Bd has long

implicated temperature as an important mechanistic feature of

chytridiomycosis epidemiology, with infections and mortalities

more frequently observed in cooler climes and periods [1,5–9].

Laboratory cultures confirm temperature dependent growth; Bd

can survive freezing in media used for cryo-archiving (but stops

growing), grows slowly at low temperatures, grows well between

17–25uC with a peak at 23uC, but growth stops at 28uC and death

is observed at 30uC [5,10–12].

The above growth studies and in vitro thresholds have been used

by many researchers to retrospectively interpret patterns of

infection (and in some cases declines) [13] with respect to the

optimal temperature range over which Bd grows in the laboratory

(e.g., [6,9,14]). However, despite the tremendous attention this

topic has received in the Bd literature, quantitative process-based

models underlying the proposed relationships between pathogen

growth, disease prevalence, intensity of infection, mortality and

ultimately population decline and extinction remain poorly

explored (but see [15,16] for simulation modelling of transmission

dynamics and an address of historical amphibian declines,

respectively). For example, knowledge on Bd’s responses to

temperature has not been explicitly used for the prediction of

disease outbreaks in wild settings, which could potentially be

valuable for the design of surveillance and management actions.
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This may in part be due to the complexity observed in many

systems, as a large number of variables other than temperature

have also been reported to influence patterns of Bd infection. For

example, presence and prevalence of Bd in wild hosts reportedly

varies with species, life-stage, year and body size [5–9,17,18].

Detecting a signature of climate (e.g., seasons) and weather (i.e.,

shorter-term fluctuations in climatic variables such as daily

maximum temperature) in the epidemiology of chytridiomycosis

is thus complicated not only by the study system and metric used

(i.e., infection status, infection intensity, host mortality, population

decline/extirpation, extinction) but also by species-specific re-

sponses (e.g., differential susceptibility/immunity), invasion history

and disease dynamics [3,15,16,19,20] and the numerous other

factors that may influence infection (e.g., host density, breeding

behaviour, predator fluctuations, and so on). The ‘thermal-

optimum hypothesis’ [13], for example, as applied to the study

of population declines (see also [16]) does not explicitly include the

potential effects of other climatic drivers (some of which may

nevertheless co-vary with temperature), such as moisture avail-

ability, that have also been correlated with Bd occurrence or

prevalence in field-based disease investigations (e.g., [6,9,20–22]).

Herein we devise a novel test of what we term the ‘weather-

linked Bd proliferation hypothesis’ for endemic chytridiomycosis.

Under this hypothesis, the dynamics of Bd infections are strongly

influenced by weather-driven pathogen growth within the

population. In contrast to previous studies that have descriptively

employed ‘thermal optima’ type models to help interpret patterns

of infection, our a priori aim was to empirically test our hypothesis

by quantifying the contribution that simulated weather-linked Bd

proliferation makes to the dynamics of chytridiomycosis in wild,

endemically infected amphibians. To do this, we developed

a corresponding ‘weather-linked Bd proliferation model’ to

simulate the growth of Bd under varying conditions. Our model

is thus process-based and predictive, based primarily on eco-

physiological data and narrowly focussed on an initial step in the

epidemiological chain, pathogen growth. In this context, it is

important to recognise that simple microparasite compartmental

models that classify individuals as susceptible, infected or resistant

(Anderson and May 1979) are of limited value for chytridiomy-

cosis. The parasite burden on the individual host appears to be of

critical importance in relation to both pathogenicity and trans-

missibility and therefore has characteristics used to model

macroparasites [15].

Three testable predictions follow from the ‘weather-linked Bd

proliferation hypothesis’ that together form the foundation of this

study. Prediction 1: simulated Bd growth should be positively

related to individuals’ intensities of infection across space and time

because frogs represent an ectothermic growth medium for Bd

[23–25]; Prediction 2: mean intensity of infection in individuals

should be positively related to the disease prevalence within

a population because transmission/infection dynamics will be

dependent upon the number of dispersing zoospores present in the

population; and Prediction 3: simulated Bd growth should thus

also be useful for predicting, and be positively related to, the

probability of an individual being infected at the time of sampling.

In practice, our predictions were tested in reverse order

throughout for increased conservatism and broader applicability

given previous studies and limitations of the available data (see

‘‘Prediction testing overview’’ in Methods for further detail). In

resolving the utility of the weather-linked Bd proliferation

hypothesis for the prediction of Bd infection patterns, we provide

a novel means for improving current surveillance (including

tailoring sampling for Bd to sites and times of enhanced

detectability) and management actions (such as outbreak pre-

paredness and response; for example, under future climate change

scenarios).

Methods

Weather-linked Bd Proliferation Model
The process-based proliferation model was developed in the

program CLIMEX [26,27]. The parameters used in the model

together define the species’ response to multiple climatic variables,

including temperature and soil moisture availability. The soil

moisture index integrates the effects of rainfall and evapotranspi-

ration, simulating effective rainfall. In concert with temperature,

this has been shown to be closely associated with habitat-defining

factors such as vegetation [27]. A weekly growth index (GIW)

determines the potential for the Bd population to increase during

favourable periods for a given climate dataset. The GIW (range 0–

1) was calculated on interpolated weather data for each site and

sample (source: Australian Bureau of Meteorology Data-drill

database; http://www.longpaddock.qld.gov.au/silo/). It is the

product of the temperature and soil moisture indices (TI*MI),

which are each formulated in accord with Shelford’s law of

tolerance [28], which posits that the success of an organism is

based on a complex set of conditions such that each individual or

population has a minimum, maximum, and optimum for each

factor or combination of factors that determine success. The TIW
and MIW together describe the range over which growth is

possible and the range over which growth is optimal. The

combination of the temperature and soil moisture indices accords

with the principal that the resource in shortest supply provides the

greatest limitation on the growth of a species [29]. CLIMEX (and

its GIW) has been used extensively in pest risk analysis and

biological control studies and has been useful in modelling the

growth, distribution and impacts of numerous insects, plants and

vertebrates [27,30].

Temperature parameters were derived from experiments

presented in the literature. We first plotted a ‘thermal performance

curve’ of the maximum growth rate (increase in optical density

value per day of growth) observed in the data of Piotrowski et al.

[12]. We fitted these data with a quartic polynomial function

(Figure A1a in Appendix 1 in Materials S1), which showed a good

fit with high predictive value (R2 = 0.93), was biologically realistic

(performance curve shaped) and was minimally complex (mini-

mum parameters) [31] (for similar approaches, see [16,32]).

CLIMEX uses a plateau-shaped thermal function to approximate

the typical quadratic response function such as that observed here.

The curve is defined by the terms T0 (growth stops), T1 and T2

(between which growth is optimal) and T3 (growth stops). We

estimated T0 and T3 from where the fitted polynomial function

intersected the x-axis to the nearest half degree (3uC and 29uC,
respectively). The optimal performance temperature range was

estimated by combining observations from Piotrowski et al. [12]

and Woodhams et al. [33]. Lower optimal temperature (T1) was

adjusted to 10uC to accord with Woodhams et al. [33] who

demonstrate that Bd maintains relatively high population growth

at low temperatures via life-history trade-offs, which see increased

zoospore production as sporangium maturation rate decreases.

The upper optimal temperature (T2) was set to 25uC to accord

with Piotrowski et al. [12] (see Figure A1a in Appendix 1 in

Materials S1 for further details). Our model assumes that

temperature-dependence observed in media translates to Bd

growth in the skin of amphibian hosts. This is a reasonable

assumption given that amphibians are ectothermic; however, it is

possible that some factors that could not be included in our model,

such as temperature-dependent host responses or immunity (e.g.,

Weather Driven Chytridiomycosis Dynamics
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[32]), may also influence the growth of Bd in skin. We further

assume that growth rate at a constant temperature is an adequate

predictor of the growth rate in the environment at an equivalent

mean temperature.

Little information is available regarding Bd’s response to

rainfall/soil moisture. Occurrence patterns indicate that sufficient

rainfall is an important factor governing Bd distribution [20,22]

and Kriger et al. [21] report higher prevalence and intensity of

infections at sites with higher rainfall. We regarded this as an a priori

reason to suspect that moisture availability plays a key role in Bd

proliferation. Potential mechanisms for this may include direct

effects of moisture on the proliferation of Bd on skin, perhaps by

enhancing intra-host transmission of infective zoospores which

result in self reinfection, and/or by enhanced inter-host trans-

mission by route of the aquatic zoospore [34–38]. In the absence

of further information that can be used directly to parameterise the

model, a feature of CLIMEX is that it enables the user to infer

a species’ average response to moisture availability based on

knowledge of its geographic pattern or abundance [27]. Soil

moisture parameters were thus estimated by adjusting the

‘temperate species’ template in CLIMEX via iterative fitting,

which in pilot analyses produced results that were highly consistent

with the distribution of Bd both in Australia [20,39,40] (Figure

A1b in Appendix 1 in Materials S1) and globally (Figure A1c in

Appendix 1 in Materials S1) [41] in combination with the thermal

parameters outlined above. Such iterative fitting is standard

procedure when building CLIMEX models under such circum-

stances [27], but due to this correlative component of the model as

applied here it is important to distinguish our approach from

purely mechanistic approaches that are sometimes also referred to

as process-based (see e.g., [42]). The CLIMEX model as applied to

modelling the potential distribution of Bd globally is the subject of

ongoing research (K.A.M et al. unpubl. data) and is not presented

herein (but see Figure A1c in Appendix 1 in Materials S1).

Competing Predictor Variables
In addition to the proliferation model predictions, we in-

vestigated eight potentially informative climatic variables at four

temporal scales: T.maxX (maximum temperature), T.minX,

RainX, EvapX (Class A pan evaporation), RadnX (short-wave

radiation, proxy for UV), VPX (vapour pressure), RH.maxTX

(relative humidity at maximum temperature), RH.minTX and

FAO56X (potential evapotranspiration), where x is the number of

days prior to sampling over which an average is calculated (here,

x = 1, 7, 15, 30 days). The various temporal intervals were chosen

to reflect the uncertainty as to the time span over which each

variable may impact infection. The daily weather information was

derived from the Australian Bureau of Meteorology Data Drill

facility; http://www.longpaddock.qld.gov.au/silo/). Since the

climate data in this study come from interpolated sources, there

is an obvious limitation to our analyses in that frogs may not be

experiencing the same weather conditions as those estimated for

grid station points. Reasons for a mismatch are many but might be

primarily due to behavioural characteristics of the species [18], the

modifying effect of microclimates [42] and topographic complexity

[43]. Nevertheless, we expect that the interpolated weather data

are suitably indicative of the conditions and their fluctuations

experienced by Bd on frogs in the field. Other variables considered

in the analyses were year, month, season, site, sex and body size

(SUL; snout-urostyle length).

Infection Pattern Surveys
We captured all frogs encountered at four main study sites

sampled during Spring and Summer (when most frogs are active in

subtropical Australia) over three consecutive years (August 2006–

March 2009). The main field site (Peter’s Creek) is that used and

described in Murray et al. [19]. In addition to the Peter’s Creek

study site, three ‘sister’ sites were sampled monthly in the first and

second study seasons in other rainforested regions of South-east

Figure 1. Map of the study region, showing the four main study sites in South-east Queensland as well as the additional survey
sites in Queensland and New South Wales, Australia.
doi:10.1371/journal.pone.0061061.g001
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Queensland. An extent of infection survey was also undertaken at

a further 20 sites (Figure 1). All field sites sampled during the study

were situated well within the known distribution of Bd in Australia

and are considered environmentally highly suitable for the

persistence of chytridiomycosis [20,39]. The region is subtropical

with warm, wet summers (mean max. temp. ,27uC; mean rainfall

,780 mm) and cooler, dryer winters (mean max. temp. ,19.5uC;
mean rainfall ,250 mm) (Australian Bureau of Meteorology

records for Maleny; 425 m asl).

Study species. While surveys and analyses were conducted

for multiple frog species (see Table A2 in Appendix 2 in Materials

S1), sampling was most comprehensive for a single ‘model’ species,

Litoria pearsoniana, which forms the focus of this study. L. pearsoniana

is a small, stream-breeding treefrog restricted to forested areas of

southeast Queensland and northern New South Wales, Australia.

It is listed as vulnerable under the Queensland Nature Conser-

vation (Wildlife) Regulation 2006 and near threatened and ‘in

significant decline…. in part due to chytridiomycosis’ by the

IUCN [44]. Chytridiomycosis-associated mortality and reductions

in apparent survival have been described in this species [5,19].

Chytridiomycosis does not appear to influence detectability of this

species in encounter surveys, which means that sampling of the

population is likely to approximate random sampling with respect

to disease status [19,45].

Sampling for Bd. When encountered, frogs were captured in

plastic freezer bags, weighed and removed by hand for examina-

tion, ensuring a fresh pair of plastic gloves was worn to process

each frog. For sampling infection with Bd, frogs were swabbed (10

strokes on each of the feet, thighs and hands, and on the left,

centre and right ventral surfaces of the body) with a sterile swab

(MW 100–100, Medical Wire and Equipment, Bath). Swabs were

stored in the field on ice and later at room temperature [24]. After

swabbing, frogs were measured (snout-urostyle length [SUL]),

inspected for clinical signs of infection (e.g., erythema of ventral

surfaces and digits) and released at the point of capture.

Diagnostic Methods
We analysed swabs in the laboratory for the presence of Bd with

the TaqMan real-time qPCR protocol [46] and included an

internal positive control to signal amplification inhibition [24].

Hyatt et al. [24] detail the properties of the test including

sensitivity, specificity, limitations, and comparisons with other

methods.

Prediction Testing Overview
qPCR provides a quantitative estimate of the amount of Bd

material (zoospore equivalent count) on the swab and evidence

suggests that this may broadly provide an index of an individual’s

intensity of infection [23–25]. However, because infection intensity

has not yet been rigorously tested as being suitable for this purpose

and is known to vary in infected frogs with poorly studied factors

such as stage in the sloughing cycle [47], we chose to focus the bulk

of our exploratory analyses (presented in the Materials S1

Appendices) to the infection status of individuals (i.e., positive or

negative for Bd in a triplicate qPCR test).

We thus worked backwards through our three predictions,

starting with a test of Prediction 3, which states that simulated Bd

growth should be useful for predicting, and be positively related to,

the probability of an individual being infected at the time of

sampling. We then more conservatively employed the estimates of

infection intensity (zoospore equivalent) to test Prediction 2 that

infection intensity of infected individuals should be broadly related

to infection prevalence within the sampled population (these are

statistically independent as confounding zeros of negative infec-

tions at the site level are excluded). Finally, we tested Prediction 1

directly by applying our best model from the test of Prediction 3 to

characterise the relationship between simulated pathogen pro-

liferation and infection intensity. This prediction-based approach

ensured adequate testing of the underlying mechanisms of our

hypothesis while at the same time giving due focus to the problem

of predicting infection status, which we felt was a more straightfor-

ward prediction problem than infection intensity (a robust binary

classification as opposed to a regression model on what has so far

been a poorly explored source of continuous data). In addition, our

results remain relevant to a broader literature in which disease

prevalence is typically reported using a range of diagnostic

methods, whereas infection intensity is only explored in studies

using qPCR.

Overview of Statistical Methods
For the full dataset, we were interested in examining the

effects of up to 38 variables (6 individual trait variables+the
eight climatic variables at four temporal scales), which we knew

a priori to be inter-correlated to varying degrees. Given the

potential complexity of models confronting these data, we broke

the analyses down into several stages, all of which are

documented in Appendices 2–5 in Materials S1. First, we

performed preliminary analyses on data from the main Peter’s

Creek study site (a multi-species dataset) in which we used

binary logistic regression to model infection as a function of

species, year and season. Next, we employed a non-parametric,

tree-based approach to determine a reasonable structure and

identify the most important variables for subsequent analyses on

the larger dataset containing all of the variables of interest

[48,49]. This amounted to a ‘filtering’ process that allowed

increasing data simplification without compromising the de-

tection of important factors influencing infection along the way.

The final ‘clean’ product was a single-species/single-sex/multi-

site dataset (male L. pearsoniana) retaining only the most

pertinent climatic predictors (see Appendices 2–5 in Materials

S1 for further detail). We then supplemented the predictors

encoding prevailing weather information with the single metric

from our weather-linked Bd proliferation model (GIW) and

assessed predictive performance. We used GIW averaged over

the 30 days prior to sampling for analyses (GI30).

Tree-based methods are useful when variable interactions and

complex, non-linear relationships between predictor variables

and the response are to be expected [49,50]. We used the

package ‘randomForests’ implemented in R [51,52] to run

Random Forests (RF) models on the data. RF is an extension of

traditional single-tree methods from the field of machine

learning that combines the predictions of hundreds or thousands

of trees to improve prediction stability and accuracy and better

cope with bias and inter-correlation among variables. An in-

depth discussion of the RF algorithm, associated metrics and

uses of RF in ecology is provided by Cutler et al. [53]. Variable

importance measures were used for our ‘pruning’ (variable

selection) process and partial dependence plots were used to

visualise the relationships between the predictors and the

response (infection) [54]. Unlike some other statistical frame-

works, RF does not produce P values, confidence intervals or

regression coefficients. A demonstration of the RF method with

reference to the logistic regression described above is presented

in Appendix 3 in Materials S1 (see Results). Generalised linear

models were also developed to confirm the significance of

variables remaining in the pruned RF models (Appendix 6 in

Materials S1).

Weather Driven Chytridiomycosis Dynamics
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Ethics Statement
This study was approved under University of Queensland

Animal Ethics permit SIB/144/06/ARC, Queensland Parks and

Wildlife permits (WITK037994406, WISP03806206, TWB/21/

2006, TWB/34/2006) and New South Wales Department of the

Environment, Climate Change and Water permit S12742.

Results

Preliminary Analyses
The effect of species, season, year and sex. During the

preliminary analyses, several variables were found to signifi-

cantly influence the probability of an individual returning

a positive result. Briefly, there was a significant three-way

interaction between species, season and year. We thus analysed

the four most well sampled species in detail separately (Figure

A2 in Appendix 2 in Materials S1). A trial run testing the

efficacy of the RF modelling framework was largely comple-

mentary to the results presented in Appendix 2; there was

a clear effect of species, year and season on infection (Figure A3

in Appendix 3 in Materials S1). Since the majority of data came

from a single species, L. pearsoniana, further analyses were

restricted to this ‘‘model’’ species. In the extent of infection

survey encompassing 20 additional sites, 100% of L. pearsoniana

populations were infected with Bd (Appendix 4 in Materials S1).

A significant effect of sex (also seen in Appendix 3 in Materials

S1) was next found to influence infection in L. pearsoniana

(Appendix 5 in Materials S1). Since most of the data came from

male frogs, females and juveniles were excluded for the core

analyses presented below. Subsequent results thus apply only to

this sub-sample.

The Effect of Rainfall, Humidity and Temperature
The final dataset on male L. pearsoniana from four main study

sites comprised 1072 captures, representing roughly half of all

captures in this study (see Appendices 2–5 in Materials S1). In an

initial ‘saturated’ RF model developed to predict infection status of

individual frogs in the dataset and informed by four categorical

variables (month, year, season, site) and all raw climatic predictors

(i.e., not including the predictions from the proliferation model,

GI30) the estimate of classification error rate (the out-of-bag or

OOB estimate; an internally derived measure of model predictive

performance) was intermediate at 32.9%, meaning that the overall

percentage of cases correctly classified (PCC) was 67.1%.

Specificity (% of negative tests correctly classified) was 62.9%,

while sensitivity (% of positive tests correctly classified) was higher

at 71.5% (Kappa= 0.343, 95%CI= 0.287–0.399, where Kap-

pa= 0 represents prediction no better than random while 1

represents perfect prediction). This model represents the baseline

predictive performance from which further refined models,

including those incorporating the predictions of the process-based

proliferation model (GI30), can be judged.

Due to the large number of variables with minimal predictive

value, we refined this initial model retaining only the best four

continuous predictors as indicated by the variable importance

metric in RF (RH.minT30, SUL, rain on the day of sampling,

T.max30) together with the original categorical variables (month,

year, season, site). This refined model achieved equivalent

predictive results (PCC=68.6%; Specificity = 66.0%, Sensitivi-

ty = 71.3%; Kappa= 0.372, 95%CI= 0.317–0.428), indicating no

loss of important information via pruning. A plot of variable

importance is shown in Figure 2. It can be seen that, for this

subgroup, the continuous climatic variables outperformed the

categorical and individual trait (SUL) variables in terms of

Figure 2. Variable importance plot from the Random Forest (RF) framework for predicting infection status in adult male Litoria
pearsoniana captured at four study sites across three years of study (2006–2009). To assess importance of each variable: after growing the
kth tree, the values of the target variable among all out-of-bag (OOB) cases are randomly permuted and the OOB cases are run down the tree. The
decrease in the number of votes for the correct class due to permuting is averaged over the forest. RH.minT30 is the average maximum relative
humidity in the 30 days prior to sampling, Rain when sampling is the amount of rain (in mm) on the day swabs were taken in the field, T.max30 is the
average maximum temperature in the 30 days prior to sampling, Year is the year in which samples were taken, Body size is measured as snout-
urostyle length (SUL; measured in mm).
doi:10.1371/journal.pone.0061061.g002

Weather Driven Chytridiomycosis Dynamics
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predictive power, suggesting that variation in infection between

years, seasons, months and sites could be driven by changes in the

raw climatic variables.

Partial dependence plots describing the relationships between

the three most important predictors (all climatic and continuous)

and probability of infection are shown in Figure 3. Infection

probability was highest when average maximum relative humidity

in the preceding 30 days was ,95%, when average maximum

temperature in the preceding 30 days was in the range 20–25uC
and when there was no rainfall on the day of sampling. Very high

average maximum humidity, high average maximum tempera-

tures and rain on the day of sampling all decreased the probability

of sampled frogs returning a positive PCR result. Probability of

infection was also influenced by body size; at large body sizes (SUL

.27 mm) there was a decrease in the probability of a frog being

infected (Fig. 3).

The seasonal effect of changes in these variables is well captured

in the partial dependence plot of month; with all data taken

together, probability of infection peaked in October and Novem-

ber (Spring) and rapidly declined as summer progressed (Fig. 4).

Analyses incorporating the process-based model predictions (GI30)

are presented below.

Process-based Model Predictions (GI30)
In a RF model in which the variables potentially representing

simple differences in prevailing weather conditions (T.Max30,

RH.minT30, month, year, season, site) (see above) were replaced

with the simulated growth index (GI30) for Bd from the process-

based model (i.e., containing only the GI30, SUL and Rain on the

day of sampling), there was virtually no loss in classification

accuracy of the model (PCC=67.4%) (Kappa= 0.350,

95%CI=0.294–0.406). Specificity (% of negative tests correctly

classified) was 63.3%, while sensitivity (% of positive tests correctly

classified) remained reasonably high at 71.9%. In a test of

Prediction 3 from our weather-linked Bd proliferation hypothesis,

the relationship between probability of infection and the GI30
(simulated pathogen growth) was positive (Fig. 5; the relationships

for SUL and Rain on the day of sampling in this model were very

similar to Fig. 3 and are not reproduced).

Predictions 1, 2 and 3 Derived from the Weather-linked
Bd Proliferation Hypothesis
As noted above, we found a positive relationship between

simulated pathogen growth (GI30) and probability of infection

Figure 3. Partial dependence plots from the Random Forest (RF) framework showing the relationship between probability of Bd
infection in adult male Litoria pearsoniana and each of the continuous variables included in the pruned RF model. Sampling was
conducted across four sites and three years of study (2006–2009). Response lines are lowess smoothers.
doi:10.1371/journal.pone.0061061.g003
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(Prediction 3; Fig. 5). This relationship translated well to

describing disease prevalence in the population: focussing on data

from the four main study sites and the model species L. pearsoniana,

GI30 was positively related to disease prevalence (R2 = 0.25;

F1,39 = 12.79, p,0.001) (sample sizes all $15 frogs tested per

estimate, mean= 33 frogs tested per estimate) (Fig. 6a). In a test of

Prediction 2, infection prevalence in a sampled population was

positively correlated with mean intensity of infection (log

zoospores) (n = 40), both when all frogs were considered

(R2= 0.49) and when only infected frogs were considered

(R2= 0.28; F1,39 = 15.49, p,0.001) (Fig. 6b). Finally, in a test of

Prediction 1, GI30 was also positively related to mean infection

intensity (log zoospores; R2 = 0.19; F1,39 = 8.91, p= 0.005) (Fig. 6c).

Neither RH.minT30 nor T.max30 was linearly related to

prevalence or infection intensity (data not shown, but see Fig. 3).

Discussion

The key finding of this study is that we document strong support

for the weather-linked Bd proliferation hypothesis for endemic

chytridiomycosis, which suggests that Bd proliferation (population

growth) in the wild is at least partly governed by prevailing

weather conditions and is a key driver of infection/transmission

dynamics in wild, endemically infected amphibian populations.

This provides a useful tool with which to enhance surveillance

strategies (e.g., by focusing delimitation surveys to temporally and/

or geographically coincide with high predicted Bd growth and

hence enhanced detectability) and to begin making projections

about disease outbreaks in the past (e.g., interpreting patterns of

historical declines [13,16,55]), present (e.g., real-time preparedness

and response [20,40,56]) or future (e.g., climate change scenario

investigation [57]). These applications form the basis for our

ongoing work (KAM and LFS unpubl. data) and are not explored

further herein. Unlike previous studies that have retrospectively

and descriptively used ‘thermal optima’ type models to qualita-

tively interpret infection patterns, we present a novel test of our

hypothesis by developing a weather-linked Bd proliferation model,

which simulates pathogen growth under varying weather condi-

tions. We then explicitly probed the utility of this model for the

prediction of Bd infections in wild-caught amphibians sampled

across multiple sites and years.

For this process-based model, we integrated Bd’s measured

responses to temperature and inferred responses to moisture

availability to produce a weekly growth index (GIW) that can be

calculated on any climatic dataset with measurements of

temperature (maxima and minima), rainfall and relative humidity

(maxima and minima). In our case, we ran the model on daily

weather data at our field sites (interpolated from nearby weather

stations) to simulate Bd’s growth potential in the 30 days prior to

sampling (GI30). We used this index as an explanatory variable in

models describing infection patterns in a model species and

hypothesised that under a weather-linked Bd proliferation

hypothesis, which links pathogen proliferation to disease out-

breaks, the GI30 should be positively related to disease prevalence

(Prediction 3) and intensity of infection (Prediction 1), which

themselves should be positively related (Prediction 2).

We found strong support for these predictions. In the RF

analysis, infections were correctly predicted ,72% of the time

using a full arsenal of climatic and other variables to inform the

model. When all of the variables expected to contribute to climatic

suitability for the growth of Bd were replaced with the single GI30
variable (but retaining the other important, non-climatic factors

body size and rainfall on the day of sampling), the model showed

comparable performance in predicting infection status (and

indicated GI30 was the most important variable for predicting

infection status). Furthermore, unlike the original climatic

variables, which showed non-linear humped relationships with

infection probability, the GI30 was positively related to infection

probability in the RF framework (note that the significant GI30
2

term in the GLM in Table A6.2 in Appendix 6 in Materials S1

also indicates some curvature in the response, which is consistent

with Fig. 5); thus, higher predicted growth was positively

associated with higher infection probability. Notably, there was

a striking similarity between the temperature values used in the

process-based model (Figure A1a in Appendix 1 in Materials S1)

Figure 4. Partial dependence plot from the Random Forest (RF)
framework showing the relationship between probability of Bd
infection and month of the active season for adult male L.
pearsoniana. This seasonal pattern of infection is now considered
typical in forest frogs in subtropical south-east Queensland (see e.g.,
Kriger and Hero 2007).
doi:10.1371/journal.pone.0061061.g004

Figure 5. Partial dependence plot from the Random Forest (RF)
framework showing the relationship between the probability
of Bd infection and GI30 (simulated pathogen growth in the 30
days prior to sampling, from the CLIMEX process-based model)
for adult male Litoria pearsoniana. The response line is a lowess
smoother. Data were derived from four field sites across three years of
sampling (2006–2009). In a model containing the 30 day growth index
(GI30), body length (SUL) and Rain (mm on the day of sampling),
positive PCR results for Bd infection were correctly predicted in ,72%
of cases (see results).
doi:10.1371/journal.pone.0061061.g005
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Figure 6. Under the ‘weather linked Bd proliferation hypothesis’, chytridiomycosis dynamics are largely driven by pathogen
proliferation (growth) under suitable climatic conditions. This hypothesis predicts that modelled pathogen growth (GIW, averaged over the
30 days prior to sampling; GI30) should be positively related to a) disease prevalence in the population (R2 = 0.247, F1,39 = 12.79, p,0.001) (Prediction
3) and c) infection intensity of infected individuals (R2 = 0.186, F1,39 = 8.91, p = 0.005) (Prediction 1) because frogs are ectothermic growth media and
disease/transmission dynamics will be dependent on the number of dispersing zoospores. This hypothesis thus also predicts that b) population
prevalence should be positively related to infection intensity of infected individuals (R2 = 0.284, F1,39 = 15.49, p,0.001) (Prediction 2).
doi:10.1371/journal.pone.0061061.g006
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and the independent field-derived response of infection to average

maximum temperature (Fig. 3).

Similarly, in the corroborating logistic modelling framework

(Tables A6.1 and A6.2 in Appendix 6 in Materials S1), GI30
provided additional explanatory information to the minimum

adequate model (MAM) developed from the raw climatic

variables. However, while the GI30 was clearly important for

explaining variation in the data, it was not a sufficient replacement

for all of the other variables encoding climatic information. While

the significant effect of month was lost in the MAM containing

GI30, maximum temperature, humidity, year and site still

contributed additional explanatory information. This is not

surprising given that these non-mechanistic variables are likely

to capture non-climatic factors not included in our models that

may influence infection, such as host density for example, and

given the many leaps that must be made in translating

experimentally derived data on pathogen growth to a predictive

model that (uncertainly) aims to quantify only a single link in the

epidemiological chain. This may also explain the moderate level of

variance explained by the final GLM. Many other factors can be

expected to corrode this translation when considering patterns of

infection as the response, not to mention other metrics such as

mortality, population decline or extinction, which are potential

responses to infections that have their own strongly modifying

predictors over and above infection patterns such as host life-

history and ecology [2,58,59].

Nevertheless, GI30 was positively related to both prevalence

within sampled populations (Prediction 1) and intensity of infection

of individuals (log zoospores) (Prediction 3), which were themselves

strongly and positively correlated (Prediction 2). Stopping short of

incorporating mortality and population declines, which according

to other recent studies are also intimately influenced by Bd

proliferation [15], these are the patterns we predicted to see under

a weather-linked Bd proliferation hypothesis for endemic chytri-

diomycosis. We have thus developed a potentially predictive and

transferable tool for endemic chytridiomycosis that has been tested

and found informative for describing patterns of infection in real-

world data from within an area considered to be highly suitable for

the persistence of Bd [20].

Complicating Factors
The multi-species, single site analyses from Peter’s Creek

showed that infection probability is nevertheless highly complex

even within a single study site, generally varying among species,

years and seasons, and potentially sex and age (Appendix 2 in

Materials S1). In some cases the trends were similar (e.g.,

prevalence in Spring was generally higher than in Summer in L.

pearsoniana and L. wilcoxii; prevalence was highest in the second

field season for all species), but in other cases the patterns of

infection were unique and unexpected (e.g., a sharp peak in

prevalence in L. chloris in Summer of the second year). When

predicting the impacts of chytridiomycosis on amphibian com-

munities, the weather-linked Bd proliferation hypothesis in iso-

lation may thus be a poor predictor of patterns of species

infections, declines or extinctions. This is consistent with numerous

studies that have demonstrated that the susceptibility and impacts

of Bd infections in amphibian communities is inherently non-

random [1–3,58,59]. This exemplifies the difficulty of producing

predictive epidemiological models for chytridiomycosis in systems

comprising multiple susceptible hosts that may differ in any

number of important ways, including behaviour, microhabitat use,

susceptibility, immunity and demography to name a few. For

example, environmentally-dependent host responses may be

equally or more important than the effect of environmental

factors on the proliferation of Bd in regulating infections (e.g., see

[32,60,61]), and this may differ between species, in which case we

might expect some departure from the results we report here (e.g.,

see [62]). Unravelling the contribution of these additional factors

to disease dynamics and building more comprehensive predictive

models for amphibian communities or for single species remains

a research priority.

Despite this complexity, the commonly reported effect of season

was evident in the frog community, particularly in the most well

sampled species L. pearsoniana, with infections in Spring being more

prevalent than in Summer. Similarly, there was a consistent

annual trend, whereby all species were more likely to be infected in

the second year than in the first or third, giving rise to the

suggestion that endemically infected amphibian communities may

experience relatively ‘good’ or ‘bad’ chytrid years and seasons. In

this study, we show that weather-linked Bd proliferation may be

highly informative for interpreting and predicting such seasonal or

annual infection patterns.

Once major risk factors were accounted for (i.e., species, sex),

infection patterns were strongly influenced by prevailing and even

daily weather conditions in a susceptible, well sampled model

species. Notably, rain on the day of sampling resulted in decreased

probability of returning a positive test result; however, rainfall in

the 7, 15 and 30 days prior to sampling did not show clear

relationships with probability of infection and were not included

among the most important variables in the RF analysis for

predicting infection status. This is an important and novel finding;

while other variables appear more important for predicting

monthly and seasonal changes in infection pattern, rain on the

day of sampling appears an idiosyncratic or nuisance sampling

variable that directly decreased the probability of returning

a positive result via some more immediate effect. The mechanism

could be simple washing away of zoospores inhabiting sloughing

skin cells on the surface of the animal, a suggestion supported by

experimental evidence that hosts inhabiting slow moving or still

water may have increased infection intensities via the accumula-

tion of infective zoospores (Tunstall unpub. data, cited by [63]). In

a post hoc test of this hypothesis, we found that zoospore equivalent

count indeed responded to rain on the day of sampling (as well as

GI30), in a similar fashion to the probability of infection (data not

shown). This issue thus requires further investigation before swabs

taken in the rain can be interpreted with confidence.

In terms of raw climatic factors, in contrast to some studies we

found no indication that the effect of radiation (a proxy for e.g.,

UVB) on infection was as pronounced as other variables in the

models (e.g., [62,64]). Nor are our results consistent with findings

suggesting that patterns of temperature-dependent Bd growth on

frogs is opposite to that obtained from culture [60]. The seasonal

infection pattern was best predicted by changes in average

maximum temperature and relative humidity in the 30 days prior

to sampling. However, the responses characterised between these

weather variables and the probability of infection were non-linear;

for example, there was evidence to suggest that both low and high

maximum temperatures result in reduced disease incidence. In

isolation, this provides support for ‘thermal optima’ type

hypotheses and goes some way toward empirically integrating

contradictory linear responses between temperature and infection

reported in previous studies (e.g., [6,14]). Yet, this is clearly an

oversimplification; factors other than temperature, including

moisture, are also important and the epidemiological links

between climate, pathogen growth, host susceptibility and host

response all require consideration before increased disease in-

cidence can be translated directly into amphibian mass-mortalities,

population declines or extinctions [5,13,16,19,55,65]. Despite this,
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we suggest that the weather-linked Bd proliferation model

represents a useful baseline on which these other factors may be

overlain, providing new insights about how we might best sample

for Bd or implement management actions with respect to changes

in prevailing weather conditions and longer-term changes in

climate.
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