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ABSTRACT

Rotary dryers are commonly used in the food and mineral processing industries for drying
granular or particulate solids due to their simplicity, low cost and versatility compared to other
dryers. The co-current industrial rotary dryer (MMG, Karumba) examined in this study is used in
drying zinc and lead concentrate. The dryer is 22.2 metres long with a diameter of 3.9 metres.
The slope and the typical rotational speed of the dryer are 4 degrees and 3 rpm respectively. The
dryer has both unflighted and flighted sections with different flight configurations. Operational
issues associated with the dryer that lead to the requirement for a dynamic model of the dryer

include issues such as high fuel consumption and the build-up of scale on the internal surfaces.

In order to operate an optimum dryer, it is necessary to understand the mechanisms occurring
within the dryer. The important transport mechanisms that govern the performance of rotary
dryers are: solids transportation, heat, and mass transfer. Studies have shown that the knowledge
of the solid transport is important to solve the heat and mass transfer differential equations that
describe completely the temperature and moisture content profiles along the dryer for both solid
and gas phases. Solid transport within the dryer can be characterised through the solid residence
time distribution, which is the distribution of times taken for the solids to travel through the
dryer. Solid residence time distribution can be determined experimentally. The most common
experimental approach is to introduce tracer at the inlet and monitor tracer concentration at the
outlet as a function time. Several modelling approaches have been taken to determine the
residence time and the residence time distribution and these approaches have varied from
empirical correlations to compartment modelling. In many of these approaches, loading state,

residence time and operational feed rates are strongly linked. The loading state also influences



the effectiveness of particle to gas heat and mass transfer as well as the residence time

distribution of solids through the dryer.

There are three potential degrees of loading in a rotary dryer namely under-loaded, design loaded
and overloaded. However, most industrial rotary dryers are operated at under-loaded or
overloaded, which results into poor efficiency of the dryer and the optimal economics of the
dryer will not be achieved. As such, accurate estimation of the design load is critical to the
optimal performance of flighted rotary dryers and is an important characteristic of flighted rotary

dryer models.

To experimentally characterise MMG rotary dryer, industrial and laboratory experiments were
undertaken. The industrial experiments included residence time distributions (RTD), shell
temperature measurements, spatial sampling of the solids along the length of dryer, moisture
content analysis and Process Information (PI) data collection. Residence time distribution
experiments were carried out by injecting lithium chloride as tracer at the inlet of the dryer while
sampling outlet solids over a period of time. Zinc concentrate properties such as dynamic angle
of repose, bulk density and particle size were also determined. A series of different experiments

were undertaken to examine the effect of speed and loading.

Flight loading experiments were carried out at pilot scale to determine the effect of moisture
content and rotational speed on dryer design loadings and to facilitate accurate determination of
model parameters. The flight holdup experiments involved taking photographs of the cross-
sectional area of the dryer. An image analysis technique was developed to estimate the amount of
material within the flights and in the airborne phase. The analysis involved developing a

combined ImageJ thresholding process and in-house MATLAB code to estimate the cross-



sectional area of material within the flight. The suitability of the developed methodology was
established. In addition, saturation of both the airborne and upper drum flight-borne solids was

observed.

To select an appropriate geometrically derived design load model, comparison of existing design
load models from the literature was undertaken. The proportion of airborne to flight-borne solids
within the drum was characterised through a combination of photographic analysis coupled with
Computational Fluid Dynamics (CFD) simulation. In particular, solid volume fractions of the
airborne solids were characterised using a CFD technique based on the Eulerian-Eulerian
approach. The suitability of using geometric models of flight unloading to predict these
proportions in a design loaded dryer were discussed and a modified version of Baker’s (1988)

design load model was proposed.

A multiscale dynamic mass and energy process model was developed and validated for the dryer
in order to characterise the performance of MMG rotary dryer. The mass and energy balance
equations involved ordinary differential equations for describing the flighted sections and partial
differential equations for modelling the unflighted sections. Solids in unflighted sections were
modelled as the axially-dispersed plug flow system. In the flighted sections, the solids were
modelled using a compartment modelling approach involving well-mixed tanks (Sheehan et al.,
2005). The gas phase was modelled as a plug flow system. Simulations were undertaken using
gPROMS (process modelling software). As much as possible, model coefficients were
determined using geometric modelling based on material properties and dryer operational
conditions. The use of this approach is termed a pseudo-physical compartment model. The solid
transport model was validated using full scale residence time distribution at different

experimental conditions. The model results predicted well the effect of rotational speed, internal
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diameter and solid feed rate. Estimated parameters included the kilning velocity, axial dispersed
coefficient and area correction factors. The validation of the energy balances was based on
Process Information (PI), experimental residence time distribution and moisture content data of
the studied dryer. Model parameters involving the surface area in contact with the incoming gas
data were manipulated to fit experimental moisture content. The gas and solid temperature
profiles were also predicted, which provide a firm basis upon which additional studies may be

undertaken.

Gas inlet temperature was identified as the most suitable manipulated variable for the dryer with
clean internal condition. However, to achieve desired product quality within a scaled dryer, the
study suggested the solid feed rate should be reduced so as to achieve optimum gas-solid
interaction. To address the high fuel consumption associated with the dryer, the study proposed
externally lagging of the dryer and reduction in the gas inlet temperature to meet the desired

product quality.



CHAPTER ONE

1. INTRODUCTION

Flighted rotary dryers are commonly used in the food and mineral processing industries for
drying granular or particulate solids. The rotary dryer consists of a cylindrical shell slightly
inclined towards the outlet as shown in Figure 1.1 and is fitted internally with an array of flights.
The arrangement and type of flights vary with the nature of the granular solids. As the dryer
rotates, solids are picked up by flights, lifted for a certain distance around the drum and fall
through the gas stream in a cascading curtain (see Figure 1.2). Gas used as drying medium is
introduced as either co-current or counter-current to the solid flow. The movement of solids
through the dryer is influenced by the following mechanisms: lifting by the flights, cascading
from the flights through the air stream and bouncing, rolling and sliding of the particles on

impact with the bottom of the dryer (Yliniemi, 1999).

Wet feed

Hot gas Cool moist gas

Dried solid

Figure 1.1: Typical example of a co-current rotary dryer



Figure 1.2: Cross-section of typical flighted rotary dryer showing the solids cascading

1.1 Motivation

The co-current industrial rotary dryer examined in this current study is used in drying zinc and
lead concentrates (MMG, Karumba, 2008-2010 seasons). The dryer has both unflighted and
flighted sections. Each flighted section has different flight configuration, although all flights are
standard two-stage designs. Operational issues associated with the dryer include high fuel
consumption and it is a challenge to operate the dryer effectively when there is hard scale build-

up on the internal surfaces.

Previous studies (Alvarez & Shene, 1994; Kelly, 1995; Cao & Langrish, 2000) have also
identified some other factors that affect the design and performance of a rotary dryer which
include the following: physical properties of the solids, geometrical configuration of the dryer
and flight geometry, gas-solid interactions and operating conditions such as solid feed rate, solid

inlet temperature, gas inlet flow rate, gas inlet temperature and rotational speed of the dryer.



For better understanding of the dryer’s performance, modelling can be undertaken at different
scales such as unit operation scale, flight scale, curtain and particle scale. The unit operation
scale models the overall process. Flight scale represents the flight loading capacity as it
facilitates the gas-solids interaction. The curtain and particle scale characterises the solid

properties such as dynamic angle of repose, bulk density and particle size.

The performance of rotary dryer is dictated by three important transport mechanisms, namely:
solids transportation, heat and mass transfer (Prutton et al., 1942; Matchett & Baker, 1987,
Renaud et al., 2000). However, studies have established that the solid distribution in the dryer
affects the movement of solids within the dryer, and as well as the amount of contact surface
between the gas and the solid (Duchesne et al., 1996; Sheehan et al., 2002). In rotary dryers,
there are three loading states: under-loaded, design loaded and overloaded. The loading capacity
of the dryer has been a key requirement to the prediction of the solid transport within the drum. It
is important to operate the dryer at design loading capacity to achieve optimum gas-solids
interaction. Design load models in literature have