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Abstract 16 

 17 

High gestational loads result in fetuses that occupy a large proportion of the body 18 

cavity and may compress maternal organs.  Compression of the lungs results in 19 

alterations in breathing patterns during gestation which may affect the energetic 20 

cost of breathing.  In this study, the energetic cost of breathing during gestation was 21 

determined in the viviparous skink, Tiliqua rugosa.  Radiographic imaging showed 22 

progressive lung compression during gestation and a 30% reduction in the lung 23 

inflation index (rib number at which the caudal margin of the lung was imaged/total 24 

rib number).  Pneumotachography and open flow respirometry were used to 25 

measure breathing patterns and metabolic rates.  Gestation induced a two fold 26 

increase in minute ventilation via increases in breathing frequency but no change in 27 

inspired tidal volume.   The rates of O2 consumption and CO2 production did not 28 

change significantly during gestation.  Together, these results suggest that a relative 29 

hyperventilation occurs during gestation in Tiliqua rugosa.  This relative 30 

hyperventilation suggests that diffusion and/or perfusion limitations may exist at 31 

the lung during gestation.  The energetic cost of breathing was estimated as a 32 

percentage of resting metabolic rate using hypercapnia to stimulate ventilation at 33 

different stages of pregnancy.  The energetic cost of breathing in non pregnant 34 

lizards was 19.96±3.85% of resting metabolic rate and increased 3 fold to 35 

62.80±10.11% during late gestation.   This significant increase in the energetic cost 36 

of breathing may have significant consequences for energy budgets during 37 

gestation.  38 

39 
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Introduction 40 

Lungs are highly plastic organs, lung volumes change during the normal breathing 41 

cycle and are subject to compressive forces from nearby organs, such as the liver 42 

and the gastrointestinal tract.  Compression of the lung is likely to alter the pressure 43 

required to achieve normal tidal volume and the energetic cost of lung ventilation.  44 

The lizard, Tiliqua rugosa, experiences significant lung compression during 45 

gestation and thus is used, in this study, as a model to investigate the effects of lung 46 

compression on ventilation and the energetic cost of breathing. 47 

 48 

Tiliqua rugosa (Shaw) is a large, viviparous skink that inhabits vast areas of inland 49 

Australia.  This species gives birth to 1-4 large young after 4-6 months gestation.  50 

The expansion of the body wall to accommodate the developing embryos may be 51 

limited in this species due to the presence of thick, ossified scales.  The developing 52 

embryos occupy a large proportion of the body cavity and can compress and 53 

regionally collapse the lungs during gestation (Munns and Daniels, 2007).   54 

 55 

The unicameral lungs of this, and other scincid and agamid, species are large and 56 

baglike, lacking the higher degree of internal compartmentalization characteristic of 57 

paucicameral and multicameral lungs (Perry, 1989).  The lack of a muscular 58 

diaphragm and both post pulmonary and post hepatic septa in skinks (Klein and 59 

Owerkowicz, 2006) means that the lungs can expand to occupy a large portion of 60 

the body cavity.  Being highly distensible, the lungs are subject to distortion and 61 

compression from surrounding internal organs such as the liver and gastrointestinal 62 

tract (Daniels et al., 1994), and from the developing embryos during gestation 63 

(Munns and Daniels, 2007).  Thus, the spatial requirements of the developing 64 

embryos and adequate maternal lung expansion may conflict, especially during late 65 

gestation.   The resulting lung compression during gestation can alter breathing 66 

patterns, decreasing tidal volume and minute ventilation in the two weeks 67 

preceding parturition (Munns and Daniels, 2007). 68 

 69 
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Reptilian breathing patterns normally consist of ventilatory periods, made up of 70 

single or multiple breaths, interspersed with breath holds (non ventilatory periods) 71 

of variable duration (Milsom, 1988).  Breathing patterns are highly plastic, with 72 

alterations in minute ventilation being achieved by alterations in tidal volume, 73 

breathing frequency and the duration of the non ventilatory pause, either 74 

independently or in combination.   The mechanical act of ventilation is a muscular 75 

activity and as such incurs an energetic cost.  For any given minute ventilation, 76 

there is an optimum combination of tidal volume and breathing frequency at which 77 

the energetic cost of breathing is minimized (Milsom, 1989; Perry, 1989; Perry and 78 

Duncker, 1980).  The mechanical work of ventilation increases in direct proportion 79 

with breathing frequency, but increases with the square of tidal volume (Milsom 80 

and Vitalis, 1984; Perry, 1989).  As a result increases tidal volume are a more 81 

energetically costly option for increasing minute ventilation compared to the same 82 

change in minute ventilation achieved via increases in breathing frequency.    83 

 84 

Gestation induced alterations in breathing patterns, and the likely decrease in lung 85 

compliance associated with gestational lung compression, may significantly alter 86 

the energetic cost of breathing during pregnancy.  An increase in the energetic cost 87 

of breathing may have importance ramifications for the energy budgets of pregnant 88 

females.     89 

 90 

The energetic cost of breathing cannot be measured directly; instead estimates of 91 

the energetic cost of breathing (as a percentage of resting metabolic rate) have been 92 

made in a small number of reptiles.   Estimates of the cost of breathing in reptiles 93 

range from 1-52%:  1-15% in hatchling alligators (Wang and Warburton, 1995), up 94 

to 17% for fasted and digesting Tegu lizards (Skovgaard and Wang, 2004), 52% in 95 

dormant Tegus (de Andrade and Abe, 1999), and 1-30% in chelonians (Jackson et 96 

al., 1991; Kinney and White, 1977). In contrast, most mammals have relatively low 97 

energetic costs of breathing,  averaging between 1-7% (Milsom, 1989; Milsom, 98 

1995).  However, the energetic cost of breathing may increase significantly in some 99 

circumstances, for example; diseases states such as chronic obstructive pulmonary 100 
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disease (emphysema, chronic bronchitis or a mixture of both) in humans (Dellweg 101 

et al., 2008; Jounieaux and Mayeux, 1995).  The energetic cost of breathing in 102 

human emphysema patients has been estimated at 23.1%  at rest and 55.5 % during 103 

exercise (Takayama et al., 2003) and the oxygen consumption of the respiratory 104 

muscles has been shown to increase 28 fold in emphysema patients during maximal 105 

ventilation (Campbell et al., 1957).  Extremely high costs of breathing have been 106 

found in hibernation squirrels with estimates of 90% of resting metabolic rate 107 

(Garland and Milsom, 1994).  The aim of this study was to determine the energetic 108 

cost of breathing during pregnancies with high gestational loads in the viviparous 109 

skink, Tiliqua rugosa.  110 

 111 

Materials and Methods 112 

Animals 113 

Shingle-back lizards (Tiliqua rugosa, Gray 1825) were collected from Burra region 114 

South Australia, and a breeding colony established at James Cook University.  The 115 

animals were housed with a seasonally variable thermal gradient (5-15ºC winter 116 

and 20-38 ºC summer), full spectrum lighting (14L:10D), free access to water and 117 

were fed a diet of mixed fruit and vegetables, tinned cat food, boiled eggs, and 118 

vitamin and mineral supplements (RepCal™ and Herptivite™).  Five gravid 119 

females and seven non-gravid females were used in this study.  Body weight 120 

ranged from 688.9 to 1034.6 g (mean ± se, 989.6±76.8g) in the non pregnant 121 

females and from 692.1 to 922.2g (mean ± se, 809.9±64.1g) in the gravid females 122 

during late gestational period.  6 male lizards were used for radiographic imaging 123 

only.  Lizards were sexed by eversion of the hemipenes. 124 

 125 

Radiography 126 

Radiographs were obtained between 35-44 days and 2-7 days prior to birth and 2-3 days 127 

post birth in 4 lizards.  Radiographs were also obtained from 7 non-pregnant females and 128 

6 male lizards over the same time period.  Lizards were fasted for 3 days and then slowly 129 

cooled to approx 20ºC and wrapped loosely in cloth to discourage movement and placed 130 

in ventral recumbency.  Optimal soft-tissue contrast was achieved using kVp of 55-60, 131 
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mA of 200, 32m/Sec and mAs of 6.3 (Shimadzu general unit, Kyoto, Japan and digital 132 

detector plate, Canon CXDi-50G, Kyoto, Japan).  Radiographs were used to determine 133 

the maximum body width in the week prior to birth and in the week after birth and 134 

differences analysed with a paired t-test (P<0.05).  The lung margin was determined from 135 

the difference in radio-opacity, with the lungs being less opaque than the surrounding 136 

abdominal contents.  The lung inflation index was calculated by determining the rib 137 

number (counted from the most cranial rib in a caudal direction) at which the most caudal 138 

margin of each lung was imaged divided by the total rib number.  A lung inflation index 139 

of 1 would represent lungs that completely spanned the length of the trunk and 0 would 140 

represent completely collapsed lungs.  Thus a decrease in the lung inflation index reflects 141 

that the caudal lung margin is located at a more cranial rib number due to increased lung 142 

compression.  The long end inspiratory pauses in this species’ breathing pattern, 143 

especially when at low body temperatures of 20ºC, ensured that all radiographs were 144 

taken after the lizards had inspired.  While this method cannot assess the degree of dorso-145 

ventral lung compression caused by the developing fetuses or by the displacement of 146 

other internal organs such as the intestines, it may be a useful tool in the early 147 

determination of pregnancy in this species.  148 

 149 

Computerised Axial Tomography Scans 150 

Serial computerized axial tomography (CT) scans (kVp 120.0, mA 50.0, 500m/Sec, 151 

mAs 75 and slice thickness 0.5mm) were taken of one pregnant (18h prior to birth) 152 

and one non pregnant female from which three dimensional images were 153 

reconstructed.  Lizards were slowly cooled to a temperature of 20ºC, loosely 154 

wrapped in a cloth and placed directly on the scanner bed.  Lizards were observed 155 

via monitors and remained still during the scanning procedure.    156 

 157 

Measurement of  Lung Ventilation and Gas Exchange 158 

Breathing patterns were measured noninvasively using pneumotachography (Glass 159 

and Johansen, 1979) using techniques similar to those used by the author in 160 

previous studies (Munns and Daniels, 2007; Munns et al., 2004; Munns et al., 161 

2005).  A small light weight mask constructed from the end of a 20ml syringe 162 
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barrel.  The mask was fitted over the lizard’s nostrils and attached (and the mouth 163 

sealed) using a dental polyether impression material (Impregum F, Henry Schein 164 

Halas, Brisbane, QLD, Australia).   A pump (Reciprotor AB, Sweden) pushed fresh 165 

room air through the mask at a constant flow set between 0.9-1.2 L.min-1 , 166 

depending on the size of the lizard, and controlled with a mass flowmeter (Sierra 167 

Instruments Inc, Monterey, California, USA).  Hypercapnic gas mixtures were also 168 

delivered to the masks at constant flows (between 0.9-1.2 L.min-1) controlled with a 169 

mass flowmeter (Sierra Instruments Inc, Monterey, California, USA).  Care was 170 

taken to ensure that the flow rate though the mask exceeded the rate of expiration, 171 

thus minimising the possibility of rebreathing.  An opening was made in the 172 

syringe barrel for excurrent airflow.  Alterations in airflow due to ventilation were 173 

measured using a pneumotachograph (MLT1L Respiratory Flow Head, AD 174 

Instruments, Bella Vista, NSW, Australia) placed upstream of the mask, such that 175 

expirations caused an decrease in airflow and inspiration caused a increase in 176 

airflow.  Pressure gradients induced by alterations in airflow across the 177 

pneumotachograph were monitored using a differential pressure transducer (ML141 178 

spirometer, AD Instruments, Bella Vista, NSW, Australia).  The signal was 179 

calibrated by injecting and withdrawing known volumes of gas from the sealed 180 

mask, and was integrated to obtain tidal volumes.  Gas exiting the mask was sub-181 

sampled, passed through an indicating molecular sieve desiccant (MLA6024, AD 182 

Instruments, Bella Vista, NSW, Australia)  and analysed for fractional 183 

concentrations of O2 (FO2) and CO2 (FCO2) (ML206 gas analyser, AD Instruments, 184 

Bella Vista, NSW, Australia).  The rates of oxygen consumption (V
.
 O2

) and carbon 185 

dioxide production (V
.
 CO2

) were determined as previously described by (Frappell et 186 

al., 1992).  Briefly, 187 

V
.
 O2

 = flow` x (F`IO2 – F`EO2) / (1 – F`IO2) 188 

where I and E represent incurrent and excurrent gas respectively, and prime ` 189 

represents dry CO2-free gas.  CO2 was mathematically scrubbed using F`O2 = FO2 / 190 

(1 - FCO2).   191 
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V
.
 CO2

 = flow` x (F`ECO2 – F`ICO2) / (1 – F`ICO2) 192 

where prime ` represents dry O2-free gas.  Metabolic gas values are reported at 193 

STPD (standard temperature and pressure, dry). 194 

 195 

Breathing patterns were analysed in terms of inspired tidal volume (VT), breathing 196 

frequency (f), minute ventilation (V
.
 E = VT x f), inspiratory duration (TI), the 197 

duration of the non ventilatory period (TNVP) and inspiratory airflow rate (VTI/TI).   198 

An average of 25 consecutive breaths were analysed and ventilatory volumes are 199 

reported at BTPS (body temperature and barometric pressure, saturated).  The air 200 

convection requirements for O2 (ACR O2) and CO2 (ACR CO2) and respiratory 201 

exchange ratio (RER) were also calculated.   202 

 203 

Experimental protocol 204 

Metabolic rate and breathing patterns were obtained from gravid lizards 4wks and 1 205 

wk prior to birth and in the first 24h after birth.   Noninvasively determining the 206 

stage of pregnancy in Tiliqua rugosa is difficult due the presence of heavily 207 

ossified scales which disrupt signal transmission of both ultrasound and traditional 208 

x-ray imaging modalities.  As a result, data are expressed as weeks prior to birth 209 

rather than time post conception thus enabling comparisons to be made between 210 

animals without the complication of potentially variable developmental times and 211 

unknown conception dates.   Breathing patterns were measured every two weeks 212 

from approx mid gestation and time matched data collated post birth.   213 

Measurements from non-gravid females were also made in the same time period.  214 

 215 

Digestion in lizards induces peak increases in V
.
 E and V

.
 O2 

that occur approx 24h 216 

post feeding (Hicks et al., 2000).  However, body temperature as well as the size, 217 

composition and frequency of meals can alter the metabolic response to feeding in 218 

reptiles (Beaupre, 2005; Bennett and Hicks, 2001; Hartzler et al., 2006; Hicks et al., 219 

2000; Klein et al., 2006; Secor et al., 2000; Toledo et al., 2003; Wang et al., 2012).  220 

Pilot data from lizards in this study, voluntarily fed their captive (relatively low 221 
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protein) diet at 30°C demonstrated that the duration of metabolic rate elevation 222 

caused by feeding is approx 48hrs.   Thus, the lizards in this study were fasted for a 223 

minimum of 48h prior to commencing experiments to avoiding the possible 224 

confounding affects of digestion induced alterations in metabolic rate.   225 

Experiments were performed at 30ºC and animals were equilibrated at the test 226 

temperature for a minimum of 12 h.   Breathing masks were fitted and lizards 227 

wrapped loosely in cotton cloth to discourage movement.  After 60 minutes of 228 

breathing air, the incurrent gas mixture was changed to 2.5% CO2 (in 21% O2 and 229 

balance N2) for 10 minutes, followed by 5% CO2 (in 21% O2 and balance N2) for 230 

10 minutes.  Air was then returned to the incurrent gas line for a minimum of 30 231 

minutes and lizards monitored until normal breathing patterns and V
.
 O2

 had 232 

recommenced.  Any experiment in which the lizards became active was discarded.  233 

 234 

Data collection, analysis and statistics 235 

All signals were collected at 1 kHz using the Powerlab data acquisition system 236 

(Model 8/30, AD Instruments, Bella Vista, NSW, Australia) using Chart data 237 

acquisition software (AD Instruments, Bella Vista, NSW, Australia).   The last 25 238 

consecutive breaths were analysed for each inhaled gas mixture.   All data 239 

presented are mean±se.  Ventilatory volumes are reported at BTPS and V
.
 O2 

at 240 

STPD.   241 

 242 

Estimates of the energetic cost of breathing were calculated in individual lizards as 243 

a percentage of resting metabolic rate using a method previously described 244 

(Jackson et al., 1991; Skovgaard and Wang, 2004; Skovgaard and Wang, 2007; 245 

Wang and Warburton, 1995).  A regression line was plotted between V
.
 E and V

.
 O2

 in 246 

response to breathing air, 2.5% CO2 and 5% CO2.  From this relationship, the cost 247 

of all metabolic activities other than ventilation (non-ventilatory metabolic cost) 248 

could be derived from the y-intercept (i.e. V
.
 O2

 where V
.
 E=0).  Assuming that the 249 
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relationship between V
.
 E and V

.
 O2

 is linear and that there is no change in non-250 

ventilatory metabolic rate during hypercapnic exposure, the percentage energetic 251 

cost of breathing can be calculated from the non-ventilatory and resting metabolic 252 

rates.    253 

 254 

Statistical analysis of breathing patterns, metabolic rates and position of caudal 255 

lung margin during gestation were analysed using two way ANOVA (P<0.05), 256 

followed by Dunnett t-test (P<0.05).   257 

 258 

Results 259 

The mean relative clutch mass (gestational load) of the five pregnancies (3 260 

singleton births and 2 sets of twins) was 28.3±4.4% of maternal mass, ranging from 261 

19.1% to 37.6%.   Estimated duration of pregnancies was 4.5 months.  262 

 263 

Imaging 264 

Radiographs were unable to image the developing fetuses at 5-6 weeks prior to 265 

birth.  Despite this, the lung compression caused by the developing fetuses was 266 

evident in radiographs by 5-6 weeks prior to birth (Fig 1).  By the week prior to 267 

birth radiographic imaging clearly revealed the mandible skeletal elements of the 268 

fetuses, although no clear image of the spine or other skeletal elements was visible 269 

(Fig 1).  The maximum body width was not significantly different (Paired t-test, P 270 

= 0.39) between one week prior to birth (8.65±0.29 cm) and one week after birth 271 

(8.30±0.39 cm).  Computerised Tomography (CT scan) of one pregnant female 272 

showed that in very late pregnancy (18h prior to birth) the fetus occupied a 273 

significant proportion of the body cavity in both the dorso-ventral and anterior-274 

posterior dimensions (Fig 2).  A significant difference in the lung inflation index 275 

(caudal margin of the lung relative to rib number as counted from cranial to caudal 276 

direction / total rib number) was measured during gestation (Fig 3, ANOVA, 277 

P<0.00001).  The lung inflation index in non-pregnant females and males did not 278 

differ and averaged 0.77±0.01.  In the period 35-44 days prior to birth the average 279 

lung inflation index was significantly reduced to 0.66±0.02 (P<0.0001), which was 280 



 11

further reduced to 0.54±0.04 in the 2-7 days prior to birth (P<0.0001).  In the first 281 

2-3 days after birth the lung compression index (0.75±0.02) was not significantly 282 

different from that in non-pregnant lizards (P=0.33). 283 

 284 

Breathing patterns during gestation 285 

 Both pregnant and non pregnant Tiliqua rugosa had a breathing pattern that 286 

consisted of single breaths, in which expiration always preceded inspiration, 287 

interspersed with non ventilatory pauses.   288 

V
.
 E was elevated in the week prior to and after birth relative to non-pregnant lizards 289 

(Fig 4).  These increases in V
.
 E were induced by increases in f and decreases in 290 

TNVP, without any significant alteration in VT (Table 1).  Despite no significant 291 

alteration in VT, TI decreased in the week prior to and after birth, and VTI/TI 292 

increased at 4 weeks and 1 week prior to birth and 1 week after birth (Fig 5).  V
.
 O2

, 293 

V
.
 CO2

 and RER were not significantly altered during gestation (Fig 6).  As a result 294 

of the significant increases in V
.
 E without increases in V

.
 O2

 or V
.
 CO2, both ACR O2 295 

and ACR CO2 increased relative to non-pregnant values at 4 weeks and 1 week 296 

prior to birth and in the first week after birth (Fig 6).   297 

 298 

Breathing patterns in response to hypercapnia 299 

V
.
 E increased 2.3-2.6 fold in response to 2.5% CO2 and 2.5-5.2 fold in response to 300 

5% CO2 (Table 1).  f and TNVP were not significantly altered by hypercapnia, thus 301 

the increases in V
.
 E were induced solely by 2.1-6.0 fold increases in VT.  VT changes 302 

in response to 5% CO2 were accomplished via increases in both VTI/TI and TI, 303 

although theses parameters were not significantly elevated in response to 2.5% 304 

CO2.  V
.
 O2

 (2.7-5.2 fold) and V
.
 CO2 (2.3-4.1 fold) increased in response to 5% CO2, 305 

although no significant changes in ACR O2, ACR CO2 or RER were measured 306 

(Table 1).   There were no significant interaction effects between stage of 307 



 12

pregnancy and inhaled gas composition in any metabolic or ventilatory parameter 308 

(Two-way ANOVA, P>0.05).  309 

 310 

Energetic cost of breathing 311 

The energetic cost of breathing was estimated as a percentage of resting metabolic rate 312 

from the linear relationship between V
.
 E and V

.
 O2

 when breathing air, 2.5% CO2 and 5% 313 

CO2 (Fig 7).  The energetic cost of breathing in non-pregnant lizards was 19.96±3.85% of 314 

resting metabolic rate.  Gestation significantly increased the energetic cost of breathing to 315 

34.67±0.50% at 4 weeks prior to birth, 62.80±10.11% 1 week prior to birth and 316 

49.25±14.02% in the first week after birth (Fig 8).    317 

 318 

 319 

Discussion 320 

 321 

Imaging 322 

In this study, fetal tissues could not be detected using radiographic images. As a result the 323 

number of fetuses present could not be determined until the week prior to birth when fetal 324 

ossification permitted the visualization of fetal mandibles (Fig 1).  A similar result was 325 

found in the closely related viviparous blotched blue-tongue lizard, Tiliqua nigrolutea, in 326 

which gestation could not be confirmed radiographically until the presence of fetal skulls 327 

and mandibles in late gestation (Gartrell et al., 2002).  Ultrasonography was found to 328 

have moderate to high accuracy in determining gestation throughout the reproductive 329 

cycle in Tiliqua nigrolutea (Gartrell et al., 2002)  and in 5 species of oviparous lizards 330 

(Gilman and Wolf, 2007), however the heavily ossified scales in T. rugosa result in poor 331 

signal penetrance and thus ultrasonography is not useful in determining gestation in this 332 

species (Munns, pers. obs.).     333 

 334 

During gestation the increasing size of the fetuses resulted in no significant change in 335 

body width (P=0.39) but significant lung compression and it may be possible to diagnose 336 

gestation based on the degree of lung compression.  In fasted lizards the mean lung 337 

inflation index decreased by 30% one week prepartum (Fig 3).  In one individual that 338 
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carried twins, the lung compression index was 0.40 three days prior to birth, representing 339 

a 48% reduction during gestation.  While this method of indexing lung inflation does not 340 

yield any data on lung volumetric changes occurring during gestation, it may be useful as 341 

a method of radiographically diagnosing gestation prior to fetal ossification, especially in 342 

species possessing dermal ossification, and will provide qualitative information regarding 343 

the degree of lung compression during gestation.   344 

 345 

Breathing patterns during gestation 346 

Gestation in T. rugosa induced a two fold increase in V
.
 E via an increase in f with no 347 

concurrent increase in VT (Fig 4).  The combination of f and VT used to produce a 348 

particular V
.
 E has a direct impact on the energetic cost of breathing.  The mechanical 349 

work of breathing increases in direct proportion with f  but increases with the square of 350 

VT (Milsom and Vitalis, 1984; Perry, 1989).  As a result, it is more economical to 351 

increase V
.
 E via increases in f rather than via increases in VT (Milsom, 1984; Milsom and 352 

Vitalis, 1984; Vitalis and Milsom, 1986).  During gestation T. rugosa increases V
.
 E using 353 

solely increases in f, a breathing pattern that results in a lower mechanical work 354 

compared with that resulting from increases in VT (or combinations of both VT and f).   355 

Despite the adoption of a breathing pattern which produced elevated V
.
 E for the least 356 

expensive mechanical work, the overall energetic cost of breathing increased 3 fold 357 

during gestation (Fig 8).  358 

 359 

Gestation did not induce an increase in VT, however TI was reduced at the same time as 360 

VTI/TI was increased (Fig 5).  The resulting shorter inspirations with higher rates of 361 

airflow produced a gasp like inspiration particularly during late gestation.  It is likely that 362 

an increase in the rate of inspiratory airflow would require increased respiratory muscle 363 

recruitment during inspiration and thus is likely to contribute to the increased energetic 364 

cost of breathing during gestation (Fig 8).   In this study and in humans increases in the 365 

rate of inspiration during pregnancy reflects an increased respiratory drive (Kolarzyk et 366 

al., 2005).  In humans, at least, this increase in the rate of inspiration during pregnancy 367 
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may be associated with overcoming increased respiratory system resistance (Kolarzyk et 368 

al., 2005) and/or may be linked with progesterone associated changes in central 369 

chemosensitivity (Jensen et al., 2005).  It is likely that lung compression during 370 

pregnancy in T. rugosa decreases lung compliance and an increase in the rate of 371 

inspiration may be an advantageous compensatory response. 372 

 373 

The breathing pattern alterations measured during gestation in this study followed a 374 

different pattern compared to those measured in an earlier study of the same species (Fig 375 

4) in which V
.
 E and VT were reduced 2 weeks prepartum compared to 12-14 weeks 376 

prepartum but not significantly reduced relative to non pregnant females and males 377 

(Munns and Daniels, 2007).  The relative clutch mass of both groups of pregnant lizards 378 

were similar (28.3±4.4% in this study compared to 21.6±2.6%) however females from 379 

Munns and Daniels (2007) were caught from the field during early gestation, whereas 380 

captive breeding was employed in this study.  Captive T. rugosa are likely to have 381 

increased abdominal fat stores due to a more regular and higher quality diet compared to 382 

that available to wild lizards.  Females used in this study had significantly greater body 383 

mass for the same snout-vent length (mean 989.6±76.8g) compared to those in the 384 

previous study (mean 662.2±22.5g).  Increased abdominal fat stores may decrease the 385 

space available in the body cavity for fetal growth and may result a greater degree of lung 386 

compression and thus alter gestational breathing patterns.   This hypothesis could be 387 

tested using a detailed analysis of the breathing patterns induced by singleton compared 388 

to twin pregnancies (with twin pregnancies likely to induce greater lung compression) 389 

however insufficient data from twin pregnancies are presently available to make this 390 

comparison.  391 

 392 

The maintenance of V
.
 O2

 and V
.
 CO2 during gestation combined with an elevated V

.
 E 393 

resulted in increases in both ACR O2 and ACR CO2 (Fig 6). An increase in ACR O2 is 394 

produced when an elevated V
.
 E is used to achieve the same V

.
 O2

, and thus reflects a 395 

relative hyperventilation and a decrease in pulmonary O2 extraction efficiency. The 396 

relative hyperventilation that was induced during gestation in T. rugosa may be the result 397 



 15

of either a diffusion and/or perfusion limitation to the rate of gas exchange in the 398 

maternal lung.  The decrease in the lung inflation index during gestation (Fig 3) indicates 399 

that there was progressive lung compression during gestation in this study, which may 400 

reduce the surface area available for gas exchange and produce a diffusion limitation to 401 

gas exchange.  It is possible that the progressive lung compression may also increase 402 

pulmonary vascular resistance and may produce a perfusion limitation to pulmonary gas 403 

exchange by increasing ventricular afterload.  Lung diffusing capacity and pulmonary 404 

vascular resistance were not measured in this study and the changes in these parameters 405 

during gestation should be the subject of future studies.   406 

 407 

In this study, gestational V
.
 O2

 represents the sum of both maternal and fetal tissues, thus it 408 

is possible that maternal V
.
 O2 

decreases during gestation while fetal V
.
 O2 

increases, thus 409 

resulting in no net change in total V
.
 O2

.
 
 During gestation, activity levels (pers. obs) and 410 

the amount of food consumed decreases (Munns and Daniels, 2007), and may be 411 

associated with a decrease metabolic cost of gastrointestinal tract maintenance (Secor et 412 

al., 1994) and, as a result, in maternal metabolic rate.  A decrease in metabolic rate would 413 

act to lower maternal oxygen demand, and thus may be an advantage if lung compression 414 

decreases the efficiency of gas exchange at the respiratory membrane.  If an overestimate 415 

of maternal V
.
 O2 

occurred in this study, it would result in an underestimate of ACR O2 416 

during gestation and an underestimate in the degree relative hyperventilation.  Thus the 417 

impact of gestational lung compression and breathing pattern alterations on pulmonary 418 

gas exchange described here may be an underestimate.  419 

 420 

 421 

Energetic cost of breathing 422 

The energetic cost of breathing in non-pregnant T. rugosa was 19.96±3.85% of resting 423 

metabolic rate (Fig 8).   This represents a relatively high cost of breathing compared to 424 

estimates in Tegu lizards (less than 1%) and American alligators (1-5%) using 425 

hypercapnic gases and a similar method to this study (Skovgaard and Wang, 2004; Wang 426 
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and Warburton, 1995).    Lizards have relatively simple (unicameral) and highly 427 

compliant lungs (Perry and Duncker, 1978). As a result most of the work of breathing is 428 

used to overcome elastic forces in the chest wall (Skovgaard and Wang, 2004).  Given 429 

the presence of ossified scales in T. rugosa and the likely decrease in chest wall 430 

compliance, a higher resting energetic cost of breathing is not surprising in this species.    431 

 432 

There is relatively little comparative data on the cost of breathing in reptiles, and 433 

estimates vary considerably from 1-52% and depend on the methods employed and the 434 

type of gases used to induce ventilatory changes (de Andrade and Abe, 1999; Jackson et 435 

al., 1991; Kinney and White, 1977; Skovgaard and Wang, 2004; Skovgaard and Wang, 436 

2007; Wang and Warburton, 1995).    Hypoxia produces higher cost of breathing 437 

estimates compared to hypercapnia in reptiles (Jackson et al., 1991; Skovgaard and 438 

Wang, 2004; Skovgaard and Wang, 2007; Wang and Warburton, 1995).  Hypoxia (2.5-439 

10%) can induced a wide variety of breathing pattern responses in reptiles (reviewed in 440 

(Munns, 2000)) and severe hypoxic (6%) has been shown to induce agitation and increase 441 

movement (Skovgaard and Wang, 2004).  Cost of breathing calculations make the 442 

assumption that non-ventilatory metabolism remains constant.  Movement induced by 443 

severe hypoxia would increase the non-ventilatory metabolic rate and thus void one of 444 

the main assumptions made during cost of breathing calculations.  In this study, 445 

hypercapnia was used to trigger breathing pattern alterations in resting lizards because it 446 

generally produces larger and more linear changes in V
.
 E compared to hypoxia 447 

(Skovgaard and Wang, 2004) and produces more conservative estimates of the energetic 448 

cost of breathing.  It has been suggested that a hypercapnic induced acidosis may lower 449 

non-ventilatory metabolic rate (Busa and Nuccitelli, 1984) which would result in an 450 

underestimation of the cost of breathing.  However, metabolic depression was not 451 

induced by hypercapnia in artificially ventilated turtles (Hicks and Wang, 1999) so the 452 

effect of hypercapnia on non-ventilatory metabolism in reptiles remains unclear.  To 453 

reduce the possibility of a hypercapnic induced depression in non-ventilatory metabolism 454 

(while still inducing a steady state alteration in breathing pattern), the exposure time to 455 

hypercapnia was limited to 10 minutes in this study, significantly shorter than the 45-60 456 
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minutes used in previous studies (Skovgaard and Wang, 2004; Skovgaard and Wang, 457 

2007; Wang and Warburton, 1995).  458 

 459 

Skovgaard and Wang (2004) have shown that ventilation can be elevated for a low 460 

energetic cost in lizards, however this was not the case during gestation in T. rugosa.  461 

Gestation increases the energetic cost of breathing 3 fold to 62.8±10.1% of resting 462 

metabolic rate (Fig 8).  This increase in the energetic cost of breathing is the first 463 

measured for a gestating reptile, and may be due a combination of factors; the energetic 464 

cost of increased respiratory muscle recruitment required to increase V
.
 E and the rate of 465 

inspiration, the energetic cost associated with overcoming any decrease in lung and/or 466 

chest wall compliance, and any increase in flow resistive forces associated with 467 

increasing the rate of inspiration (which cannot be directly accounted for in this analysis).   468 

This very high energetic cost of breathing exceeds the highest measurement to date in 469 

reptiles; 52.3% in hibernating Tegu lizards (de Andrade and Abe, 1999) although as these 470 

hibernating lizards were at a body temperature of 17°C their energetic cost of breathing is 471 

high in relative terms due to metabolic depression but may low in absolute terms.   472 

However the energetic cost of breathing during gestation in T. rugosa does not exceed the 473 

extremely high energetic cost of breathing estimates (90%) from hibernating squirrels 474 

(Garland and Milsom, 1994).  Elevated energetic costs of breathing may have a 475 

considerable impact on the energy budgets of gestating T. rugosa, reducing the energy 476 

available for other activities such as exercise.  T. rugosa has a low maximum metabolic 477 

rate (0.722 ml O2/(g.h) at 35°C) (John-Alder et al., 1986),  being in the lower 50% for all 478 

values for lizards at 35°C (John-Alder et al., 1986). The species is described as being 479 

unusually slow, with limited stamina, low sprint speeds and low maximum aerobic 480 

speeds (John-Alder et al., 1986).   Activity levels decline and levels of aggression 481 

increase as gestation progresses in T. rugosa (pers.obs.) which may be due in part to the 482 

elevated costs associated with ventilation.   Exercise capacity during gestation, including 483 

the ability to forage for food and escape predators, may be crucial for survival.  A 484 

decrease in sprint speed and/or endurance in gestating lizards is common (Bauwens and 485 

Thoen, 1981; Miles et al., 2000; Olsson et al., 2000; Shine, 1980; Sinervo et al., 1991; 486 

van Damme et al., 1989), and may be partially responsible for the decline in survival 487 
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rates during gestation in some squamate reptiles (Miles et al., 2000) although the 488 

physiology underpinning this finding is poorly understood.   The effect of progressive 489 

lung compression and increased energetic cost of breathing on locomotion in pregnant T. 490 

rugosa is the subject of current experiments.   491 

 492 

Breathing patterns in response to hypercapnia 493 

An increase in VT was induced by hypercapnia in both pregnant and non pregnant lizards, 494 

however, during hypercapnia, the gestation induced increase in f (and thus V
.
 E) was 495 

abolished (Table 1).  The blunting of the breathing pattern response to gestation during 496 

hypercapnia may indicate a decreased sensitivity of CO2 chemoreceptors during 497 

pregnancy.   The sensitivity of pulmonary stretch receptors (which are mildly CO2 498 

sensitive) is depressed by hypercapnia, which reduces the negative feedback during lung 499 

inflation, and results in elevated VT (Milsom, 1995; Powell et al., 1988).   In addition, 500 

hypercapnic stimulation of pulmonary and upper airway chemoreceptors has been shown 501 

to reduce f (and hence V
.
 E) in Tegu lizards (Ballam, 1985; Ballam and Donaldson, 1988; 502 

Coates et al., 1991).  Whether gestation induces any alterations in the sensitivity of CO2 503 

chemoreceptors in lizards is unclear.  504 

 505 

In conclusion, gestation resulted in significant lung compression in T. rugosa and, in this 506 

study, is associated with a relative hyperventilation via increases in f.   An increase in f 507 

and a relative hyperventilation was not present during gestation in a previous study using 508 

the same species (Munns and Daniels 2007), and may suggest that differences in body 509 

condition and abdominal fat stores during pregnancy influence breathing patterns.  510 

Gestational alterations in breathing patterns (and presumably chest wall and lung 511 

compliance) resulted in 3 fold increases in the energetic cost of breathing which may 512 

have significant consequences for the energy budgets of gestating females.  513 

 514 
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Table 1: The effect of gestation on breathing patterns and metabolic rate in T. rugosa 662 

breathing air, 2.5% CO2 and 5% CO2. Number in parenthesis indicated standard errors of 663 

the mean. † indicates a significant difference relative to air values at the same stage of 664 

pregnancy (Dunnetts, P<0.05), * indicates a significant difference relative to non 665 

pregnant values when breathing the same inhaled gas (Dunnetts, P<0.05). n=5 pregnant 666 

and n=7 non pregnant.  667 

 668 

Fig 1:  Radiographs of one pregnant lizard A. 40 days prepartum, B. 3 days prepartum 669 

and C. 2 days postpartum.  An anterior displacement of the caudal margin of the lung 670 

(black arrows) was evident in all pregnant lizards in the last 5-6 weeks of gestation, and 671 

was most extreme in this individual who carried twins (white arrows mark foetal 672 

mandibles).   673 

 674 

Fig 2:  Computerised Tomography scans showing A. Sagittal and B. Coronal sections of 675 

a pregnant female (singleton pregnancy) 18h prior to parturition. C. A reconstruction of 676 

the surface bony elements shows the heavily ossified scales which prevent significant 677 

expansion of the body wall during gestation.    678 

 679 

Fig 3: The radiographic imaging was used to determine the lung inflation index (the rib 680 

number associated with the caudal margin of the lungs / total number of ribs).  A 681 

significant decrease in the lung inflation index and thus an anterior displacement of the 682 

lungs during gestation (ANOVA, P <0.00001) was measured during the periods 35-44 683 

days (Dunnett’s t-test, P<0.00001) and 2-7 days (Dunnett’s t-test, P<0.00001) prior to 684 

birth.  There was no significant difference in the lung inflation index 2-3 days postpartum 685 

compared to non-pregnant lizards (Dunnett’s t-test, P=0.33).  Data shown are mean±se, 686 

n=8 lungs from pregnant lizards, n=26 lungs from non-pregnant lizards. 687 

 688 

Fig 4:  Inspired tidal volume was not significantly altered during gestation (A).  A 689 

significant increase in breathing frequency (B) and decrease in the duration of the non 690 

ventilatory pause (D) was responsible for the increase in minute ventilation (C). * 691 

indicates a significant difference relative to non pregnant values (Dunnetts, P<0.05). Data 692 
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shown are mean±se, n=5 pregnant and n=7 non pregnant. Comparison data from Munns 693 

and Daniels (2007) are shown in grey in which minute ventilation and tidal volume were 694 

significantly lower in the 2 weeks prepartum to 12-14 weeks prepartum, but not 695 

significantly different when compared to non-pregnant females and males.  696 

 697 

Fig 5:  Despite no significant alteration in inspired tidal volume, the rate of inspiration 698 

(gradient of each line) increased significantly (†, Dunnetts, P<0.05) relative to non-699 

pregnant (■) values 4 weeks (▲) and 1 week (♦) prior to birth and remained elevated in 700 

the first week after birth (●).  The duration of inspiration significantly decreased 1 week 701 

prior to and 1 week after birth relative to non pregnant values (*, Dunnetts, P<0.05).  702 

Data shown are mean±se, n=5 pregnant and n=7 non pregnant.  703 

 704 

Fig 6: The rates of O2 consumption (A), CO2 production (B) and the respiratory exchange 705 

ratio (E) were not significantly different during gestation compared to non pregnant 706 

values.  The air convection requirements for both O2 (C) and CO2 (D) were significantly 707 

elevated at 4 and 1 week prepartum and in the first week postpartum.  * indicates a 708 

significant difference relative to non pregnant values (Dunnetts, P<0.05). Data shown are 709 

mean±se, n=5 pregnant and n=7 non pregnant. 710 

 711 

Fig 7: The energetic cost of breathing for one representative pregnant female at 4 weeks  712 

and 1 week prepartum and in the first week postpartum.  The response to hypercapnia 713 

was linear in this and all other lizards throughout pregnancy.  The energetic cost of 714 

breathing was 34.9% of resting metabolic rate at 4 weeks prior to birth and increased to 715 

75.4% one week prepartum (for comparison non pregnant cost of breathing is 716 

19.96±3.85%).  In the first week postpartum the energetic cost of breathing remained 717 

high at 74.9% of resting metabolic rate. Theoretical energetic cost of breathing isopleths 718 

(dotted lines) are shown for 20%, 40%, 60% and 80% of resting metabolic rate.    719 

 720 

Fig 8: The energetic cost of breathing significantly increases at 4 weeks and 1 week 721 

prepartum and in the first week postpartum.  * indicates a significant difference relative 722 
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to non pregnant values (Dunnetts, P<0.05). Data shown are mean±se, n=5 pregnant and 723 

n=7 non pregnant. 724 


