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A variety of sources of organic contaminants to the Great
Barrier Reef lagoon and near-shore environment exist
including boating activity, agriculture and urban run-o�.
Cytochrome P-450 1A activity as measured by ethoxy-
resoru®n O-deethylase (EROD) activity has been widely
used as an indicator of the exposure of ®sh to organic
contaminants such as polychlorinated biphenyls (PCB),
polycyclic aromatic hydrocarbons (PAH) and some or-
ganochlorine pesticides. This study demonstrates the
successful application of EROD measurements in a com-
mon Australian tropical estuarine ®sh species, Acantho-
pagrus berda (Pikey Bream), to identify areas under
potential stress from organic contaminants. Fish were
captured from four creeks draining agricultural land, a
creek draining urban land and two creeks with less dis-
turbed catchments. Signi®cant induction of cytochrome
P450-1A was observed in ®sh captured from Ross Creek
(urban catchment, 7.4-fold) and Cromarty Creek (agri-
cultural catchment, 6.4-fold). Increased activity was also
observed in ®sh captured from other creeks draining ag-
ricultural land (Plantation Creek, Victoria Creek, Sey-
mour River, 1.9±2.6-fold) as compared to those captured
from creeks in undisturbed catchments (Baldy Creek,
Fisher Creek, 67±114 pmol/min/mg protein). Ó 2000
Elsevier Science Ltd. All rights reserved.
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Introduction

Concern over the environmental impact of continuously
increasing anthropogenic land usage (both urban and
agricultural) in northern Australia, on the adjacent
marine environment has increased in recent years. Nu-
merous studies have focussed on aspects of nutrient and
sediment contamination (e.g. Yellowlees, 1991; Furnas
et al., 1995) while comparatively few have examined the
distribution of organic contaminants such as pesticides
(Rayment et al., 1997) and petroleum hydrocarbons
(Smith et al., 1985; Sandstrom, 1988). Fewer still have
investigated biological aspects of chemical contamina-
tion. These have largely focussed on chemical residues in
biological tissue (e.g. von Westernhagen and Klumpp,
1995; Russell et al., 1996; Rayment et al., 1997) although
Klumpp and von Westernhagen (1995) described ab-
normal development in ®sh larvae captured in coastal
regions of the Great Barrier Reef Lagoon.

Cytochrome P-450 enzymes are the primary group of
oxidative enzymes involved in metabolism of xenobiotic
compounds. Exposure to xenobiotic compounds results
in induction, or increased synthesis, of particular cyto-
chrome P-450 enzymes. Of the cytochrome P-450 en-
zymes, the cytochrome P-450 1A sub-family is especially
sensitive to induction by a range of organic contami-
nants, including petroleum hydrocarbons, PCBs, diox-
ins, furans, organochlorine pesticides and PAHs (e.g.
Payne et al., 1987; Goksoyr and F�orlin, 1992; Holdway
et al., 1995; Denison and Heath-Pagliuso, 1998). As
such, induction of cytochrome P-450 1A in ®sh has been
widely used as an indicator of biological exposure to
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organic contaminants in aquatic systems (e.g. Burns,
1976; Stegeman et al., 1986; Galgani et al., 1991; Liv-
ingston et al., 1993; Vrolijk et al., 1994; Collier et al.,
1998 and many others). Measurement of ethoxyresoru-
®n O-dethylase (EROD) activity is speci®c for cyto-
chrome P-450 1A. Catalytic assays such as EROD
provide a rapid and relatively inexpensive means for
assessment of ®sh exposure to organic contaminants.
Limited studies of induction of cytochrome P-450 1A in
®sh have been conducted in Australia (e.g. Ahokas et al.,
1994; Holdway et al., 1994; Brumley et al., 1995) and no
studies have previously been conducted in tropical
Australia. This study examines the induction of the cy-
tochrome P-450 1A enzymes in a common tropical es-
tuarine ®sh species, Acanthopagrus berda, collected from
creeks draining urban land, land with no signi®cant
disturbance and agricultural land in two major sugar-
cane regions ± the Herbert and Burdekin regions.

Materials and Methods

Sample sites
The Herbert and Burdekin River regions are two

signi®cant sugarcane growing regions which together
produce approximately 32% of AustraliaÕs sugar. Sug-
arcane is grown largely on the coastal ¯oodplains of the
two rivers, covering approximately 65 000 and 85 000 ha

in the Herbert and Burdekin regions, respectively. Fish
were collected from two creeks in each of the Herbert
River and Burdekin/Haughton River catchments which
drain the coastal ¯oodplain and have signi®cant areas
under sugarcane; one creek with signi®cant urban land-
use (Ross Creek) and two creeks with no signi®cant
agricultural or urban activity (Baldy Creek (Cape Fer-
guson) and Fisher Creek (Hinchinbrook Channel)
(Fig. 1). More detailed description of the individual
creeks are given below and summarized in Table 1.
Approximate percentage land use was determined from
maps and Global Information System (GIS) databases.

Sugarcane catchments
Sugarcane is the dominant land-use in Plantation

Creek (Burdekin) and Victoria Creek (Herbert) catch-
ments and comprises a signi®cant proportion of the area
in the Seymour River and Cromarty Creek catchments
(Table 1). Most of the caneland drained by Plantation
Creek, Victoria Creek and Cromarty Creek is land
which has been used for sugarcane farming for >60
years while a greater proportion of the sugarcane land in
the Seymour River catchment is relatively recent (<20
years). Recreational boating is popular in all creeks and
boat ramps are located in Cromarty Creek, Plantation
Creek and Victoria Creek. Additionally, commercial
®shing activities (Barramundi) occur in Victoria Creek.

Fig. 1 Map showing the location of sample sites and major river
catchment boundaries.
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Undisturbed catchments
Baldy Creek is a small tidal creek �2 km in length,

located in Bowling Green Bay National Park. No sig-
ni®cant recreational boating activities occur in this
creek. The Fisher Creek catchment is adjacent to the
Herbert River catchment and includes the coastal hills
of the Cardwell Range. Fisher Creek drains into the
extensive interconnected mangrove swamp of Hinchin-
brook Channel. Fisher Creek and Hinchinbrook
Channel are popular recreational boating areas and a
popular boat ramp is located in Fisher Creek.

Urban catchment
Ross Creek drains through the city of Townsville. The

catchment area is predominantly urban land although a
limited area of mangrove swamp exists. A man-made
lake system that receives stormwater from the sur-
rounding urban area discharges into the top of the
creek. Signi®cant commercial and recreational boating
activity occurs within Ross Creek due to the presence of
a marina, operation of a ferry service and the presence
of a large commercial Port facility at the creek mouth.

Fish collection
Fish were captured by hook and line. Immediately

after capture, ®sh were killed, livers dissected out and
frozen in liquid N2. Fish were sexed and their lengths
were measured. Gutted weight was determined in the
laboratory. Fish were captured over the period 20±29
April 1999. Rainfall prior to the collection period sug-
gested that there would be a moderate freshwater input
to the creeks.

Microsome preparation
Livers were stored at )80°C until analysis. Micro-

somes were prepared by homogenizing the liver in 0.1 M
phosphate bu�er (pH 7.4) followed by sequential cen-
trifugation. All steps were performed at 4°C. The ®nal
centrifugation was for 60 min at 100 000 g. Microsomes
were resuspended in phosphate bu�er containing 20%
glycerol and stored at )80°C until analyses.

Cytochrome p-450 content
Cytochrome P-450 content was determined by the

dithionite reduced di�erence spectral method of
Matsubara et al. (1976) with modi®cations by Rutten
et al. (1987). Brie¯y, microsomal suspensions were dilut-
ed 1/10 in 0.1 M phosphate bu�er containing 20%
glycerol at room temperature, and bubbled with carbon
monoxide for 30 s. After an additional 2 min for stabi-
lization, the baseline spectrum was recorded. Sodium
dithionite (®nal concentration, 4.58 mM) was added to
the sample cuvette and after 3 min, the spectrum be-
tween 400 and 500 nm was recorded using a Shimadzu
UV 3000 dual wavelength/double beam recording
spectrophotometer. An extinction coe�cient of 104
mMÿ1 cmÿ1 was used to calculate total P-450 content
(Matsubara et al., 1976).

Ethoxyresoru®n O-dethylase (EROD) analysis
EROD activity was determined using a ¯uorescence

method modi®ed from Burke and Mayer (1975). All
assays were conducted at 35°C and pH 7.6. The incu-
bation mixture consisted of an NADPH regenerating
system (10 mM magnesium chloride, 200 mM potassium
chloride, 6 mM Glucose-6-phosphate, 1.25 mM NADP
and 100 units G-6-dehydrogenase, 250 ll), 0.525 ml Tris
bu�er (pH 7.6), 100 ll albumin and 100 ll of ethoxy-
resoru®n substrate. Reaction was started with the ad-
dition of 25 ll of the microsomal preparation, incubated
for 5 min prior to stopping the reaction with 2.5 ml of
methanol. The resulting precipitate was centrifuged
(2000 g, 5 min) prior to determination of resoru®n on a
Hitachi F-4010 ¯uorescence spectrophotometer. Fluo-
rescence was determined at EX/EM wavelength of 530/
584 nm. Assays were performed in triplicate. Resoru®n
concentration was calculated from a standard regression
after correction of readings for blank ¯uorescence.

All enzyme activities were expressed as a rate per mg
of protein or nmol P-450. Normalization of EROD ac-
tivity to total P-450 content gives an indication of the
relative contribution of cytochrome P-450 1A to total P-
450 content, i.e., a higher value can suggest a relative

TABLE 1

Description of land use and general characteristics of study catchments.

Catchment Sub-catchment Sub-catchment
grouping

Approx
area (km2)

Predominant
land-use (% of
catchment area)

Vegetationa

(%)
Wetland
(%)

Mangrove
(%)

Other activities occurring
within creek system

Baldy Creek Undisturbed 40 80 20
Fisher Creek Undisturbed 40 70 30 Recreational boating
Herbert River Victoria Sugarcane 110 Sugarcane (70) 2 7 20 Commercial ®shing,

Recreational boating
Herbert River Seymour Sugarcane 80 Sugarcane (35) 38 2 20 Recreational boating
Haughton River Cromarty Sugarcane 45 Sugarcane (40) 2 60 Recreational boating
Burdekin River Plantation Sugarcane 155 Sugarcane (70)

Urban (6)
16 12 Recreational boating

Ross River Ross Creek Urban 25 Urban (90) 10 Shipping port,
Recreational boating

aVegetation ± Eucalypt/Melaleuca forest.
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enrichment of cytochrome P-450 1A (Stegeman et al.,
1997). Protein assays were performed on the microsomal
suspension using the method of Lowry et al. (1951).

Statistical analyses
The log transformed activities (EROD normalized to

protein and total cytochrome P-450, and total cyto-
chrome P-450 normalized to protein) were analysed
using a general linear model which included the e�ects:
disturbance regime (agriculture, urban and undis-
turbed), sexual reproductive status (active male, active
female, inactive male, inactive female), lesions (present,
absent) and catchment (Seymour River, Victoria Creek,
Plantation Creek, Cromarty Creek, Ross Creek). The
di�erences in activities, due to the main e�ects of in-
terest (disturbance regime and catchment), were esti-
mated using contrasts. The data were analysed on the
transformed scale as the assumptions of normality and
homogeneity of variance were not valid on the un-
transformed scale.

E�ects were considered at the 5% level of signi®cance
and all results presented on the untransformed scale.

Results and Discussion

Table 2 provides descriptive statistics on the ®sh
captured. Signi®cant e�ects of sexual reproductive sta-
tus on EROD activity were observed (Table 3). Females,
sexually active ®sh (both males and females) and ®sh
with external lesions showed a lower and more variable
activity (unpub. data). No signi®cant e�ects were ob-
served on total cytochrome P-450 content. Values pre-
sented in this paper for comparative EROD activity are
those for sexually inactive and not obviously sick, male
®sh (Tables 4 and 5). In addition to biological variables
(such as sex, age, spawning status), habitat variables,
primarily temperature, can in¯uence activity of the cy-
tochrome P-450 1A in ®sh (Stegeman and Chevion,
1980; Koivussaari et al., 1981; Jiminez and Burtis, 1989).
Water quality parameters were not collected during this
study. However, the variability of these parameters in
the di�erent creek systems over the short time ®sh were
collected (1 week) is unlikely to signi®cantly e�ect cy-
tochrome P450 1A response.

E�ect of catchment disturbance on cytochrome P-450 1A
activity

Fish captured from catchments disturbed by agricul-
tural or urban activity showed signi®cantly elevated
EROD activity as compared to ®sh captured from un-
disturbed catchments (Table 4). Additionally, ®sh cap-
tured from Ross Creek (urban catchment) showed a
signi®cantly higher activity (2.6-fold) as compared to
those captured from creeks draining sugarcane land. A
relative increase of EROD activity normalized to total
cytochrome-P-450 as compared to EROD activity nor-
malized to total protein occurred in ®sh captured from
sugarcane catchments (3-fold and 2.5-fold increase, re-
spectively, relative to undisturbed catchments, Table 4)
suggested an enrichment of cytochrome P-450 1A. In
contrast, ®sh captured from the urban catchment
showed a decrease in the relative response of EROD
activity normalized to total cytochrome P-450 (5.2-fold
compared to 6.4-fold increase relative to undisturbed
catchments, Table 4). This is perhaps not surprising
given the wide range of organic contaminants present in
the sediments of this system (Smith et al., 1985; Kross,
1997; Inglis and Kross, 2000) and therefore, potential
induction of other cytochrome P-450 enzymes (Van der
Oost et al., 1994; Stegeman et al., 1997). Interestingly,
®sh captured from sugarcane catchments showed a sig-
ni®cantly lowered total cytochrome P-450 content as
compared to ®sh captured from undisturbed or urban
catchments. This is unusual as increased EROD activity
is typically coincident with increased total cytochrome
P-450 content as a result of increased production of
cytochrome P-450 enzymes. Fish captured from the ur-
ban catchment showed slightly elevated, although not
statistically signi®cant di�erent, amount of total cyto-
chrome P-450 as compared to ®sh captured from the
undisturbed catchments.

Cytochrome P-450 activity in individual catchments

Undisturbed catchments. Despite the absence of sig-
ni®cant disturbance in the Fisher Creek catchment, its
location within Hinchinbrook Channel and sediment
dynamics within the channel suggest that ®sh captured
in Fisher Creek are likely to be exposed to any sediment
and associated (Wolanski et al., 1990) contaminants
originating from the Herbert River and surrounding

TABLE 2

Summary statistics of A. berda captured from study catchments.

Catchment Fish captured Gutted weight (g) Length (mm) Additional information
total (females) mean�SD mean�SD

Baldy 18 (4) 132� 27 174� 12
Fisher 22 (5) 111� 27 168� 13 Some ®sh collected from a spawning aggregation
Victoria 16 (1) 113� 32 170� 13 Two ®shes with external lesions
Seymour 14 (0) 139� 36 174� 14 Four ®shes with external lesions
Cromarty 17 (0) 105� 25 166� 12
Plantation 20 (3) 105� 22 162� 13
Ross 15 (0) 102� 16 163� 9
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creeks. Additionally, higher recreational boating activity
occurs in Fisher Creek as compared to Baldy Creek.
Thus, it is not surprising to observe that EROD activity
in Fisher Creek is elevated as compared to Baldy Creek.
However, it was surprising that this increase in activity
was signi®cant (Table 5). In subsequent discussion, all
increases of EROD activity normalized to total protein
or total cytochrome P-450 are expressed relative to the
EROD activity in ®sh captured from Baldy Creek.

Sugarcane catchments. EROD activity in ®sh cap-
tured from all creeks draining sugarcane land showed a
signi®cant increase in activity as compared to ®sh cap-
tured from Baldy Creek. A 2.1±2.9-fold increase in ac-
tivity normalized to total protein or 2.5±4.6-fold
increase in EROD activity normalized to total cyto-
chrome P-450 was observed for ®sh captured from
Plantation Creek, Victoria Creek and Seymour River.
EROD activity in ®sh captured from Seymour River

TABLE 3

Overall signi®cance of e�ects (p-values) of disturbance regime, catchment (disturbed catchments only), sexual reproductive status, and lesions, on
EROD activity (normalized to protein and total cytochrome P-450) and total cytochrome P-450 normalized to protein.

E�ect EROD activity
(pmol/min/mg protein)

EROD activity
(nmol/min/nmol P450)

Total P-450
(nmol P450/protein)

Disturbance regime 0.0001 0.0001 0.0005
Catchment 0.0001 0.0001 0.0245
Sex and reproductive status 0.0001 0.0001 0.6537
Lesions 0.0266 0.4062 0.0844

TABLE 4

Estimates of EROD activity (normalized to total protein and total P-450) and P-450 in sexually inactive male ®sh collected from undisturbed,
sugarcane and urban catchments and the ratio of disturbed catchments relative to the undisturbed catchments for each of these activities.A

Catchment
grouping

No. of ®sh EROD activity
(pmol/min/mg protein)

Ratio
(95%CI)

EROD activity
(nmol/min/nmol P450)

Ratio
(95% CI)

Total P-450
(nmol P450/protein)

Ratio
(95% CI)

mean (95% CI) mean (95% CI) mean (95% CI)
(min, max) (min, max) (min, max)

Undisturbed 24 88 (71±107)a 0.41 (0.33±0.52)a 0.21 (0.18±0.25)a

(23.2, 229) (0.11±0.52) (0.12, 0.40)
Sugarcane 57 217 (188±249)b 2.6 1.3 (1.1±1.5)b 3.1 0.17 (0.15±0.19)b 0.81

(45, 760) (1.9±3.5) (0.32, 5.36) (2.3±4.0) (0.03, 0.37) (0.67±1.0)
Urban 15 564 (429±742)c 6.4 2.1 (1.6±2.9)c 5.2 0.26 (0.22±0.32)a 1.2

(193, 1074) (4.6±9.1) (0.91, 4.3) (3.6±7.5) (0.14, 0.40) (1.0±1.6)

AValues within a column without a common superscript letter are signi®cantly di�erent (p < 0:05).

TABLE 5

Estimates of EROD activity (normalized to total protein and total P-450) and P-450 content in sexually inactive male ®sh collected from individual
catchments and the ratio of each catchment relative to Baldy Creek for each activity.A

Catchment No. of ®sh EROD activity
(pmol/min/mg protein)

Ratio
(95%CI)

EROD activity
(nmol/min/nmol P450)

Ratio
(95% CI)

Total P-450
(nmol P450/mg protein)

Ratio
(95% CI)

mean (95% CI) mean (95% CI) mean (95% CI)
(min, max) (min, max) (min, max)

Baldy 14 67 (51±87)a 0.31 (0.22±0.40a 0.22 (0.18±0.27)a;b

(23, 129) (0.11, 0.64) (0.12, 0.40)
Fisher 7 114 (84±155)b 1.7 0.57 (0.41±0.80)b 1.9 0.20 (0.16±0.25)a;b 0.9

(55, 229) (0.9±2.5) (0.24, 0.92) (1.2±8.4) (0.15, 0.36) (0.7±1.2)
Victoria 13 196 (150±258)c 2.9 1.4 (1.0±1.9)c 4.6 0.14 (0.11±0.17)c 0.6

(107, 379) (2.0±4.3) (0.59, 2.30) (3.1±6.9) (0.05, 0.27) (0.5±0.8)
Seymour 10 161 (118±220)b;c 2.4 0.75 (0.53±1.0)b;d 2.5 0.22 (0.17±0.27)a;b 1.0

(64, 259) (1.6±3.6) (0.36, 1.46) (1.6±3.9) (0.14, 0.34) (0.7±1.3)
Plantation 17 142 (111±181)b;c 2.1 0.94 (0.72±1.2)c;d 3.2 0.15 (0.12±0.18)c;d 0.7

(45, 329) (1.5±3.0) (0.35, 2.06) (2.2±4.6) (0.03, 0.38) (0.5±0.9)
Cromarty 17 492 (380±637)d 7.3 2.6 (2.0±3.4)e 8.6 0.19 (0.16±0.23)b;d 0.8

(294, 760) (5.1±10.6) (1.43, 5.36) (5.8±13.0) (0.10, 0.31) (0.6±1.1)
Ross 15 564 (429±742)d 8.4 2.1 (1.6±2.9)e 7.1 0.21 (0.22±0.32)a 1.2

(193, 1074) (5.8±12.3) (0.901, 4.3) (4.7±10.6) (0.14, 0.4) (0.9±1.6)

AValues within a column without a common superscript letter are signi®cantly di�erent (p < 0:05).
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and Plantation Creek was not signi®cantly di�erent
from those captured from Fisher Creek. A general trend
of decreased total cytochrome P-450 content was ob-
served in all sugarcane creeks although it was only sig-
ni®cant for Plantation Creek and Victoria Creek (both
of which have a longer history of agricultural land us-
age). Remarkably high EROD activity was observed in
®sh captured from Cromarty Creek (7.3±8.6-fold in-
crease, Table 5) and was similar to EROD activity ob-
served in ®sh captured from the urban catchment. This
result was unexpected as the Cromarty Creek catchment
has a relatively smaller area disturbed by sugarcane
growing than most of the other sugarcane catchments.
Additionally, boating activity in Cromarty Creek are no
greater than that in creeks draining the other sugarcane
catchments. Cromarty Creek however has an unusual
hydrological regime. It is located in an extensive area of
estuarine wetland and restriction of tidal waters entering
and leaving the wetland area combined with a limited
freshwater input has resulted in the formation of a
slowly ¯ushed local sedimentary depositional basin
(Blackman, pers. comm). This may in¯uence the distri-
bution of contaminants in the system.

Urban catchment. Fish captured from Ross Creek
showed signi®cantly elevated EROD activity as com-
pared to ®sh captured from Baldy Creek (7.1±8.4-fold
increase, Table 5) and a slight, though not signi®cantly
increased total cytochrome P-450. EROD induction in
®sh captured from Ross Creek was not unexpected given
known contamination of the sediment (Kross, 1997;
Inglis and Kross, 2000).

Sources of inducers of cytochrome P-450 1A in Queens-
land catchments.

The observed induction of cytochrome P-450 1A in
A. berda captured in catchments disturbed by agricultural
or urban activity, suggest they have been exposed to
inducing agents as a result of disturbance. A variety of
sources of inducers to the study catchments exist in-
cluding boating activity, agriculture and urban run-o�.
The ®rst step in elucidating the sources of inducers of
cytochrome P-450 1A is the identi®cation of the induc-
ers. A wide range of chemicals can induce cytochrome P-
450 1A. The best known inducers are planar PCBs,
chlorinated dibenzodioxins and furans and PAHs, pri-
marily those with 3 or more benzene rings (Stegeman
and Hahn, 1994). A recent study also identi®ed a wide
range of `non-classical' inducers including brevetoxin
and the pesticide carbaryl (Denison and Heath-Pagliuso,
1998). Given this wide range of chemical inducers, it can
be di�cult to determine if particular classes of com-
pounds are primarily responsible for observed induction
at a given location (Collier et al., 1998). Sediments are
generally considered to be the major source of cyto-
chrome P-450 1A inducers as these chemicals are typi-
cally bound to sediment particles.

Sediment sampling conducted in the study creeks
found low concentrations of PAHs and organochlorine
insecticide residues detected in sediment collected in all
creeks except Ross Creek in which high concentrations
of PAHs and organochlorine insecticides were found
(unpublished data). A recent study suggested that PAH
exposure was likely to be the major factor in environ-
mental induction of cytochrome P-450 1A in ®sh col-
lected from coastal regions of the USA (Gardinali and
Wade, 1998). The presence of high concentrations of
PAHs in Ross Creek sediments suggests PAHs are the
cause of induction in ®sh collected from this location.
With the exception of ®sh captured from Cromarty
Creek, induction in agricultural catchments may also be
due to low concentrations of PAHs. The remarkably
high EROD activity observed in ®sh captured from
Cromarty Creek was unexpected and may suggest the
importance of local hydrological regimes in determining
exposure of ®sh to contaminants and warrants further
investigation. Whether induction of cytochrome P-450
1A is a result of transient or chronic exposure to in-
ducing agents can also aid in the identi®cation of the
inducers. Removal of ®sh from the source of inducers
can result in return of cytochrome P-450 1A to basal
levels over a period of 3 weeks (Woodin et al., 1997)
although this time-frame will depend on the nature of
the inducing agent. Collection of ®sh from the study
sites at other time points would provide an indication on
the nature of exposure to and the identity of the in-
ducers.

O�-site movement of soil and associated contami-
nants is generally considered to be the major source of
contaminants to the north Queensland coastal environ-
ment (e.g. Bramley and Johnson, 1996; Furnas and
Brodie 1996; Hunter et al., 1996; Mitchell et al., 1996),
although none of these studies have examined the dis-
tribution of PAHs. The major source of PAHs to the
coastal environment surrounding heavily urbanized ar-
eas in the United States was believed to atmospheric
deposition of PAHs formed from the combustion of
fossil fuels (Collier et al., 1998). While the coastal re-
gions of North Queensland cannot be considered to be
heavily urbanized, burning of sugarcane prior to harvest
in some regions and subsequent atmospheric deposition
of PAHs and PCDD/PCDFs could constitute a signi®-
cant source of cytochrome P-450 1A inducers to the
adjacent coastal environment (Mueller et al., 1996a,b).
In this study, ®sh were collected outside the sugarcane
harvesting season and the contribution of contaminants
derived from this source to the observed cytochrome P-
450 activity is likely to be small. There may however,
have been some contribution by atmospheric deposition
from volatilized residues derived from urban and other
agricultural land use (e.g. pesticides, fuel oil, diesel and
gasoline combustion. A previous study of PAH in sed-
iments of the GBR suggested that boating activity was
the major source of PAHs to the sediment (Smith et al.,
1985). Recreational boating is a popular activity in
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many of the study creeks and commercial ®shing activ-
ities also occur in Victoria Creek and as such, may
represent an important source of inducers in the study
creeks.

Implications for the monitoring of the Great Barrier Reef
Lagoon coastal environment

Induction of cytochrome P-450 1A in ®sh has been
widely used as an indicator of biological exposure to
organic contaminants in aquatic systems and has been
incorporated into at least one monitoring programme
(Collier et al., 1998). However, species speci®c di�er-
ences in cytochrome P-450 1A activity and sensitivity to
inducing agents occur. This confounds comparison of
the relative induction observed in A. berda to that ob-
served in other studies using di�erent species and under
di�erent degrees of pollution. Up to 100-fold di�erences
in levels of EROD activity between di�erent species
captured from one location can be observed (e.g. Van
der Oost et al., 1991; Spies et al., 1996; Stegeman et al.,
1997). Within one species the relative increase in EROD
can range between 2- and 30-fold (e.g., Stegeman et al.,
1990; Vroljik et al., 1993; Ahokas et al., 1994; Holdway
et al., 1995; Spies et al., 1996; Flammarion and Garric,
1998) for sites considered to be low to highly polluted.
Thus, in order to use the relative induction of cyto-
chrome P-450 1A in A. berda as an indicator of the
degree of pollution, further research into the nature of
response in this species as it is in¯uenced by biological
and habitat variables is necessary. Despite this, cyto-
chrome P-450 1A response in ®sh provides a rapid and
relatively cheap `®rst-cut' assessment of the exposure
®sh to a range of organic contaminants. Over time and
as further information is obtained, temporal trends may
be observed and related to the condition of the envi-
ronment. This study provides preliminary baseline in-
formation on the cytochrome P-450 1A response in
A. berda response and demonstrates the potential appli-
cation of cytochrome P-450 1A induction in A. berda as
a biomonitoring tool for the coastal environment of
Queensland and Northern Australia.
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