
 

  
 

The supplementary information consists of one file entitled: 
 
WarrenSMMar2013.pdf 
 
This contains Supplementary Methods, Supplementary Discussion, Supplementary Figures 
S1-S4 and Supplementary Tables S1-S4. 
 
The size of this file is 2,885 KB. 



1 
 

Supplementary Information for: 

Quantifying the benefit of early climate change mitigation in avoiding 

biodiversity loss 

Warren, R*., VanDerWal, J., Price, J., Welbergen, J.A, Atkinson, I., Ramirez-Villegas, J., Osborn, 

T.J., Jarvis, A., Shoo, L.P., Williams, S.E, Lowe, J. 

*To whom correspondence should be addressed.  E-mail: r.warren@uea.ac.uk 

This Supplementary Information contains: 

� Supplementary Methods 

� Supplementary Discussion 

� Supplementary Figures S1-S4 

� Supplementary Tables S1-S4 

� References 

 

Supplementary Methods 

Our approach is based on an efficient linkage of climate and bioclimatic envelope modelling 

tools within the Community Integrated Assessment System CIAS1 and the Wallace Initiative 

(http://wallaceinitiative.org), using the MaxEnt model to project the movement of climate 

envelopes.  

 

Climate modelling. Global climate change modelling was carried out by driving the 

MAGICC4.1 climate model2,3 with 21st century emissions time series to create a projection of 

21st century climate change, based on an exploration of uncertainties in three key parameters: 
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climate sensitivity, ocean mixing rate, and a climate-carbon cycle feedback factor that 

amplifies the temperature dependent climate-carbon cycle feedbacks in MAGICC. Climate 

sensitivity is examined with a widely-used probability distribution4. A log-normal 

distribution of ocean mixing rates was fitted to the general circulation models employed in 

IPCC4. The climate-carbon cycle amplification parameter follows a normal distribution 

whose parameters were derived to allow MAGICC’s atmospheric carbon dioxide 

concentrations to closely match that of the earth system models in the C4MIP analysis5. This 

probabilistic analysis provides outputs in the form of percentiles of likely annual global mean 

near-surface temperature change over the 21st century, under each emissions scenario (see 

below). We used the median projections to drive a pattern-scaling module ClimGEN 

(developed from6); see also1,7 in which scaled climate change patterns diagnosed from GCM 

simulations are combined with a baseline climate (CRU TS 3.0 for 1961-1990, updated 

from8). We produced spatially-specific projections of monthly mean, minimum and 

maximum temperatures, and total precipitation, downscaled to a resolution of 0.5° x 0.5°. 

Patterns from seven GCMs from the CMIP3 archive were used, specifically UKMO-

HadCM3, CCCMA-CGCM3.1, IPSL-CM4, MPI-ECHAM5, UKMO-HadGEM1, CSIRO-

Mk3.0, and NCAR-CCSM3.07. ClimGEN was used to produce projected monthly time series 

for 30-year periods centered on the 2020s (2011-2040), 2050s (2041-2070) and 2080s (2071-

2100). These were then averaged to produce representative monthly climates for each 30 year 

period, using four indicators: monthly mean temperature, monthly maximum temperature 

(defined as the average of the daily maximum temperatures during a month), monthly 

minimum temperature and precipitation. This approach was necessary because GCMs have 

not been run for the mitigation scenarios we wanted to examine in our study. The models 

MAGIC4.1 and ClimGEN are designed explicitly to emulate the behaviour of the more 
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complex models so that impact modelers can study emission scenarios that have not been 

simulated by the GCM modelers.  

Emission scenarios used in our analysis included a baseline - SRES A1B9, and several 

mitigation scenarios developed for the AVOID project10. In the mitigation scenarios, 

greenhouse gas emissions initially follow the baseline scenario before transitioning over 

seven years so that emissions peak globally in either 2016 or 2030, and are reduced 

subsequently at rates of between 2 and 5% annually, until they reach a hypothetical lower 

limit designed to represent emissions that might be difficult to eliminate, e.g. from the 

agricultural system. Combining our emission scenarios with seven alternative GCM-derived 

change patterns produced 42 projected climates consistent with the IPCC11.  

Downscaled climate data were post-processed to produce the maximum of eight 

bioclimatic indices required by MaxEnt12,13 used in this study. The average maximum 

temperature of warmest month of the year (MTW), the average minimum temperature of 

coldest month of the year (MTC), annual mean temperature (AMT), temperature seasonality 

(TS), total annual rainfall (ATR), rainfall seasonality (RS) and rainfall of the wettest quarter 

(RWQ) and rainfall of the driest quarter (RDQ) were calculated directly from the average 

climates of the aforementioned 30-year periods.  

 

MAGICC4.1 climate model. MAGICC4.1 is a probabilistic version of the simple climate 

module, MAGICC.TAR, which was used to illuminate the consequences of the SRES 

scenarios in the IPCC Third Assessment Report14. The model15 was thus tuned to emulate 

seven state-of-the-art coupled Atmosphere-Ocean Global Circulation Models (AOGCMs16) 

and used to extend the model results to the 35 IPCC Special Report on Emissions Scenarios 

(SRES)9. It simulates greenhouse gas cycles, radiative forcing, temperature change, and ice 



4 
 

melt. Gas cycle models are used to convert emissions of gases (including ozone precursors) 

to atmospheric concentrations15. Climate feedback on the carbon cycle is included; the 

resulting CO2 concentration depends on the forcing, the climate sensitivity and the ocean heat 

uptake efficiency. Radiative forcing is then calculated from the concentrations. Sulphate 

aerosol forcing is scaled directly with the emissions because of the short residence time in the 

atmosphere. The total forcing then drives an upwelling diffusion energy balance model to 

estimate future climate changes. Thus the model allows the user to determine changes in CO2 

concentration, global-mean surface air temperature and sea level between the years 2000 and 

2100 resulting from anthropogenic emissions of CO2, CH4, N2O, HFCs, CFCs and PFCs, as 

well as SO2. It is also possible to determine the sensitivity of these results to the variation in 

key model parameters, specifically the climate sensitivity, the ocean diffusivity, the aerosol 

forcing and uncertainties in the carbon cycle15, and this is applied in the probabilistic version 

used here. MAGICC4.1 has been widely used in integrated modelling studies of mitigation 

scenariose.g. 17 because it is capable of reproducing global mean warming from more complex 

global circulation models (GCMs)see also  18. Use of MAGICC4.1 is necessary because GCMs 

have yet to be run and analysed for many stringent mitigation scenarios such as those 

considered within this study.    

 

ClimGEN model. ClimGEN is a tool for generating fields of climate data using the method 

of pattern scaling, and thus in the tradition of CLIMAPS18, and SCENGEN19, and was 

developed from methods described in Mitchell et al8. ClimGEN uses GCM datasets obtained 

from the IPCC Data Distribution Centre at www.ipcc-data.org to produce interpolated 

patterns of climate change per degree Kelvin of global warming. The GCM outputs currently 

incorporated in ClimGEN were used in the IPCC Third Assessment Report14: ClimGEN 

combines these change patterns with the observed climatology to yield patterns of mean 
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absolute climate, and then combines them with observed time series of deviations from 

climatology to yield realisations of climate change with realistic year-to-year variability 

superimposed. It provides month-by-month climate variations for both observed climate from 

1901 to 2002 (CRU TS 2.1) and future climate scenarios over 2001 to 2100, at a resolution of 

0.5° latitude by 0.5° longitude, for the entire terrestrial land surface except Antarctica8. 

Climate fields can be generated for 8 climate variables based on GCM outputs, specifically: 

mean, maximum and minimum temperature; precipitation, vapour pressure, cloud cover, and 

wet day frequency. In the case of precipitation changes in pattern-scaled GCM precipitation 

expressed as fractional changes from present-day precipitation that are combined with the 

observed climatology by multiplication. To simulate future changes in precipitation 

variability as well as mean precipitation, ClimGEN includes a gamma shape method in which 

the pattern of changes in a gamma shape parameter output by the GCM models which 

represents the temporal distribution of precipitation, is scaled by the required global-mean 

temperature change. Further details are provided in Warren et al1,20. 

 

Biodiversity Data. Primary biodiversity data were obtained from the Global Biodiversity 

Information Facility (GBIF)21. GBIF facilitates discovery of data from many datasets 

worldwide, exposed via the Internet, indexed centrally and accessible through a common 

portal22. This totalled 170 million occurrence records from 200 data providers. Whilst there 

are gaps in the available data, GBIF provides a source to allow researchers to identify the 

potential patterns of change across the widest range of species and areas possible. We 

verified locational consistency of all records in the database using an established automated 

process23. Specifically, we removed records with no location data or that did not fall within 

land areas using a high resolution (~90m) coastal layer derived from the SRTM Digital 
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Elevation Model24. We compared the location of each record with the reported country of 

collection in the database and discarded all records with conflicting values. We analyzed the 

environmental niche of each of the 48,786 species that remained in our database following 

these necessary procedures. Species records considered as outliers were further examined and 

cleaned. This involved a Tukey outlier test25 that determined the environmental niche 

represented as a bioclimatic limit of species localities and 18 bioclimatic indices26 derived 

using the WorldClim dataset at 30 arc-seconds27 plus elevation (our 19th index)24; all 

occurrences considered as outliers in 80% or more of the 19 indices for each species were 

discarded. In spite of potential statistical correlations among these indices, we used all of 

them for the filtering due to the wide geographic coverage of our analyses, and the spatial 

variations in variable relationships. This also allowed us to use a relatively high threshold 

(80%) for filtering out outlying occurrences. For the modelling (see below) we used a 

reduced set of variables to minimize potential issues with autocorrelation and in order to 

prevent overfitting of the Maxent model species distributions. This last step was performed as 

a final correction for potentially erroneously geocoded information, and the level chosen was 

a compromise between potentially missing information leading to a reduced current climatic 

range versus including erroneously geocoded information leading to a potentially inflated 

current climatic range.  

 

Climate envelope modelling. In developing MaxEnt models we first performed a training 

procedure to estimate a probabilistic representation of the current geographic distribution of 

each species using the observed species distributions held in the GBIF network and by 

deriving a relationship between the observations and the observed current climate. We then 

projected this relationship onto present-day climate (1961-1990) to map estimates of the 
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potential geographic distribution of the species for all global land areas at a spatial resolution 

of 0.5 degrees. During the training process, we only used AMT, TS, ATR and RS as driving 

variables on taxa with 10 to 40 records while using the 8 bioclimatic variables (listed above) 

for species with >40 records; species with less than 10 records were not analysed. We 

performed 10 cross-validated runs to assess MaxEnt’s accuracy for all models. All default 

settings were used in MaxEnt as these were optimized for broad groups of species 

globally12,28. Selection of background points involved 10 000 random points from each of the 

eight bio-geographic realms (defined by Olson et al.29) in which the species had been 

recorded. The background selection was from a broad geographic region (but not the globe) 

and therefore the predicted distribution would likely be representative of climatic range 

boundaries30. Given the scale of the climate data (~50km x 50km), the latter is a negligible 

issue and would still provide liberal estimates of species distribution.  

The Area under the Receiver Operating Characteristic (ROC) curve (AUC) was used as a 

model performance indicator to select species models for projection over all climate scenarios. 

AUC >0.7 is generally an indicator of good performance in MaxEnt31,32 and only species that 

met this criterion were used for further analysis. AUC is appropriate and commonly used to 

assess threshold-independent measures of model quality in species distribution modeling 

applications despite known assumptions and limitationse.g.,30,33. Here we applied a threshold 

defined as the minimum ROC distance12,31 to the predicted climatic suitability to assess 

metrics of distributional area change. Given the application of a threshold, we show in Fig. 

S4 how several threshold dependent measures of model accuracy (Kappa, omission rate, 

sensitivity, specificity and proportion correct) correlate to the threshold-independent measure 

of AUC.  The frequency distributions shown in Fig. S4 show that very few species (i.e. <5% 
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of the 48,786 species) had a sensitivity or specificity of less than 80%, and hence that the 

models perform well. 

The predicted ‘current’ distributions were clipped by two factors: the eight bio-

geographic realms for which all occurrence information for an individual species came, and a 

2000 km buffer around the outermost occurrence records, because of the likely paucity of the 

data in some regions in the GBIF network and to minimize commission errors. Oceanic 

islands within this 2000 km range and within the relevant biogeographic region were 

included. The size of the buffer was set to be as large as practical to avoid omission errors 

(i.e., failure to identify a site as suitable owing to lack of records), while minimizing 

commission errors (i.e., identification of suitable climates in areas where a given species has 

never occurred owing to barriers or other biogeographic limitations). Commission errors 

often occur in global and continental scale analyses of this type where similar climates are 

found in widely separated regions (e.g., Mediterranean climates).  Thus, the goal of the 

clipping was to reduce potential range inflation from commission errors while also trying to 

minimize range deflation from omission errors (much less common but still possible in some 

species). The current distribution was defined as the climatically suitable areas within this 

buffer region12,31. 

We used the projected climates and trained models to derive potential future climate 

space for each species in our future climate scenarios for 30-year periods centred on 2025, 

2055 and 2085. To each future projection, we applied three class-specific ‘dispersal’ 

scenarios (referring to the rates at which species’ ranges shift over time, see below) as a 

buffer (distance defined by the rate of movement and the number of years into the future) 

around this current distribution, given a continuous land surface and allowing dispersal to 

contiguous land areas29. Finally, we estimated proportions of species losing ≥50, ≥70, ≥90 or 
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≥99% of their climatically suitable range under these dispersal assumptions and future 

climate scenarios.  

 

Dispersal Scenarios. There are many different ways in which the term dispersal is used in 

the ecological and paleoecological literature. Dispersal often refers to natal dispersal, post-

breeding dispersal, or even to vagrancy. Within a short-term, metapopulation dynamics 

definition, the importance of repeated colonization and extinction events, and rescue effects, 

is important to the long-term persistence of metapopulations of taxae.g. 34. In this study the 

dispersal rate refers to the average long-term shift of an entire species’ range (taken from the 

published literature of current observed changes and paleoecological changes) taking into 

account potential repeated colonization and extinction events until a species’ entire range 

catches up with the new ‘environmental space’. We included a zero dispersal rate as one 

scenario, in common with many previous studies e.g. 35. However, contrary to many studies, 

we did not look at a “full” dispersal scenario, where species are allowed to fully move into 

the newly available climate space regardless of the rate of climate change.  We feel that such 

a dispersal scenario is unrealistic and unsupported by the paleoecological literature.  The 

typical dynamics of range shifts (through multiple dispersal, colonization, extirpation and 

rescue events), barriers to movements, lack of instant availability of suitable soils or habitats, 

as well as lack of a stabilized climate (within the timeframes of this study) are just some of 

the factors making a ‘full’ dispersal scenario unlikely within the timeframe of this study in 

the absence of assisted movement. Instead, we looked at two further dispersal scenarios, 

based on long-term average dispersal rates found in the literature. In these scenarios, we 

allow species to move to fill their new climate envelope at the rate specified, provided they 

do not move across sea or ocean barriers36. Hence, we focus on dispersal to contiguous areas 
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in the same manner as Petersen et al.37 as well as constrain species to remain within their 

native biogeographic zones. If a species can disperse at a rate of 1.5 km/yr, then in 100 years 

it can move 150 km. As grid cell size is approximately 30-50 km depending on location, this 

species would be simulated to cross 2-4 grid cell boundaries to track the climate. Our 

approach does not include the potential response of species movements to changes in the 

frequency of magnitude extremes resulting from inter-decadal and inter-annual climate 

variability, which can constrain dispersal rates38 by introducing gaps in climate suitable 

pathways even in barrier-free situations. Dispersal can also be strongly affected by a species’ 

ability to persist during short periods of unfavourable climate38. We recognize that dispersal 

rates can also vary significantly within taxa, with some individual species in some areas 

possibly moving at far greater rates (and others moving at reduced rates). Nevertheless, our 

approach is a balanced compromise between the more extreme approaches of no and full 

dispersal that are typically used in this field.  

While the mean natal dispersal of European bird species is 22.8 km for migrants and 

15.6 km for residents (the range for all species is 0.7–44.5 km)39 this is not indicative of how 

well birds may track a shifting climate. Similar, longer distance dispersal rates can be found 

for many other taxa. However, these rates are best considered as applicable to meta-

populations of species as they only represent colonization potential without considering 

extirpation events and as such are not representative of rates of long-term shifts in species’ 

ranges (the long-term dispersal rate used here). Since dispersal occurs in many different 

directions, and first-year mortality is high, overall population movement would be expected 

to be slower than this. However, it is generally thought that changes in population density and 

dispersal in birds are rapid enough to keep communities of birds in equilibrium with climate40. 

In the UK, 12 bird species have been moving northwards at a rate of approximately 1 
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km/year41. Huntley42 gives dispersal rates of 0.2-2 km/year for birds, whilst in Finland some 

species have been moving northwards about 19 km in 12 years (i.e. at 1.6 km/year43); whilst 

Devictor et al.44 report that European bird communities are shifting at a rate of 37±3 km in an 

18 year period, or approximately 2 km/year. Hence for birds we chose a realistic dispersal 

rate of 1.5 km/year, and an optimistic one of 3 km/year. The projected velocity of temperature 

change over the earth’s surface is estimated to be 0.42 km/yr (0.11-0.46 km/yr)45 for the 

2050s, whilst observations over the period 1950-2009 already show median velocities of 2.7 

km/yr (on land) and 2.2 km/yr (in the ocean) over the period 1950-200946. While our 

dispersal rates suggests that birds may be able to keep up with climate change, with dispersal 

rates of 1.7 km/yr reported, recent work has found that even birds are lagging behind the 

climate change in some places44,46,47. The literature suggests that mammals have similar 

dispersal rates as birds, for example a rate of 2 km/year was estimated for deer48. Hence we 

use the same values for mammals as for birds. 

For reptiles and amphibians, the literature on dispersal rates is sparse. However, 

Segura et al.49 found that snakes have limited dispersal abilities, and Araujo et al.50 consider 

that snakes are poor dispersers and highly philopatric. Dispersal rates of 19-51 m vertical 

distance upslope in 10 years (equivalent to about 100 m horizontally) have been found for 30 

reptiles and amphibians in the Tsaratanana Massif in northern Madagascar51, keeping pace 

with the observed temperature change, and thus providing a lower limit to the potential 

dispersal rate. However, dispersal in lizards could be inhibited by temperature rise52. Based 

on this very limited information we set ‘realistic’ dispersal rates for amphibians and reptiles 

to 0.1 km/year, and assumed that amphibians would also be thus constrained. We also created 

an ‘optimistic’ scenario in which these animals have dispersal rates of 0.5 km/year. 
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Plant seed dispersal rates vary widely. Some plants, such as those dispersed by 

creeping of stems (blastochory), disperse on average only 0.1 m per year (1 m/decade), whilst 

those dispersed by animals can move on average 500 m/year (5 km/decade). Other types of 

dispersal result in intermediate dispersal rates, with estimates of 40-300 m/year (0.4-3 

km/decade) for plants with wind-dispersed seeds53,54 or 100 m/year (1 km/decade) for ant and 

rodent dispersed plants54. Thuiller et al.54 consider that trees cannot move faster than 5 

km/decade and present-day migration rates of 83-126 and 50-81 m/year (approx. 1 

km/decade) respectively have been observed for oaks (which are bird dispersed) and 

Southern pines (which are wind dispersed)55,56 whilst other sources suggest tree migration 

rates of 0.05 to 1 km/year. Thus we chose the highest value quoted, 5 km/decade, as our 

optimistic scenario for plant dispersal. We selected a value representative of the lower values, 

0.1 km/year, as our realistic scenario.  

 

Supplementary Discussion 

Limitations of correlative species distribution modelling. Correlative species distribution 

modelling is a common tool for gaining ecological and evolutionary insight into how species 

are distributed across a landscape, and how this may change in space and time. The models 

often build statistical relationships between species occurrences and environmental data, 

assuming that where a species occurs provides useful information on the species' 

physiological and ecological requirements. The assumptions and limitations of species 

distribution modelling has been largely reviewed in the literaturee.g., 57 and references therein. 

Common to species distribution modelling exercises are several assumptions, including that 

the observations for each species represent the full environmental range of the species; that 

there is little-to-no bias in observations; and that background selection excludes areas that 



13 
 

have not been searched. We sought to minimize potential violation of these assumptions by i) 

using the most robust global data for species observations (GBIF) to represent the full range 

of species; ii) reducing biases associated with spatial aggregation of observations by using 

only a single observation record per ~10 km pixel for model training (removing potential for 

high bias in prevalence); and iii) selecting background points from biogeographic realms 

appropriate to observed species records. 

 

Other factors of potential importance in our analysis. Our findings result from the most 

comprehensive global analysis to date of projected losses in the climatic ranges of plants and 

animals; nevertheless, we were unable to consider all factors of potential importance in our 

analysis. Many factors could lead to either under- or overestimation of potential climatic 

range shifts58. For example, it is unclear how and to what extent species might utilize novel 

climates, as they need to be able to disperse to them and furthermore it is likely that some 

species’ reshuffling will occur resulting in undesirable no-analog communities59. Changes in 

the severity of extremes of atmospheric weather and climate variables, such as temperature 

and precipitation extremes, might exceed the survivability thresholds of some species before 

the mean climate becomes unsuitable60. Changes in fire regimes, while not considered 

directly are included indirectly as fire frequency is also strongly related to bioclimatic 

variables61, and can potentially lead to major changes in biodiversity. There is an 

expectation62 that overall there will be more increases than decreases in extreme events with 

concomitant negative impacts on biodiversity.  

The direct biotic effects of increases in CO2 concentrations (e.g., earlier stomatal 

closing, protein or phytochemical changes leading to increases/decreases in herbivory) were 

not included as it would not be practical in a large-scale study such as this. Similarly, the 
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potential effects of biotic interactions, such as climate-change-mediated decoupling of trophic 

levels or of mutualistic relationships e.g., 63,64, or the potential spread of various disease 

vectors, pathogens and invasive species might also impact species but were also included 

here. To some extent, the overall Wallace Initiative database can be used for specific studies 

on such effects, something that has hitherto been difficult to accomplish.  

While species might persist in suitable microclimates (e.g., at higher elevations, 

protected micro-habitats) within areas otherwise apparently climatically unsuitable at a large 

scale, their overall range would still be smaller than currently. Similarly, species might be 

absent from apparently climatically suitable areas due to unsuitable microclimates. Thus, 

over the entire range of the species we would expect these two opposing effects to cancel out, 

especially for more broadly distributed species.  

Analyses of paleoecological data showed that the response of many species to past 

climatic changes has been range shifts. Nevertheless, there is the potential for genetic 

variability that might provide adaptive potential for some species. Although the magnitude of 

this potential is unknown, it is likely to be limited given the rate with which anthropogenic 

climate change is expected to proceed.  

Since the completion of this study it has become evident that emissions are in fact 

increasing faster than our baseline scenario65, and that it is therefore conceivable that a 

business as usual scenario that does not consider climate change mitigation could have 

significantly higher emissions than the A1B scenario, matching for example, the radiative 

forcing trajectory associated with the new Representative Concentration Pathway (RCP) 8.5 

in which global temperatures exceed 4°C by 210066. Our comparison between climate 

policies including mitigation with those containing no mitigation may therefore 

underestimate the potential benefits.  
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Thus, although future research incorporating the above factors may refine our results, 

we believe that, on balance, our overall conclusions are likely conservative at the scale of our 

analysis because when taken altogether these factors are more likely to exacerbate than 

reduce the projected impacts of climate change. 
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Supplementary Figures 

 

Fig. S1. Range sizes of the 48,786 species analysed  
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Fig. S2a-f. Proportion of plants (a), animals (b), mammals(c), birds (d), reptiles (e) and 
amphibians (f) losing ≥50%, ≥70%, ≥90% and ≥99% of their ranges in the 2080s under (i) no 
(ii) realistic (iii) optimistic dispersal. Red lines show trends for emission pathway SRES A1B 
without mitigation, whilst green and blue pathways show those with mitigation in which 
global greenhouse gas emissions peak in 2030 and in 2016, respectively.  The vertical axes 
labelled  ‘<x% current’ refer to species losing ≥(100-x)% of their range (e.g. <1% current 
refers to species losing ≥99% of their range) .  

(a) Plants 
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(b) Animals 
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(c) Mammals 
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(d) Birds 
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(e) Reptiles 
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(f) Amphibians 
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Fig. S3a-f. Species richness of animals (a, c) and plant (b, d) species present in the GBIF 
network in the 2080s under realistic dispersal for the stringent mitigation case in which global 
greenhouse gas emissions peak in 2030 and are subsequently reduced at 5% annually (c, d) 
compared with the no mitigation case SRES A1B (a, b). Panels (e, f) show the species 
richness change that is avoided by such mitigation. White areas are those where no data exist 
in the GBIF network. 

a b 

c d 
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a b 

c d 

e f 
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Fig. S4a-e. Threshold-dependent measures of model accuracy (Cohen’s kappa (a), omission 
rate (b), sensitivity (c), specificity (d) and proportion correct (e)) compared with the 
threshold-independent measure of model accuracy used (AUC).  Each plot is accompanied by 
a matching frequency distribution.  

a 

b 

c 

d 

e 
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Supplementary Tables 
 
Table S1. Our dispersal scenarios showing dispersal rate assumptions for different taxonomic 
groups. Superscript numbers refer to the references used to determine the rates.  
 
Dispersal 
Ability Plants Mammals Birds Reptiles Amphibians 

No dispersal35 0  
km/yr 

0  
km/yr 

0  
km/yr 

0  
km/yr 

0  
km/yr 

Realistic 0.1 
km/yr53-56 

1.5  
km/yr48 

1.5 
km/yr41-44 

0.1 
km/yr37,49 

0.1  
km/yr51 

Optimistic 0.5 
km/yr53-56 

3  
km/yr48 

3 
km/yr42-44,67 

0.5 
km/yr37,49 

0.5  
km/yr51 
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Table S2a-c Relative importance of climatic driving variables across all taxa and species 
modelled in MaxEnt (a) proportion of species in each taxa which are more strongly driven by 
temperature related variables (b,c) relative importance of the climatic driving variables (% 
variance explained) for species with 10-40 data points for which models were based on 4 
climatic variables (b) or more than 40 data points for which models were based on 8 climatic 
variables (c) 
 
(a) 

Taxon Total number 
modeled 

Number more 
strongly affected by 

temperature 

% more strongly 
affected by temperature 

related factors 

Plantae 43,578 27691 64 
Mammalia 1,168 790 67 
Aves 3,059 2285 54 
Reptilia 663 423 63 
Amphibia 492 270 55 
ALL 48,960 31459 64 

 
(b) 

Taxon AMT TS ATR RS ALL T-related 

Plantae 25 32 25 18 57±23 

Mammalia 24 38 22 17 61±24 
Aves 24 41 20 14 65±24 
Amphibia 21 35 25 29 56±23 
Reptilia 20 38 23 19 58±22 
ALL 24 33 25 17 57±24 

 
(c) 

Taxon AMT TS MTW MTC ATR RS RWQ RDQ ALL T-related 

Plantae 14 22 12 12 10 10 8 17 57±21 

Mammalia 11 24 8 15 7 10 8 17 60±23 

Aves 14 24 10 15 5 10 7 15 64±21 

Reptilia 12 12 12 13 6 12 6 17 58±20 

Amphibia 11 20 11 10 6 15 6 21 51±19 

ALL 13 22 10 12 9 9 8 17 57±22 
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Table S3 Proportions of plants and animals gaining ≥50% of their current range due to 
climate change alone by the 2080s in the various emissions scenarios under no dispersal (ND) 
and realistic dispersal (RD) Ranges show variation arising from use of seven different GCM 
patterns for creating downscaled climate projections. 
 

 Baseline 
A1B 

Mitigation 
2030-2-H 

Mitigation 
2030-5-L 

Mitigation 
2016-2-H 

Mitigation 
2016-4-L 

Mitigation 
2016-5-L 

Most likely global  
mean temperature  

rise by 2100 (ºC) 
4.0 2.8 2.5 2.2 2.0 2.0 

Probability of 
constraining the 
temperature rise  

to 2ºC above  
pre-industrial levels 

<1% 7% 17% 30% 44% 45% 

Proportions of  
plants and  

animals gaining  
50% or more of  

their current range 

      

Animals (ND) 0% 0% 0% 0% 0% 0% 

Animals (RD) 4% 
(3-5%) 3% 3% 3% 3% 3% 

Animals (OD) 8% 
(7-9%) 

7% 
(6.5-7.5%) 

7% 
(6.5-7.5%) 

6% 
(5.5-6.5%) 

6% 
(5.5-6.5%) 

6% 
(5.5-6.5%) 

Plants (ND) 0% 0% 0% 0% 0% 0% 

Plants (RD) 0% 0% 0% 0% 0% 0% 

Plants (OD) 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 
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Table S4a Proportions of plants and animals losing ≥70% of their current range due to 
climate change alone by the 2080s in the various emissions scenarios under no dispersal (ND) 
and realistic dispersal (RD) Ranges show variation arising from use of seven different GCM 
patterns for creating downscaled climate projections. 
 

 Baseline 
A1B 

Mitigation 
2030-2-H 

Mitigation 
2030-5-L 

Mitigation 
2016-2-H 

Mitigation 
2016-4-L 

Mitigation 
2016-5-L 

Most likely global  
mean temperature  

rise by 2100 (ºC) 
4.0 2.8 2.5 2.2 2.0 2.0 

Probability of  
constraining the  
temperature rise  

to 2ºC above  
pre-industrial levels 

<1% 7% 17% 30% 44% 45% 

Proportions of  
plants and animals  

losing 70% or more of 
their  

current range 

      

Animals (ND) 22% 
(16-28%) 

10% 
(7-13%) 

8% 
(5-11%) 

6% 
(3-9%) 

5% 
(2-8%) 

5% 
(2-8%) 

Animals (RD) 18% 
(13-23%) 

8% 
(5-11%) 

7% 
(4-10%) 

5% 
(2-8%) 

4% 
(1-7%) 

4% 
(1-7%) 

Animals (OD) 17% 
(13-21%) 

8% 
(5-11%) 

7% 
(4-10%) 

5% 
(3-7%) 

4% 
(2-6%) 

4% 
(2-6%) 

Plants (ND) 32% 
(27-37%) 

16% 
(12-20%) 

14% 
(10-18%) 

10% 
(6-14%) 

9% 
(6-12%) 

8% 
(5-11%) 

Plants (RD) 
32% 

(27-37%) 
16% 

(12-20%) 
14% 

(10-18%) 
10% 

(6-14%) 
9% 

(6-12%) 
8% 

(5-11%) 

Plants (OD) 
30% 

(25-35%) 
15% 

(11-19%) 
13% 

(9-17%) 
10% 

(7-13%) 
8% 

(5-11%) 
8% 

(5-11%) 
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Table S4b Proportions of plants and animals losing ≥90% of their current range due to 
climate change alone by the 2080s in the various emissions scenarios under no dispersal (ND) 
and realistic dispersal (RD) Ranges show variation arising from use of seven different GCM 
patterns for creating downscaled climate projections. 
 

 Baseline 
A1B 

Mitigation 
2030-2-H 

Mitigation 
2030-5-L 

Mitigation 
2016-2-H 

Mitigation 
2016-4-L 

Mitigation 
2016-5-L 

Most likely global  
mean temperature  

rise by 2100 (ºC) 
4.0 2.8 2.5 2.2 2.0 2.0 

Probability of  
constraining the  
temperature rise 

 to 2ºC above  
pre-industrial levels 

<1% 7% 17% 30% 44% 45% 

Proportions of  
plants and animals  

losing 90% or more  
of their current range 

      

Animals (ND) 6% 
(4-8%) 

2% 
(1-3%) 

1% 
(0-2%) 

1% 
(0.5-1.5%) 

1% 
(0.5-1.5%) 

1% 
(0.5-1.5%) 

Animals (RD) 4% 
(2-6%) 

1% 
(0-2%) 

1% 
(0-2%)  

0.6% 
(0.2-1%) 

0.5% 
(0.1-0.9%) 

0.5% 
(0.2-0.8%) 

Animals (OD) 4% 
(2-6%) 

1% 
(0-2%) 

1% 
(0-2%) 

0.6% 
(0.2-1%) 

0.5% 
(0.1-0.9%) 

0.4% 
(0-0.8%) 

Plants (ND) 27% 
(25-29%) 

1% 
(0-2%) 

1% 
(0-2%) 

1% 
(0.5-1.5%) 

1% 
(0.5-1.5%) 

1% 
(0.5-1.5%) 

Plants (RD) 10% 
(7-13%) 

3% 
(1-5%) 

2% 
(0-4%) 

1% 
(0-2%) 

1% 
(0-2%) 

1% 
(0-2%) 

Plants (OD) 10% 
(7-13%) 

3% 
(1-5%) 

2% 
(1-3%) 

1% 
(0.5-2.4%) 

1% 
(0.3-1.8%) 

1% 
(0.3-1.8%) 
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Table S4c Proportions of plants and animals losing ≥99% of their current range due to 
climate change alone by the 2080s in the various emissions scenarios under no dispersal 
(ND) and realistic dispersal (RD) Ranges show variation arising from use of seven different 
GCM patterns for creating downscaled climate projections. 
 

 Baseline 
A1B 

Mitigation 
2030-2-H 

Mitigation 
2030-5-L 

Mitigation 
2016-2-H 

Mitigation 
2016-4-L 

Mitigation 
2016-5-L 

Most likely global  
mean temperature  

rise by 2100 (ºC) 
4.0 2.8 2.5 2.2 2.0 2.0 

Probability of  
constraining the  
temperature rise  

to 2ºC above  
pre-industrial levels 

<1% 7% 17% 30% 44% 45% 

Proportions of  
plants and animals  

losing 99% or more  
of their current range 

      

Animals (ND) 1% 
(0.7-1.3%) 

0.4 
(0.3-0.5%) 

0.3% 
(0.2-0.4%) 

0.3% 
(0.2-0.4%) 

0.2% 
(0.1-0.3%) 

0.2% 
(0.1-0.3%) 

Animals (RD) 0.8% 
(0.5-1.1%) 

0.4% 
(0.3-0.5%) 

0.3% 
(0.2-0.4%) 

0.2% 
(0.1-0.3%) 

0.2% 
(0.1-0.3%) 

0.2% 
(0.1-0.3%) 

Animals (OD) 0.8% 
(0.5-1.1%) 

0.4% 
(0.3-0.5%) 

0.3% 
(0.2-0.4%) 

0.2% 
(0.1-0.3%) 

0.2% 
(0.1-0.3%) 

0.2% 
(0.1-0.3%) 

Plants (ND) 2% 
(1.5-2.5%) 

0.6% 
(0.4-0.8%) 

0.5% 
(0.3-0.7%) 

00.4% 
(0.3-0.5%) 

0.3% 
(0.2-0.4%) 

0.3% 
(0.2-0.4%) 

Plants (RD) 2% 
(1.5-2.5%) 

0.6%  
(0.4-0.8%) 

0.5% 
(0.3-0.7%) 

0.4% 
(0.3-0.5%) 

0.3% 
(0.2-0.4%) 

0.3% 
(0.2-0.4%) 

Plants (OD) 2% 
(1.5-2.5%) 

0.6%  
(0.4-0.8%) 

0.5% 
(0.3-0.7%) 

0.3% 
(0.2-0.4%) 

0.3% 
(0.2-0.4%) 

0.3% 
(0.2-0.4%) 
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