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Review: Epigenetic mechanisms in stress and adaptation 

 

Abstract        

Epigenetic mechanisms are processes at the level of the chromatin that control the expression 

of genes but their role in neuro-immuno-endocrine communication is poorly understood. This 

review focuses on epigenetic modifications induced by a range of stressors, both physical and 

psychological, and examines how these variations can affect the biological activity of cells. It 

is clear that epigenetic modifications are critical in explaining how environmental factors, 

which have no effect on the DNA sequence, can have such profound, long-lasting influences 

on both physiology and behavior. A signaling pathway involving activation of MEK-

ERK1/2, MSK1, and Elk-1 signaling molecules has been identified in the hippocampus 

which results in the phospho-acetylation of histone H3 and modification of gene expression 

including up-regulation of immediate early genes such as c-Fos. This pathway can be induced 

by a range of challenging experiences including forced swimming, Morris water maze 

learning, fear conditioning and exposure to the radial maze. Glucocorticoid (GC) hormones, 

released as part of the stress response and acting via glucocorticoid receptors (GRs), enhance 

signaling through the ERK1/2/MSK1-Elk-1 pathway and thereby increase the impact on 

epigenetic and gene expression mechanisms. The role of synergetic interactions between 

these pathways in adaptive responses to stress and learning and memory paradigms is 

discussed, in addition we speculate on their potential role in immune function. 
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Introduction to stress 

The nervous, endocrine and immune systems engage in intense communication throughout 

the mammalian physiological system via neuronal, hormonal and immunological networks 

respectively. These systems are widely integrated with each other and allow the organism to 

adapt to environmental changes and challenges. Stress has been defined as ‘a threat, real or 

implied, to the maintenance of a narrow range of vital homeostatic parameters necessary for 

survival’ (McEwen, 2000). Stress induces a number of biological responses which enables 

the organism to adapt to the challenge and increase its likelihood of survival. Immediate 

activation of the sympathetic nervous system releases adrenaline from stores in the adrenal 

medulla, preparing the organism for a fight or flight response. In addition, stress increases 

levels of neurotransmitters such as serotonin (5-HT) and noradrenaline (NA) in specific brain 

regions (i.e. hypothalamus, hippocampus) (Linthorst et al., 1995a; 1996; Linthorst et al., 

2002). 5-HT and NA act at the hypothalamus to activate the hypothalamic-pituitary-adrenal 

(HPA) axis resulting in the release of GCs from the adrenal cortex into the circulation 

(Carrasco and Van de Kar, 2003). It is hypothesised that the rise in extracellular 5-HT in the 

hippocampus supports the animal’s risk assessment of the nature of the stressor so it can 

make appropriate adaptations (Linthorst and Reul, 2008).  

 

Animal models for investigating the effects of acute stress 

Researchers investigating the effects of stress in vivo have developed a number of behavioral 

tests designed to model neuropsychiatric disorders, for review see Nestler and Hyman (2010). 

In many stress studies animals are exposed to stressors for a limited amount of time and 

subsequent changes in physiology and behavior determined. Stressors are generally described 

as either physical or psychological but in reality most stressors present both types of stress 

and therefore their ‘classification’ is based on which biological system (physical or 
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psychological) is affected the most. Physical stressors, such as a hot or cold environment, 

have a direct effect on the body, disturbing homeostatic processes and influencing the 

physiological state of an organism. In contrast, psychological stressors involve higher brain 

areas, such as the neocortex, amygdala and hippocampus, to process and/or interpret 

information about the threat. Consequently, in case of psychological stress, the threat may be 

implied but not necessarily experienced (Herman, 2003).  

 

Both physical and psychological stress activate the HPA axis leading to downstream 

adrenocorticotropic hormone (ACTH) release from the anterior pituitary and subsequent 

release of GCs (cortisol in humans, corticosterone in rodents) from the adrenal cortex into the 

circulation. GCs were so named after their effects on glucose metabolism were discovered. 

Circulating GCs, however, have equally important roles in modulating the immune response 

and in cognitive processes such as memory formation (see next section). Despite both 

physical and psychological stressors activating the same central HPA pathway, a number of 

studies have provided evidence that the body responds to the different types of stress in 

distinct ways (Dayas et al., 2001; Yuen et al., 2009). Furthermore, because of its nature, 

psychologically stressful events lead to profound, long-term changes in behavior.   

 

Role of memory formation in the stress response 

Memory formation is the storage of information which can be recalled in the future. The 

processes involved in the formation of memories have been the focus of numerous studies 

spanning over 30 years but a definitive pathway is still being elucidated. Biochemical 

pathways leading to memory formation can be examined through the use of behavioral tests 

such as the Morris water maze, Pavlovian fear conditioning, radial maze and others - a 

summary of the most common behavioral tests for stress/learning and memory studies are 

outlined in Table 1. All of these tests have a ‘stressful’ component which must be taken into 
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account when interpreting experimental findings. Indeed in recent years there has been 

considerable overlap between investigations into stress responses and learning and memory 

processes, with signaling pathways emerging that are common to both areas. Long term 

responses to stress include the formation of episodic memories which increase the chance of 

avoiding the stressful challenge in the future or improve the ability of the organism to cope 

with any subsequent repeat exposure to the stressor (Reul and Chandramohan, 2007; Reul et 

al., 2009) This is, in part, due to the strong consolidation of memories by the induction of 

stress hormones such as GCs, however, the exact mechanism for this consolidation remains 

unclear (Oitzl and de Kloet, 1992; Cordero and Sandi, 1998; De Quervain et al., 2009; Sandi, 

2011). 

 

Epigenetics 

As discussed in the first review of this series (Mathews and Janusek, 2011), epigenetic 

modifications change the expression of genes without altering the DNA sequence. These 

modifications can occur on the DNA itself to influence gene expression by changing the 

accessibility of genes to transcription/translation factors. Alternatively, other distinct 

epigenetic modifications can occur on the highly conserved tails of histone proteins, 

responsible for organizing DNA into chromatin, thereby affecting chromatin assembly and 

organization of DNA.  

 

According to the National Institute of Health, epigenetic changes can be ‘heritable changes in 

gene activity and expression (in the progeny of cells or of individuals) and also stable, long-

term alterations in the transcriptional potential of a cell that are not necessarily heritable’. The 

latter aspect explains how environmental influences and life experiences can result in 

differences in gene expression and downstream biological changes, even after the initial 
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influence has disappeared. The different types of epigenetic modifications influencing gene 

expression are reviewed extensively by Kouzarides (2007) and Mathews and Janusek (2010). 

This review focuses on DNA methylation, histone methylation, phosphorylation and 

acetylation and as such, only these epigenetic modifications will be discussed.  

 

DNA modifications 

DNA methylation occurs when a methyl group is added to one of the pyrimidine bases of 

DNA. Methylation occurs on the 5
th

 carbon of cytosine residues (5mC) situated adjacent to a 

guanine residue (CpG site). Parts of DNA sequences with a high concentration of CpG 

residues are referred to as CpG ‘islands’ and generally located at the start of the gene 

sequence within the promoter region. The methylation of DNA within the promoter region of 

a gene may be why this modification has such a profound effect on gene expression, 

generally silencing the expression of the respective gene (Illingworth and Bird, 2009).  

 

DNA methylation can occur by two type of enzymes; methyl-transferases de novo, which set-

up methylation marks during early development and are critical for the survival of organisms, 

and maintenance methyl-transferases which are essential for maintaining the methylation 

code (Wu and Zhang, 2010). The importance of demethylation has been investigated to a 

greater extent in recent years as it has become apparent that DNA methylation status can 

change quite rapidly (Wu and Zhang, 2010). The exact biochemical processes involved in 

DNA demethylation remains unclear but there are a number of mechanisms currently being 

discussed including enzymatic removal, deamination and base excision repair, nucleotide 

excision repair, oxidative demethylation and radical S-adenosylmethionine (SAM)-based 

demethylation (for review see Wu and Zhang (2010)).  
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In addition to methylation and demethylation, mammalian DNA can by hydroxylated 

(oxidation of CH group to form COH) at the carbon 5 position of methylated cytosine 

residues (Penn et al., 1972) but the induction and function of this hydroxy-methylation 

(5hmC) modification is unknown. More recent studies (Tahiliani et al., 2009; Zhang et al., 

2010) have identified 5-methylcytosine (5mC) hydroxylases like ten-eleven translocation 

proteins (TET1, TET2 and TET3) as enzymes responsible for hydroxylation of 

methylcytosine but the function of this mark still remains unclear. It has been proposed that 

5hmC facilitates passive demethylation (promoting gene transcription) by preventing 

DNMT’s maintaining the methylation status of DNA, however, this is yet to be confirmed 

(Tahiliani et al., 2009). Hydroxy-methylation of DNA recruits 5hmC-specific factors and 

prevent the association of some 5mC-specific enzymes/transcription factors in DNA 

methylation assays and cancer cell lines, indicating distinct roles for the two types of cytosine 

modification in gene expression (Valinluck and Sowers, 2007; Tahiliani et al., 2009; Ko et 

al., 2010).   

 

Histone modifications 

Histone proteins are responsible for organizing DNA into chromatin which can exist in a 

densely-packed ‘closed’ configuration or in a loose, ‘open’ state, which is required for gene 

transcription. There are four core histone proteins, H2A, H2B, H3 and H4, each with a highly 

conserved N-terminal tail which can be modified at certain sites by a range of specific 

enzymes to influence the structure and function of the chromatin.  

 

Histone methylation occurs on either arginine or lysine residues in histones H3 and H4. The 

enzymes which add (methyl-transferases) or remove (demethylases) methyl groups are 

specific to the residue on which they act, either lysine or arginine, and can also be specific for 
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the location or site of the residue within the histone tails. For example, mixed lineage 

leukemia proteins (MLLs) are methyl-transferases which act almost exclusively to methylate 

lysine residue 4 of histone H3 (Cosgrove and Patel, 2010). The function of the methylation 

mark depends on the site on which it occurs; lysine methylation of H3K4 (lysine 4 of histone 

3) is associated with transcriptionally active chromatin and gene transcription whereas 

methylation on H3K9 is associated with gene silencing (Kouzarides, 2007; Akbarian and 

Huang, 2009). The consequence of methylation is also dependant on how many methyl 

groups are added to each residue; lysine residues hold one, two or three methyl groups and 

are classified as mono, di or trimethylated respectively, whereas arginine residues can only 

hold up to two methyl groups (Kouzarides, 2007). The function of methylated H3K20 varies 

greatly with methylation status, mono-, di- and trimethylation of this site has been associated 

with gene transcription, gene repair and gene silencing respectively (Balakrishnan and 

Milavetz, 2010). The consequence of epigenetic marks is further complicated by the 

interaction of different modifications on each other; for example, protein arginine methyl-

transferase (PRMT) methylation of H3R2 prevents methylation of H3K4 by MLL and 

therefore inhibits subsequent gene expression in vitro (Hyllus et al., 2007). 

 

 Histone phosphorylation occurs when a phosphate group is added to an amino acid residue 

(usually serine) in the highly conserved histone tail by specific kinases and can be removed 

by specific phosphatases (dephosphorylation) (Thomson et al., 1999b; 1999a; Clayton et al., 

2000; Soloaga et al., 2003). The phosphorylation status of chromatin is determined by the net 

activity of kinases and phosphatases, influenced by signaling cascades. Phosphorylation of 

certain residues is often associated with other epigenetic marks, for example if histone H3 in 

dentate gyrus neurons is phosphorylated at serine 10 then it is also generally acetylated at 

lysine 14 (Chandramohan et al., 2007). This co-modification is associated with the opening of 
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previously condensed chromatin (Cheung et al., 2000; Clayton et al., 2000; Nowak and 

Corces, 2000) . 

 

Histone acetylation occurs when an acetyl group (COCH3) is added to a lysine residue by 

histone acetyl-transferases (HATs). Once again these enzymes act at distinct residues/sites 

within the N-terminal tail of histone proteins. Given the neutralization of the negative lysine 

charge by the addition of a positively charged acetyl group, histone acetylation is the 

modification most likely to decondense chromatin and expose previously silent genes for 

transcription (Kouzarides, 2007). This epigenetic mark is therefore almost exclusively 

associated with active gene transcription for numerous genes studied. Acetyl groups are 

removed by histone deacetylases (HDACs).  

 

Some epigenetic marks such as methylation of DNA can be passed on to subsequent 

generations through mitotic and meiotic cell division (Nakayama et al., 2000; Schreiber and 

Bernstein, 2002; Champagne, 2008). This is an interesting property which is not shared by 

alternative mechanisms of altering gene expression (i.e. the influence of transcription 

factors). Although changes in the epigenetic profile of DNA were traditionally thought to be 

hereditary, recent studies indicate these changes can be transient (Ng et al., 2009).  Epigenetic 

modifications are therefore a set of biochemical tools which control the expression of genes 

and are themselves controlled by signaling mechanisms and provide another level at which 

the environment can impact on gene expression (Figure 1).  

 

 

Role of epigenetic mechanisms in the long-term impact of early life stress 

The epigenetic profile of rats is profoundly influenced by the maternal behavior they 

experienced during the first week of life (Weaver et al., 2004). Rats which received high 
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levels of maternal care (HMC rats, maternal care defined as licking, grooming and arched-

back nursing) during the first week of life were less anxious, less sensitive to stress in adult 

life and had higher levels of GR expression in the hippocampus compared with rats 

experiencing low levels of maternal care as pups (LMC rats).  

 

Analysis of the methylation state of the GR promoter during the development of HMC or 

LMC pups revealed changes in the methylation status of a specific cytosine residue (site 16 

on exon 17), which corresponded to a specific region in the GR promoter containing a 

consensus sequence for a transcription factor known as early growth response factor 1 (Egr-

1). At the embryonic stage site 16/exon 17 is unmethylated but DNA methylation of this site 

occurs shortly after birth. In HMC pups demethylation of site 16/exon 17 occurs during the 

first week of life, whereas this site in LMC rats remains methylated. Since this site contains a 

consensus sequence for Egr-1, the association of Egr-1 protein with the GR promoter was 

analysed by chromatin immuno-precipitation assay (ChIP) and found to be 3-fold higher in 

HMC rats compared with LMC rats. ChIP analysis of GR also found higher levels of 

acetylation at histone H3 lysine 9 (H3K9), a marker for uncondensed, transcriptionally active 

chromatin (Weaver et al., 2004).  

 

Prolonging histone acetylation by intracerebroventricular (i.c.v) administration of histone 

deacetylase (HDAC) inhibitor trichostatin A (TSA) in LMC rats supported a role for histone 

acetylation in the response by promoting a phenotype closely associated with that of HMC 

rats (Weaver et al., 2004). Likewise, when Egr-1 binding to the GR promoter was inhibited 

by DNA methylation at site 16/exon 17 the HMC phenotype (less anxious, less sensitive to 

stress and higher GR expression in hippocampus) disappeared indicating a key role for 

demethylation of DNA in this phenotype (Weaver et al., 2004). Later studies found that the 
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level of maternal care experienced when pups by female rats determined what kind of mother 

they would themselves become as a consequence of epigenomic changes in a different gene, 

namely the estrogen receptor gene located in the medial preoptic area, highlighting the trans-

generational effects of epigenetic modifications (Champagne, 2008). Generally it appears that 

HMC rats become HMC mothers and LMC rats become LMC mothers (Champagne, 2008). 

 

A link has also been demonstrated between early life experiences and adult behavior in 

humans. Numerous clinical studies have shown a positive association between childhood 

trauma and increased risk of developing psychopathological disorders such as depression as 

an adult (Heim et al., 2008). Children experiencing abuse, neglect or other adverse 

experiences displayed a sensitized stress response, GC resistance, increased corticotropin-

releasing factor (CRF) activity, immune activation and reduced hippocampal volume; all 

features which have been observed in some depressed patients as adults (Heim et al., 2008). 

Reduced GR mRNA expression in the hippocampus of suicide victims who had been abused 

as children was associated with epigenetic changes in the neuron-specific GR promoter 

(NR3C1) when compared with suicide victims with no history of childhood abuse (McGowan 

et al., 2009). There were also higher levels of DNA methylation in the hippocampal GR 

promoter in abuse victims compared with non-abuse controls; this pattern of methylation 

resulted in reduced binding of transcription factor Egr1 and decreased levels of Egr1-induced 

gene transcription when investigated in vitro (McGowan et al., 2009). Based on these studies, 

epigenetic modifications play a key role in mediating the effect of early life experiences on 

responses to stress in adulthood.  
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Epigenetics: stress studies and signaling pathways 

Our recent studies have investigated the effect of acute stressors on epigenetic modifications 

in brains of adult rats. The primary stressor used in our studies is the forced swim test and we 

are particularly interested in the subsequent immobility response displayed by the rats in the 

forced swim retest (24 h after initial test). There is controversy surrounding the interpretation 

of the animal’s immobility response. Originally the immobility response was viewed as a 

‘depressive’ behavior because it was thought that the animal had given up and showed 

despair (Porsolt et al., 1977; Lucki, 1997). In addition, the effects of some antidepressant 

drugs to lower the immobility response seemed to support this notion. On the other hand, 

acute administration of many antidepressants evokes arousal through central release of 

serotonin, noradrenaline and/dopamine which may provide an alternative explanation for the 

reduced immobility behavior. Furthermore, the effect of three administrations of 

antidepressant drug in the Porsolt forced swim test design is hard to reconcile with the 

clinical effects of antidepressants which take at least 3 weeks of treatment to emerge. Our 

group and others feel that the immobility response is an adaptive response to the knowledge 

that they cannot escape making it more appropriate to conserve energy to maximize the 

chance of survival (De Pablo et al., 1989; West, 1990; Korte, 2001; Bilang-Bleuel et al., 

2005; Nestler and Hyman, 2010). The rapid adoption of immobility behavior in the retest 

supports the idea that the subject remembers the initial test and conserves its energy by 

floating. Further support of immobility being an adaptive response comes from forcing the 

rats to swim in water at different temperatures. Normally the rats are swum at 25⁰C, however, 

when rats are swam at 19⁰C rats they show increased struggling and reduced immobility 

during the retest, possibly because of the extreme loss of body temperature (~12⁰C). In 

contrast, rats that swam at 35⁰C showed high levels of immobility and very little struggling 

(Linthorst et al., 2008). This experiment underscores the immobility behavior being an 
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adaptive response to the combined physical and psychological stress. The observed ability of 

the rats to recall the initial experience, as shown by the increase in immobility in the retest, 

lasts at least 4 weeks from initial test (Gutièrrez-Mechinas, Collins, & Reul; unpublished 

observations). Once again this finding supports a role of learning and memory processes in 

the adaptive immobility behavior shown and refutes the depression hypothesis.  

 

Immunofluorescent staining confirmed epigenetic modifications were taking place in distinct 

brain areas with positive staining for phosphorylation of serine 10 and acetylation of lysine 

14 in histone H3. Under baseline conditions very low levels of H3 phospho-acetylation were 

found in the dentate gyrus, neocortex, amygdala and striatum (Bilang-Bleuel et al., 2005; 

Chandramohan et al., 2007). On exposure to forced swim stress there was a marked increase 

in phospho-acetylation of histone H3, specifically in the dentate gyrus, which did not occur 

after exposure to purely physical stresses such as cold environment and ether exposure. This 

finding indicates that the psychological component of the stress may be responsible for the 

observed increase in H3 phospho-acetylation (Bilang-Bleuel et al., 2005).  

 

N-methyl-D-apartate (NMDA) receptor blockade, using receptor antagonist MK-801, 

prevented the forced swim induced increase in H3S10p-K14ac positive neurons in the dentate 

gyrus of rats and also reduced the associated immobility behavior in the 1-day retest 

(Chandramohan et al., 2008). Neurons in the dentate gyrus are under tonic inhibitory control 

by gamma amino-butyric acid (GABA)-ergic interneurons. FG-7142 (β-carboline-3-

carboxylic acid N-methylamide), a GABA-A receptor partial inverse agonist attenuated the 

GABAergic control of granule neurons in the dentate gyrus, resulting in a rise in the number 

of H3S10p-K14ac-positive neurons in this hippocampal structure (Papadopoulos et al., 2010). 

The proportion of granule neurons in the dentate gyrus that overcome the inhibitory 
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regulation is dependent on the strength of the stimulus. Most psychological stressors 

(predator exposure, novel environment etc.) activate <5% of dentate gyrus granular neurons 

from inhibitory control. In contrast, much stronger stimuli such as electroconvulsive shock or 

injection of depolarizing drugs can overcome virtually all inhibitory GABAergic control 

resulting in activation of all dentate granule neurons (Green and Vincent, 1987; Crosio et al., 

2003).  

 

Once the inhibitory control is overcome by excitatory inputs (mainly glutamatergic), 

glutamate binds to NMDA receptors resulting in a rise in intracellular calcium (Ca
2+

) 

concentration. Increased intracellular Ca
2+

 levels trigger a number of biochemical signaling 

cascades including the activation of adenylate cyclase (and subsequent protein kinase A 

(PKA) activation), Ca
2+

-calmodulin kinase II (CAMKII) and the mitogen-activated protein 

kinase (MAPK) cascade leading to activation of the extracellular-regulated protein kinases 1 

and 2 (ERK1/2). Inhibition of ERK1/2 activation, using an inhibitor (i.e. SL-327) of the 

upstream MAPK ERK kinase (MEK), abolished phospho-acetylation of histone H3 and the 

subsequent immobility response in response to forced swim stress (Chandramohan et al., 

2008). ERK1/2 targets a number of downstream kinases including mitogen and stress-

activated kinases 1 and 2 (MSK1/2). MSK1/2 double knock-out mice subjected to the same 

forced swim protocol (although initial test was for 10 min as opposed to 15 min) showed no 

increase in phospho-acetylation of histone H3 and the immobility response was also blocked 

compared with control mice (Chandramohan et al., 2008). This study shows that blocking 

ERK1/2 and MSK signaling prevents forced swim induced epigenetic changes and 

subsequent immobility behavior during the retest, indicating a key role for these signaling 

molecules in the adaptive behavioral response to stress.  
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Once activated, MSK can phosphorylate residues on histone tails including S10 which may 

explain its critical role in inducing epigenetic modifications (Figure 2), however, MSK has no 

known acetylase activity (Hauge and Frödin, 2006; Arthur, 2008; Drobic et al., 2010). MSK 

can also phosphorylate cAMP responsive element (CRE) binding protein (CREB) which after 

dimerization can bind to CRE sites in the promoters of many cAMP- and Ca
2+

-responsive 

genes thereby stimulating gene expression (Figure 2). Furthermore, CREB can recruit a 

number of histone modifying enzymes to the chromatin including p300 and/or CREB binding 

protein (CBP), both of which have histone acetyl-transferase (HAT) activity and have been 

shown to potentiate long term memory formation (Vecsey et al., 2007). Despite the promising 

role of CREB in promoting stress-induced epigenetic modifications, investigations into its 

activation in response to forced swim stress revealed widespread activation throughout the 

dentate gyrus, the rest of the hippocampus and many other brain areas (Bilang-Bleuel et al., 

2002). The widespread phosphorylation of CREB in dentate gyrus neurons after 

psychological challenges such as forced swimming presents a conundrum which will be 

addressed further below. 

 

An alternative downstream target of ERK activation is E twenty-six (ETS)-domain protein 

(Elk-1), a transcription factor which can bind to Elk binding sites in serum response elements 

of gene promoters and recruit HATs such as p300 (Li et al., 2003). Immunohistochemical 

studies identified pElk-1 expression in the same neurons that were positive for H3S10p-

K14ac, pERK1/2 and pMSK1 confirming a potential role for this signaling molecule in 

acetylation of H3 (Gutierrez-Mecinas et al., 2009). 

 

Expression of the immediate early gene c-fos is commonly used as a marker for neuronal 

activation as it is often expressed when neurons become activated (Hoffman et al., 1993). c-
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Fos is a transcription factor which acts in conjunction with other proteins to induce 

transcription of a wide variety of genes. Expression of c-Fos in the dentate gyrus was 

increased after exposure to forced swim stress and immunohistochemical staining 

demonstrated that c-Fos was expressed in specific H3S10p-K14ac, pERK1/2, and pMSK1 

positive granule neurons within the dentate gyrus (Chandramohan et al., 2007; 2008; 

Gutierrez-Mecinas et al., 2009). More recent studies have provided evidence for  the 

phospho-acetylation of histone H3 tails within the c-fos promoter by ChIP and real time 

polymerase chain reaction (qPCR) analysis, finding an enhanced enrichment of  H3S10p-

K14ac in the c-fos promoter  after exposure to forced swim stress (Gutierrez-Mecinas et al., 

2009; Trollope and Reul, unpublished results). It therefore seems likely that c-Fos expression 

is induced by phospho-acetylation of histone H3 and may be the link between biochemical 

signaling pathway activation and changes in target gene expression.  

 

In view of the strong transactivation potential of pCREB regarding c-fos gene transcription 

(Berkowitz et al., 1989; Boutillier et al., 1992; Herdegen and Leah, 1998), it is obvious that 

the forced swimming-induced sparse induction pattern of c-Fos in dentate granule neurons in 

the face of a virtually ubiquitous activation of CREB in these neurons is a striking 

conundrum. Basically, the question is why is c-Fos only sparsely induced in dentate neurons 

when pCREB is generated in all neurons? Our recent signaling and epigenetic studies may 

provide an answer to this question. We have shown that the induction of c-Fos in dentate 

neurons requires the activation of GRs in conjunction with the NMDA/ERK1/2/MSK1-Elk-1 

signaling pathway which results in the phosphorylation and acetylation of histone H3 tails. 

This combinatorial histone mark is known to be involved in the opening of condensed, 

inactive chromatin rendering it available for transcription (Cheung et al., 2000; Clayton et al., 

2000; Nowak and Corces, 2000). As transcription factors like pCREB require an open 
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chromatin structure in order to transactivate gene promoters, the sparse induction pattern of c-

Fos in dentate neurons is most likely the result of an open chromatin configuration of this 

gene evoked by the phospho-acetylation of histone H3 specifically in these neurons. In 

dentate neurons in which the ERK MAPK pathway is not activated and dual histone marks do 

not evolve, the chromatin containing the c-fos gene will remain condensed and inactive and 

any generated pCREB will not be able to transactivate the c-fos gene promoter. Thus, it 

seems that in dentate granule neurons GR and NMDA-ERK-MAPK driven histone 

modifications and subsequent chromatin remodeling is a prerequisite for the transactivation 

potential of transcription factors like CREB. In other parts of the brain c-Fos induction does 

not require histone H3 phospho-acetylation and thus in these areas the gene seems to be in an 

open chromatin configuration. Accordingly, in areas such as the neocortex, a widespread 

CREB activation is matched by a widespread c-Fos induction (Bilang-Bleuel et al., 2002). 

The details of our concept are outlined in Figure 2.  

 

The hippocampus expresses high levels of GR and is responsible for co-ordination of 

neuroendocrine and behavioral responses to stress making it a prime site for studies of the 

stress response in vivo (Reul and de Kloet, 1985; De Kloet and Reul, 1987; De Kloet et al., 

2005). In the early 1980s it was observed that the behavioral immobility response, as 

displayed in the forced swim re-test, is strongly dependent on glucocorticoid hormones 

secreted during the initial forced swim challenge and acting via GRs (Veldhuis and De Kloet, 

1983; Jefferys et al., 1983). Follow-up work demonstrated that specifically GRs in the dentate 

gyrus are crucial for the forced swimming induced behavioral immobility response (De Kloet 

et al., 1988). Using the selective receptor antagonists RU38486 and ORG 34517 we 

examined whether there was a relationship between the histone H3 phospho-acetylation 

response and the behavioral immobility response following forced swimming. The forced 
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swimming induced increases in both H3S10p-K14ac positive neurons in the dentate gyrus 

and immobility behavior in the 24-h re-test were dependent on GR activation. Thus, in recent 

years a picture has emerged indicating that the induction of H3S10p-K14ac and c-Fos in 

dentate granule neurons as well as the consolidation of the behavioral immobility response 

require signaling through both the GR as well as the NMDA-ERK-MAPK pathways (Bilang-

Bleuel et al., 2005; Chandramohan et al., 2007; Reul and Chandramohan, 2007; Reul et al., 

2009). Blockade of either pathway lead to abrogated epigenetic, gene expression and 

behavioral responses. Recent work suggests that the interaction of signaling pathways is not 

occurring at the genomic level but rather through direct cross talk between participating 

signaling molecules at the protein-protein level. After forced swimming, GR activation 

enhances the downstream activation of the ERK1/2 dependent kinases MSK1 and Elk-1 

resulting in enhanced responses in histone H3 phospho-acetylation and c-Fos induction in 

dentate granule neurons (Gutierrez Mecinas et al., 2009). This is a novel non-genomic 

mechanism of GC hormone action.  

 

A serendipitous finding emerging from the above studies found a decrease in 

hyperacetylation of histone H4, another epigenetic modification, following forced swim 

stress at multiple locations within the brain (neocortex, hippocampus etc) (Trollope and Reul, 

unpublished results). In contrast, the stress-induced increase in H3 phospho-acetylation 

(H3S10p-K14ac) and c-Fos was specifically located to the dentate gyrus, with the majority of 

positive neurons situated amongst the mature neurons of the middle and outer aspects of the 

granular cell layer in the dorsal blade of the dentate gyrus (Bilang-Bleuel et al., 2005; 

Chandramohan et al., 2007; 2008). Since young, immature neurons of the dentate gyrus are 

located in the inner aspect of the granular cell layer, close to the subgranular zone, this 

finding indicates a high degree of neuroanatomical specificity with regard to this molecular 
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response to stress and highlights how the accessibility of a gene may vary between cell 

populations and tissues depending on chromatin conformation.  

 

Epigenetics: role in learning and memory  

Adaptive and coping behaviors such as immobility in the forced swim retest and freezing in 

the fear conditioning retest are dependent on successful memory formation during initial 

training/tests. GR activation during the consolidation phase of the forced swim test is 

required for the normal expression of behavioral immobility in the retest. Studies in learning 

and memory tests such as contextual fear conditioning and Morris water maze learning have 

identified a similar dependence on GR at a critical stage in memory consolidation hinting that 

these tests may all share a central pathway for memory formation (Oitzl and de Kloet, 1992; 

Cordero and Sandi, 1998; Revest et al., 2005). Histone modification and c-Fos induction have 

also been shown to occur in response to a number of learning and memory paradigms in vivo 

(Chwang et al. 2007). In these studies, ERK1/2 inhibition (by the specific MEK inhibitor 

U0126) and MSK1 knockout mice were used in fear conditioning and Morris water maze 

tests to identify an ERK1/2-MSK1-H3S10p-K14ac dependent signaling pathway in the 

mouse hippocampus. This pathway was responsible for the adaptive behavior learnt and 

displayed in these tests; blocking this pathway blocked the learned behavior (Chwang et al., 

2007). This ERK1/2-MSK1-H3S10p-K14ac pathway identified by Chwang et al. (2007) is 

analogous to the one we identified in response to forced swim and novelty stress indicating 

that a common pathway is activated by a range of stressful learning paradigms. 

 

Memory formation plays a key role in both stress responses and learning paradigms, and 

epigenetic modifications are critical in the response to a variety of stressors such as forced 

swim, Morris water maze and fear conditioning (Chwang et al., 2007; Chandramohan et al., 
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2008). Taken together, these observations indicate that epigenetic modifications underlying 

changes in gene expression may be contributing to the process of memory formation and/or 

retrieval alongside previously identified modulators of learning and memory processes.  

 

Application of the signaling pathways to the chromatin during immune stress  

The focus of this review has been the role of epigenetic modifications in psychological stress 

responses and memory formation but there is evidence in the literature of similar pathways 

playing a role in the epigenetic response to immune stress. This may not be surprising since 

the immune system is highly integrated with the neuronal and endocrine systems and 

interacts significantly with key modulators of both systems (Besedovsky and Rey, 2007). 

 

GCs, released after HPA axis activation, modulate the expression of a broad range of 

cytokines (Wiegers and Reul, 1998). The traditional view is that GCs generally inhibit 

proinflammatory cytokine expression but in other studies GC release increases the expression 

of receptors for these proinflammatory cytokines (Wiegers and Reul, 1998; Liberman et al., 

2007). This apparent conundrum may be explained if the role of GCs is to ‘optimise the 

course of a biological response’ and regulate the balance between pro- and anti-inflammatory 

cytokine expression (Wiegers and Reul, 1998; Elenkov and Chrousos, 2002). One mechanism 

by which GCs may optimise the biological response was proposed by Wiegers and Reul 

(1998). They used the example of T-cell proliferation to demonstrate that the action of GCs to 

reduce cytokine expression (in this case IL2) is not necessary paralleled by a reduction in 

biological response. Indeed, the fact that GCs reduced the time of the peak expression of IL2 

receptor (IL-2R) by two days actually resulted in a faster, superior biological response 

compared with the response in the absence of GCs (Wiegers et al., 1995; 2001). This GC-

induced optimisation was possible because it is the receptor expression, and not cytokine 
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availability, which is the limiting factor in this phase of the response (Wiegers and Reul, 

1998). They showed that CD4 levels were increased during GC-induced rises in T-cell 

proliferation (Wiegers et al., 2000). Furthermore, these GC-induced responses were 

desensitized if the rats had experienced high circulating GC levels for an extended period of 

time (Sterzer et al., 2004). 

 

Interleukin 4 (IL-4) is an anti-inflammatory cytokine produced by T-cells which acts in an 

autocrine manner to elicit a key role in the differentiation of T-cells. GCs regulate the 

expression of this cytokine indirectly by removing the inhibitory control of IL-4 by IL-12 

(Elenkov and Chrousos, 2002). In addition to its role as an anti-inflammatory agent, IL-4 has 

a neuromodulatory function and its receptor is functionally expressed in the granular neurons 

of the dentate gyrus in adult rats (Nolan et al., 2005). Preventing IL-4 production by T-cells 

in meningeal spaces severely impairs performance in behavioral studies targeting learning 

and memory processes such as the Morris water maze (Derecki et al., 2010). Further 

investigations found a strong correlation between IL-4 production and upregulation of brain-

derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus. BDNF is 

associated with neural plasticity and is an important factor in the consolidation of memories 

(Schaaf et al., 2000). Since the hippocampus is one of the key sites for memory processing, it 

was hypothesised that meningeal T cell-derived IL-4 production is enhancing cognitive 

function via BDNF expression in the hippocampus (Takei et al., 2010). The signaling 

pathways activated by IL-4 which are responsible for the enhanced performance in learning 

and memory tasks is unknown, however, since BDNF expression has been accompanied by 

increased acetylation of histone H3 and H4 (Takei et al., 2010), and since IL-4 can 

phosphorylate MAPK and induce phospho-acetylation of H3 (H3S10p-K14ac) in T-cells 
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(Kraus et al., 2010), a similar, epigenetic based mechanism to that proposed to occur in 

response to psychological stress (Reul and Chandramohan, 2007) is promising.  

 

Role of epigenetics in psychiatric and neurological disorders 

Although epigenetic modifications are beginning to emerge as having a role in a range of 

diseases this review will focus on just a couple, namely post traumatic stress disorder (PTSD) 

and multiple sclerosis. 

 

Post traumatic stress disorder (PTSD) 

Since the 1980’s, PTSD has been recognised as a pathological anxiety disorder, which can 

develop after exposure to a traumatic event (Yehuda and Bierer, 2009). Prior to this it was 

thought that once the threat (stressor) was no longer present the symptomatic effects of stress 

would disappear. It seems clear now that a certain proportion of victims of trauma (rape, war 

situations) will develop PTSD-associated symptoms over the course of time, even after the 

stressful situation or time period has passed. Symptoms associated with PTSD include 

hyperarousal (alertness, possibly mediated by the release of noradrenaline), avoidance of 

stressful situations and the recall of traumatic memories (Nair and Singh Ajit, 2008). 

Physiological changes including a reduction in basal cortisol levels, an increase in 

corticotrophin releasing hormone (CRH) in cerebral spinal fluid and increased expression of 

GR in lymphocytes have been found in PTSD patients when compared with matched controls 

(Yamamoto et al., 2009; Yehuda and Bierer, 2009). Since all these changes are associated 

with the HPA axis this has lead to the notion that the pathology of PTSD is caused by 

aberrant function of the HPA axis (Yehuda and Bierer, 2009). PTSD has also been associated 

with abnormal immune function. Patients with PTSD show high levels of circulating 

inflammatory markers, lower natural killer cell activity and lower T-lymphocyte counts when 
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compared with matched controls (Pace and Heim, 2011). It is unclear whether the changes in 

immune factors are a result of the aberrant HPA axis or initiate the sensitisation of the HPA 

axis since IL1 has been shown to elicit long-lasting changes in HPA axis function and vice 

versa (Schöbitz et al., 1994; Linthorst et al., 1994; 1995b; Labeur et al., 1995; Linthorst et al., 

1995a; Reul et al., 1998; Linthorst et al., 1999; Schmidt et al., 2003). 

 

Administration of FG-7142, a partial indirect GABA-A receptor inverse agonist which 

inhibits GABA function, can induce PTSD-like symptoms in humans whereas exposure to 

GABA-A agonists like alcohol during a traumatic experience reduce the likelihood of 

developing PTSD (Kalueff and Nutt, 1996; Evans and Lowry, 2007). These effects may be 

linked to epigenetic modifications since studies in rats have shown that lorazepam, a 

benzodiazepine indirect GABA-A receptor agonist, has strong anxiolytic properties and 

inhibits phospho-acetylation of histone H3 (H3S10p-K14ac) in response to stress 

(Papadopoulos et al., 2010). Treatment of rats with FG-7142 has the opposite effect, i.e. the 

animals show increased anxiety-related behavior and enhanced levels of H3S10p-K14ac-

positive neurons in the dentate gyrus in response to a novel environment challenge (Reul and 

Nutt, 2008; Papadopoulos et al., 2010). It is thought that traumatic early life experiences 

increase the likelihood of developing PTSD in later life. Work of Meaney and colleagues has 

shown that the DNA methylation status is critical in linking early life experiences with adult 

responses to stress (Weaver et al., 2004). Demethylation of genes involved in immune 

function, such as toll-like receptor 1 and 3 (TLR1 & TLR3), interleukin 8 (IL8), lymphotoxin 

alpha (LTA) and killer cell lectin-like receptor subfamily G, member 1(KLRG1) have been 

observed to  correlate strongly with the occurrence of PTSD following a traumatic event 

(Uddin et al., 2010). Exposure to single prolonged stress (SPS, see Table 1) provoked a 

phenotype in rats similar to PTSD and therefore these rats were used as an animal model of 
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PTSD in subsequent studies (Yamamoto et al., 2009). When SPS/PTSD rats were assessed in 

fear conditioning tests there was increased acetylation of histone H3 and H4 in the promoter 

regions for exon I and IV of the BDNF gene in the hippocampus when compared with fear 

conditioned control rats (no exposure to SPS). The changes in histone acetylation induced by 

fear conditioning training in the animal model of PTSD was associated with increased 

freezing behavior during the subsequent retest (Takei et al., 2010). Taken together these 

studies indicate an emerging role for epigenetic modifications in the development and 

prevalence of PTSD. 

 

Multiple sclerosis 

Multiple sclerosis (MS) is a neuroimmunological disease which is characterised by 

demyelination of neurons in the central nervous system resulting in a number of detrimental 

symptoms including muscle weakness, cognitive impairment including deficits in memory 

formation and retrieval, fatigue, mood disorders and many others (Heesen et al., 2007). 

Studies on MS patients and the MS animal model (experimental autoimmune 

encephalomyelitis (EAE)) have shown an involvement of the HPA axis in the vulnerability 

for and progression of this autoimmune disease (Stefferl et al., 1999; 2001; Heesen et al., 

2007). Levels of DNA methylation in the promoters of specific genes are lower in patients 

suffering from MS compared with healthy controls. One of these genes, peptidyl 

argininedeiminase 2, is overexpressed in MS and promotes the citrullination (conversion of  

arginine to citrulline) which alters how the protein is folded due to an increase in 

hydrophobicity causing a pathological phenotype (Mastronardi et al., 2007). Exploratory 

studies have also shown a surprising role for the histone deacetylase inhibitor TSA as a 

beneficial treatment for MS suggesting a loss of acetylation marks is also occurring during 

disease progression (Camelo et al., 2005).   
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Summary  

Our studies so far have identified a unique role for two signaling pathways (i.e. the GR and 

ERK MAPK pathways), activated after exposure to specific stressors, which initiate 

epigenetic changes, modification of gene expression, memory formation and resulting in 

adaptive behavioral responses. Other research has described a role for these pathways in 

learning and memory paradigms such as the Morris water maze. Given the integration of the 

neuronal, endocrine and immune systems we speculate that these pathways, or components of 

them, play a role in other adaptive responses such as adaptive immunity and homeostasis. 

Although advances have been made to improve our understanding of the process surrounding 

the formation of long-term memories of significant (stressful) events in our lives there is still 

much ambiguity in the field. Epigenetic mechanisms and their role in memory formation may 

therefore be the molecular basis for the crossover between stress studies and learning 

paradigms as well as having a central role in hormonal and immunological adaptations.  
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Legend to Figure 1.  

Scheme representing the role of the epigenome in physiological and behavioral 

responses. Cells communicate by a number of chemical messengers which act at different 

locations to elicit a biological response. Generally, signaling systems exist whereby 

extracellular primary messengers (growth factors, cytokines, hormones etc) act via receptors 

at the cell surface or are transported or diffuse across the plasma membrane to induce 

activation of secondary messengers and/or transcription factors within the cytoplasm. 

Activated secondary messengers can have biochemical effects in the cytoplasm and/or are 

translocated into the nucleus to act on nuclear transcription factors or influence the 

epigenome or genome directly. The epigenome is regarded as the complex of changes, 

occurring at the chromatin level, which alter the expression of genes without changing the 

coding sequence of the genome. Changing the level of gene products, as a result of activation 

of signaling cascades, influences cell function and affects both the physiology and the 

behavior of the organism.  
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Legend to Figure 2.  

 

Concept on the requirement of orchestrated signaling and epigenetic mechanisms in the 

induction of c-Fos in dentate granule neurons after a psychological challenge. A. Under 

baseline conditions the c-fos gene in an inactive state possibly involving methylation of the 

gene promoter DNA. B. Psychological stress causes the secretion of glucocorticoid hormone 

which act via GRs and the release of glutamate which acts on NMDARs to cause a rise in 

intracellular Ca
2+

 levels in sparsely distributed dentate granule neurons. Ca
2+ 

influx activates 

CAMKII and the ERK MAPK cascade. We recently discovered that GRs seem to act like 

scaffolds facilitating the activation (i.e. phosphorylation) of MSK1 and Elk-1 by 

phosphorylated ERK1/2 (pERK1/2; Gutierrez-Mecinas et al., submitted). pMSK1 

phosphorylates S10 residues in histone H3 tails which evokes the opening of the chromatin. 

If the c-fos gene promoter is methylated de-methylation (by DNA de-methylases (DDMs)) 

will take place at this stage or earlier. CAMKII and MSK1 and possibly other kinases (e.g. 

protein kinase A (PKA)) will phosphorylate CREB. pElk-1 will bind to the Elk-1 binding site 

in the serum response element (SRE) and recruit and phosphorylate the HAT p300. pCREB 

and GRs may also recruit HATs. The recruited HATs will acetylate the histone tails 

(including H3S10p rendering it into H3S10p-K14ac) and thereby stabilize the open 

chromatin configuration. This may also involve H3K4 methylation by HMTs but their 

activation/recruitment mechanisms are still unknown. Dimerized pCREB can now access the 

CRE within the c-fos promoter and transactivate gene transcription.  The c-Fos response is a 

transient response as, over time, glucocorticoid hormones and glutamate diminish, Ca
2+

 levels 

plummet, protein phosphatase and HDAC activities rise and ultimately the c-fos gene will be 

inactivated, possibly involving DNA methylation of the gene promoter.  
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Table 1. Behavioral tests commonly used to investigate responses to stress or learning 

and memory paradigms.  

Behavioral test General conditions 

Adaptive 

behavior 

Reward (if 

applicable) 

References 

Novel environment 

Subjects are transferred to 

a new environment 

(usually for 30 min) and 

their behavior recorded. 

Switch from 

exploratory 

to normal 

behavior 

Identifying 

there is no 

threat 

(Bassett et al., 

1973) 

Radial maze 

8-arm maze which tests 

subjects memory by 

forcing them to make 

decisions about which arm 

to explore. 

Finding 

food source 

Food 

(Olton and 

Samuelson, 

1976) 

Morris water maze 

Subjects are trained 

(successive trials over 

consecutive days) to find 

an underwater platform 

and then the platform is 

removed to test their 

memory of its location.  

Finding the 

platform 

Escape from 

water 

(Morris et al., 

1982) 

Forced swim test 

Subjects are placed in are 

large beaker of water from 

which they cannot touch 

the bottom or escape and 

behavior monitored 

Floating 

Conservation 

of energy 

(Porsolt et al., 

1977a; De 

Pablo et al., 

1989; West, 

1990; Korte, 
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(usually for 15 min). A 

second test, usually lasting 

5 min is performed after a 

sufficient recovery period 

(usually 24 h) and again 

behavior is monitored. 

2001; Bilang-

Bleuel et al., 

2005; 

Chandramohan 

et al., 2008; 

Nestler and 

Hyman, 2010)  

Fear conditioning 

Subjects are placed in a 

box and subjected to a 

short-lasting foot shock, 

sometimes preceded by a 

noise or light signal 

(conditioned cue). Trials 

are often repeated before 

allowing the subject time 

to recover (varies from 

hours to weeks). In the 

retest the subject is placed 

in a different environment 

and subjected to the cue 

but no shock (to test cue-

dependent memory) or 

placed in the same box 

with no cue or shock (to 

test context-related 

Freezing  No reward 

(Rescorla, 

1973; Davis 

and Astrachan, 

1978) 
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memory)  

Single prolonged 

stress 

Subjects are exposed to 2 

h restraint stress, followed 

immediately by forced 

swim test (usually 20 

min), allowed to recover 

for a short period (~15 

min) and then exposed to 

anaesthetic until 

unconsciousness is 

achieved. 

Freezing  No reward 

(Liberzon et 

al., 1997) 

Immune/inflammatory 

stress 

Can be experimentally 

induced by administration 

of bacterial endotoxins. 

Sickness 

behavior 

 No reward 

(Linthorst et 

al., 1995b) 

a Please note, this interpretation of the immobility response during forced swim retest 

differs from our own. 
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