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Abstract 

Abdominal aortic aneurysms (AAAs) are common problems in aged people which can be 

associated with severe complications including aortic rupture and death. Transforming growth 

factor-β (TGFβ) has been implicated as causative in the development of thoracic aortic aneurysms 

(TAAs). In contrast current evidence suggests TGFβ inhibits AAA development. Polymorphisms in 

the TGFβ signaling components are associated with AAA in some human population studies. In 

experimental animals TGFβ protects against AAA formation, progression and rupture. In animal 

models of AAA TGFβ decreases aortic inflammatory cell infiltration, extracellular matrix 

degradation, and vascular smooth muscle cell (VSMC) apoptosis, all factors implicated in AAA 

pathogenesis. The TGFβ signaling pathway may provide a therapeutic target for AAA although 

better clarity is needed regarding the distinct roles of TGFβ in TAA and AAA. 
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1. Introduction 

Aortic aneurysm is the general term for any dilation (aneurysm) of the aorta to greater than 1.5 times 

normal size [1]. Aortic aneurysms can be classified based on anatomic location into three types: (1) thoracic 

aortic aneurysms (TAAs) which involve the ascending aorta, arch or descending thoracic aorta; (2) abdominal 

aortic aneurysms (AAAs) which affect the abdominal aorta; and (3) thoracoabdominal aortic aneurysms 

(TAAAs) which involve both the thoracic and abdominal aorta [2]. This review focuses on current evidence 

regarding the role of transforming growth factor-β (TGFβ) in AAAs. 

An AAA represents a weakened and dilated region of the abdominal aorta usually affecting the infra-renal 

segment [3] . Male gender and older age are important risk factors [3]. The prevalence of AAA is ~5% in men 

aged 65-74 years [4] and ~10% in men aged ≥75 years [5, 6]. The prevalence of AAA is four to five times 

lower in women than in men [7], but the outcome of the disease is worse in women than in men [8, 9].  

Significant shortfalls exist in current AAA management strategies. In particular, the absence of effective 

drug therapies for AAA means that patients with early stage AAAs are managed conservatively requiring 

repeat imaging on a 6–12 monthly basis until the threshold diameter for repair is reached. Up to 70% of 

patients eventually require surgery which comes with associated mortality (~1-5%), major morbidity (~5-

20%) and cost (~$30,000 per patient) [10-12].  There is great current interest in better understanding the 

pathogenesis of AAA in the hope that targets for new medical therapies to reduce AAA progression might be 

identified.  

One area of significant current interest is the role of TGFβ in the development and progression of aortic 

aneurysm. TGFβ has been implicated in promoting TAA formation (previously reviewed in [13, 14]). 

Although AAAs share some similarities with TAAs, they are different from TAAs in disease location, 

embryonic origins of medial VSMCs and pathological findings [2, 3] (Table 1). TAAs may occur in the 

ascending aorta, arch and/or descending thoracic aorta. The embryonic origin of medial VSMCs within the 

ascending aorta and arch is from the neural crest, while VSMCs within the descending thoracic aorta originate 

from somites [15]. However, AAAs occur in the abdominal aorta, and VSMCs from this site originate from 

somites [16]. It has been shown that VSMCs from different embryonic origins exhibit lineage-specific 
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differences in the ways that they respond to TGFβ1 [17]. For example, TGFβ1 promotes growth of VSMCs 

derived from the neural crest, whereas TGFβ1 inhibits growth of VSMCs originating from somites [17]. AAA 

is an inflammatory disease with dense infiltration of macrophages and lymphocytes found within human 

AAA biopsies [18, 19]. In contrast, there is less inflammation within aortic biopsies from TAA patients [20] 

although it has been shown that inflammatory cells, including macrophage and T cells, can be identified in the 

aortic biopsies of some TAA patients [21]. As the pathogenesis of AAA appears to be different from that of 

TAA, the role of TGFβ in TAA development cannot be necessarily expected to be similar in AAA 

development. In contrast to its putative role in promoting TAA development, TGFβ appears to play a 

protective role in AAA pathogenesis. 

This review briefly summarizes TGFβ signaling pathways and then focuses on data suggesting a 

protective role of TGFβ in AAA formation, progression and complications. Finally possible mechanisms 

underlying the putative protective effect of TGFβ in AAA are described including areas requiring further 

research.  

2. TGFβ and its receptors 

The TGFβ superfamily of growth factors comprises at least 30 genes in mammals, including 3 TGFβ 

isoforms, 4 activin β chains, 10 bone morphogenetic proteins, and 11 growth and differentiation factors [22]. 

These growth factors regulate many cellular functions including cell growth, adhesion, migration, 

differentiation and apoptosis [22]. This review focuses on the three TGFβ isoforms, i.e., TGFβ1, TGFβ2 and 

TGFβ3.  

Active TGFβs are homodimeric proteins of 25 kDa [23-25]. TGFβs are synthesized as large precursor 

molecules that are cleaved at a conserved RXXR motif into two fragments: TGFβ and latency associated 

peptide (LAP). After cleavage, LAPs are still able to bind to TGFβs and this leads to a biologically inactive 

latent complex [24, 26]. Latent TGFβs are stored at the cell surface and in the extracellular matrix and are 

converted to active TGFβ [23] by the effects of multiple proteins including thrombospondin-1 [27] and 

integrins [28]. 
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The effects of TGFβs are mediated by binding to their receptors. Three classes of TGFβ receptor (TβR) 

isoforms have been characterized [26, 29]: Type I (TβRI), type II (TβRII) and type III (TβRIII) receptors. 

TGFβ isoforms bind to TβRII, which induces a hetero-oligomerization between TβRII and TβRI, and 

subsequently, downstream signaling is initiated [26, 29]. Betaglycan, also known as TβRIII, is a membrane-

anchored proteoglycan that has no signaling structure but acts to present TGFβs to TβRII [26]. Soluble forms 

of TβRIII are released from the cell surface by endogenous proteases and can act as a TGFβ inhibitor by 

sequestering TGFβ [30]. 

TGFβs have similar biological properties [23]. Studies investigating the biological effects of different 

TGFβ isoforms demonstrate a considerable overlap of their activities [31]. Specificity of the action of TGFβ 

isoforms in different cell types seems to be determined by the expression and/or activation of intracellular 

signaling molecules as well as by distinct expression of the TβR subtypes [26, 29, 32]. In addition, TGFβ1 

and TGFβ3 bind TβRII without needing TβRI; however, TGFβ2 interacts only with TβRII and TβRI 

heterodimers [31]. TGFβ isoforms diverge in their ability to bind to receptors in a manner that correlates with 

their potency of biological effects. For example, TGFβ1, TGFβ2 and TGFβ3 have similar ability to bind to 

TβRIII but differ in their ability to bind to TβRII and TβRI. TGFβ1 and TGFβ3 are more potent than TGFβ2 

in binding to TβRII and TβRI which correlates with their higher growth inhibition effect compared with 

TGFβ2 [32]. 

3. Brief summary of TGFβ signaling 

TGFβs can activate different pathways, including Sma and Mad Related Family protein (Smad), mitogen-

activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K) pathways (Figure 1).  

3.1 Smad pathway  

Latent TGFβs are activated, e.g. by reactive oxygen species (ROS), to become active TGFβs. The active 

TGFβ binds to TβRII, which recruits and phosphorylates TβRI [29]. The phosphorylated TβRI phosphorylates 

and activates receptor-regulated Smads (R-Smads), including Smad2 and Smad3. Activated R-Smads form 
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heteromeric complexes with common-partner Smads (Co-Smads), e.g. Smad4, which translocate efficiently to 

the nucleus, where they regulate, in co-operation with other transcription factors, co-activators and co-

repressors, the transcription of target genes [33, 34]. 

There is another type of Smad, i.e., inhibitory Smad (I-Smad). I-Smads include Smad6 and Smad7. They 

negatively regulate TGFβ/Smad signaling by preventing activation of Smad2 and Smad3 [35]. Induction of 

Smad6 and Smad7 [34, 36, 37] expression by TGFβ represents an auto-inhibitory feedback mechanism. 

Smad6 and Smad7 can inhibit the activation of R-Smads by competing with R-Smad for type I receptor 

interaction or by recruiting specific ubiquitin ligases to the activated receptor complex thereby targeting it for 

proteosomal degradation [22, 38, 39]. 

Smad ubiquitination-regulatory factor1 (Smurf1) and Smurf2 antagonize TGFβ signaling by interacting 

with Smads and targeting them for degradation [40]. 

3.2 MAPK pathway 

TGFβ receptors can activate TGFβ-activated kinase-1 (TAK1) [41], which can further activate mitogen-

activated protein kinase kinase 6 (MKK6) or MKK3 to activate p38. Alternatively, TAK1 can activate MKK4 

which leads to c-Jun N-terminal kinases (JNKs) activation. In addition, TGFβ receptors activate Ras which 

can further activate extracellular signal-regulated kinase (ERK) [31, 42]. 

3.3 PI3K pathway 

TGFβs via their receptors activate PI3K, as indicated by phosphorylation of its effector protein kinase B (Akt) 

[43, 44]. This activation can be directed by RhoA [43] or other proteins, e.g. epidermal growth factor [44].  

3.4 Interaction between the TGFβ pathways 

There is cross talk between the different signaling pathways which mediate TGFβ effects. For example, 

inhibition of p38 MAPK inhibits TGFβ1-induced R-Smad activation [45]; c-jun inhibits Smad2 signaling 

[46]; The ERK pathway can attenuate Smad accumulation within the nucleus [47]; Smad6 binds to TAK1 and 
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down-regulates its activity [48]; whereas Smad7 enhances JNK activation [49]. Thus, the balance among 

these different pathways likely defines the cellular response to TGFβ. 

4. Feature of AAAs  

AAAs are characterised by chronic inflammation, degradation of the aortic wall and loss of VSMCs 

within the medial layer [50-54],  associated with progressive dilatation and eventual aortic rupture [3]. 

The infiltrating inflammatory cells identified in AAA biopsies are dominated by macrophages and 

lymphocytes [55] which produce pro-inflammatory mediators and ROS [52]. Inhibition of inflammation, e.g. 

by blocking nuclear factor-κB, inhibits the development of AAAs in mice [56], supporting a role for 

inflammation in AAA formation. The exact role of inflammation in AAA is controversial [57], as intense 

immune-suppressive treatment was associated with rapid AAA progression (13 mm/y) in a patient in whom 

histological analysis showed complete absence of T cells, B cells and neutrophils within the AAA wall. 

AAAs are characterised by increased ECM degradation. Aneurysmal tissue shows increased levels of 

matrix metalloproteinases (MMPs), a family of enzymes capable of degrading the primary structural proteins 

of the aortic wall [58]. Pharmacological [59] or genetic [60] inhibition of MMPs can inhibit the development 

of AAA in experimental animals. Another cardinal feature of AAA is the depletion of VSMCs within the 

medial layer [53, 54]. Therapies which prevent VSMC depletion can stabilize pre-formed aneurysms in 

experimental animals [61].  

5. TGFβ signaling in human AAA 

TGFβ signaling has been shown to be down-regulated in human AAA. For example, in a small study 

involving biopsies from 12 AAAs and 6 control aortas, loss of one copy of TβRII exon 8 was identified in 

92% of AAA patients and this was associated with the down-regulation of TβRII mRNA expression [62].    

Some genetic studies have reported an association between single nucleotide polymorphism (SNPs) in 

TGFβ3 [63], TβRI [64], TβRII [64-66] and latent TGFβ binding protein 4 (LTBP4) [63] with AAA (Table 2). 

It is noted that the associations between the polymorphisms and AAA are population specific [63, 65, 66]. It 
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is also noted that these polymorphisms might work in concert with other polymorphisms. For example, in one 

study TβRI gene polymorphism (6A allele) was reported to increase the predisposition for AAA not per se, 

but only when increased angiotensin II levels were present [67]. 

Serum TGFβ1 was not associated with the presence [65] or progression [68] of AAA in previous reports. 

However, TGFβ1 serum concentrations might not reflect its level in aneurysmal tissues or its downstream 

signal pathway activity.  

6. TGFβ inhibits AAA formation, progression and rupture in experimental animals 

6.1 TGFβ inhibits AAA formation in mouse models 

Systemic neutralisation of TGFβ activity using a blocking antibody breaks the resistance of C57BL/6 mice 

to angiotensin II-induced AAA formation and rupture [69]. Angiotensin II and TGFβ blocking antibody-

induced AAAs appear to be mainly mediated by monocyte/macrophages [69], as depletion of monocytes 

decreases both macrophage infiltration and AAA formation [69]. 

6.2 TGFβ stabilizes pre-formed AAAs in animal models 

Protecting pre-formed aortic aneurysms from expanding has clinically relevant consequences because risk 

of AAA rupture is proportional to aortic diameter [70]. In one previous study over-expression of TGFβ1 

stabilized the aortic diameter of pre-formed AAAs in experimental animals; while in the non-treated control 

group, the aortic diameter continued to increase over time [71]. 

In another study over-expression of TGFβ1 by endovascular gene delivery stabilized pre-formed aortic 

aneurysms [72]. This effect of TGFβ1 was associated with preservation of medial elastin, a decrease in 

infiltration of macrophages and T lymphocytes, and a decrease in MMP-2 and MMP-9 expression. TGFβ1 

also triggered ECM repair, as over-expression of TGFβ1 promoted a VSMC-, collagen- and elastin-rich 

intima [72]. 

TGFβ1 has been reported to mediate cyclosporine A (CsA)-induced protection from AAA induction in 

experimental animals. CsA is an imunosuppressive drug which induces TGFβ1 gene transcription and 
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activates latent TGFβ [33, 73]. Chronic administration of CsA leads to tissue accumulation in humans [74]. 

CsA stabilized AAAs in experimental animals [73] and this effect was mediated by TGFβ, as a TGFβ 

neutralising antibody abrogated the stabilizing effect of CsA [73]. 

6.3 TGFβ protects against AAA complications in mouse models 

Blocking TGFβ activity using TGFβ antibody promoted AAA rupture within an angiotensin II-induced 

AAA model. This effect of TGFβ was mediated by MMP-12, as blocking TGFβ increased MMP-12 activity 

and MMP-12 deficiency prevented aneurysm rupture [69]. 

7. Putative mechanisms underlying the potential protective effect of TGFβ in AAA pathogenesis 

TGFβ most likely exerts its protective effects via multiple mechanisms, including inhibiting aortic 

inflammatory cell infiltration, reducing ECM degradation and limiting VSMC apoptosis as well as promoting 

ECM formation (Figure 2). The TGFβ signaling pathway might provide a therapeutic target for AAA. 

7.1 TGFβ inhibits aortic inflammatory cell infiltration 

Inflammation is one of the characteristic pathological features of both human [75, 76] and experimental 

AAAs [77]. The aortic density of inflammatory cells is correlated with AAA diameter in humans [76]. Rapid 

aortic diameter enlargement is associated with more marked aortic inflammation in experimental animals 

[78]. Macrophages and lymphocytes [55] are the major inflammatory cells identified in AAA biopsies [68]. 

The inflammatory cells produce MMPs which lead to ECM degradation and AAA formation in experimental 

animals [79]. Administration of TGFβ neutralising antibody promoted monocyte-macrophage infiltration 

within experimental AAAs [69, 73] in mice and rats [73]. TGFβ appears to be able to decrease inflammatory 

cell recruitment and potentially the release of proteolytic enzymes which promote ECM degradation. 
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7.2 TGFβ promotes elastin and collagen formation 

Elastic fibres in the ECM of vascular tissues provide elasticity and resilience. Elastin is cross-linked and 

extremely hydrophobic, which makes it one of the most stable proteins in the body [80, 81].  Inflammatory 

cells release MMPs that breakdown elastin to generate soluble elastin peptides [82]. These peptides are 

different from intact elastic fibres as they activate medial VSMCs and prompt the secretion of cytokines, 

chemokines, interleukins and proteinases that propagate the cycle of matrix degradation [83]. This ultimately 

leads to the loss of elasticity and strength of the aortic wall and its progressive dilation to form a rupture-

prone sac of weak tissue.  

AAA regression is unlikely without regeneration of new elastic matrix structures. Unfortunately, both 

healthy and diseased post-neonatal VSMCs poorly synthesize elastic fibers [84]. TGFβ1 enhances tropoelastin 

mRNA and protein production in VSMCs [84] and it can also augment lysyl oxidase protein expression [84]  

which is critical to elastin crossing linking and fiber assembly. The TGFβ1-induced elastin-matrix 

regeneration by VSMCs can be enhanced by hyaluronan oligomers [84]. It has been shown that elastogenic 

factors, composed of hyaluronan oligomers and TGFβ1, can stimulate both healthy and aneurysmal rat aortic 

smooth muscle cells to enhance elastin synthesis and matrix formation [84, 85]. Importantly, these elastogenic 

factors also increase elastin and matrix formation by human AAA-derived VSMCs [86]. In addition, 

subcutaneous injection of TGFβ1 can increase collagen formation by fibroblasts in vivo [87] and over-

expression of TGFβ1 induces procollagen and collagen synthesis in normal arteries in vivo [88].  

7.3 TGFβ inhibits ECM degradation 

Matrix degradation is one of the key features of AAA. MMPs play an important role in this process. 

MMP-9 is believed to play a leading role in ECM degradation and AAA formation. Macrophages, abundant 

within AAAs, are a major source of MMP-9 [89]. Macrophage-derived MMP-9 promoted aneurysm 

formation within the CaCl2-induced mouse model of AAA [79]. 

TGFβ1 inhibited TNF-α-induced MMP-9 expression [90] and advanced glycation end products (AGEs)-

induced MMP-9 activity in macrophages [91]. In vivo, TGFβ blocking antibody increased MMP-9 expression 
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in rats [74]; while over-expression of TGFβ1 reduced MMP-9 within experimental AAAs, which was 

associated with stabilization of pre-formed AAAs and preservation of medial elastin [72]. Thus, the TGFβ-

mediated down-regulation of MMP-9 in macrophages may play an important role in the prevention or 

stabilization of AAAs [72].  

MMP-2 is also implicated in ECM degradation in AAA formation. Mesenchymal cell-derived MMP-2 

contributed to the aneurysm formation in CaCl2-induced AAAs in mice [79]. Over-expression of TGFβ1 

reduced MMP-2 which was associated with stabilization of pre-formed AAAs and preservation of medial 

elastin [72]. 

TGFβ inhibits MMP-12. MMP-12 deficiency inhibits elastin degradation and aneurysm severity. TGFβ 

controls the progress towards aneurysm rupture through inhibition of MMP-12 activity in experimental 

models [69]. In addition, TGFβ regulates the expression of tissue inhibitor of metalloproteinases (TIMPs) 

which inhibit MMP activity. For example, TGFβ enhances mRNA expression of TIMP-1 [92] and TGFβ 

antibody decreases TIMP-1 mRNA expression [74].  

7.4 TGFβ inhibits VSMC apoptosis 

One of the key features of human AAA is the depletion of VSMCs within the medial layer [53, 54]. 

Endovascular smooth muscle cell therapy stabilised aneurysm diameter of pre-formed aneurysms, and this 

protective effect was associated with increase expression of TGFβ1 mRNA, but not TGFβ2 or TGFβ3 mRNA 

within the intima [93]. Treatment with a TGFβ neutralising antibody induced a significant decrease in 

VSMCs within the medial and adventitia layer of pre-formed AAAs within an animal model [73]. 

7.5 Possible role of TGFβ in modulating hemodynamic forces relevant to AAA pathogenesis 

Shear stress appears to play an important role in the pathogenesis of AAA based on studies in 

experimental animals [see a recent review 94]. High shear stress has been reported to limit AAA growth [95, 

96]. The mechanisms underlying this putative protective role of high shear stress include: (1) inhibition of 

aortic VSMC apoptosis; (2) preservation of aortic elastin and collagen; (3) an increase in vascular progenitor 
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cell numbers within the aorta; (4) a decrease in aortic macrophage infiltration; and (5) an increase in the aortic 

expression of heme oxygenase 1 (an anti-inflammatory enzyme) [94]. 

TGFβ1 mRNA and protein expression increases in response to steady laminar shear stress (20 dynes/cm2) 

in bovine aortic ECs [97]. The increase in TGFβ1 mRNA correlates with the shear stress intensity within the 

physiologic range (5-40 dynes/cm2). Shear stress (28 dynes /cm2) also induces TGFβ1 mRNA and protein 

expression in human VSMCs isolated from umbilical arteries [98].  In vivo, increased shear stress enhances 

TGFβ1 mRNA and protein levels in rabbit common carotid arteries subjected to balloon injury [99]. Shear 

stress can activate latent TGFβ1 released by platelets and fibroblasts, and the extent of activation is correlated 

with the shear stress intensity [100]. The increase in active TGFβ1 induced by shear stress is transmitted to 

downstream signal components. For example  in cultured human aortic ECs exposed to moderate shear stress 

(10 dynes/cm2) for 20 hours, increased Smad2 phosphorylation and nuclear translocation have been reported 

[101]. 

Exogenous TGFβ1 has been reported to stimulate VSMC proliferation at low concentrations but inhibit 

VSMC proliferation at higher concentrations [102]. In the context of high shear stress TGFβ1 appears to 

inhibit VSMC proliferation. Application of shear stress has been reported to inhibit the proliferation of human 

VSMC and this effect was blocked by TGFβ1 antibody [98]. Addition of TGFβ1 blocking antibody has been 

reported to promote the proliferation of VSMCs exposed to conditioned media from ECs exposed to shear 

stress. This effect of TGFβ1 blocking antibody appears to be lost when VSMCs are exposed to the 

conditioned media from ECs not subjected to shear stress [102]. 

It is thus possible that increased TGF β1 expression mediates some of the putative protective effects of 

high shear stress on AAA pathogenesis. Further direct evidence is however needed. 

8. Future directions 

The protective effect of TGFβ in AAAs in humans is not yet verified and future research in which 

interventions promoting TGFβ1 overexpression are assessed in patients would be required to resolve this. For 

example, it is possible that clinical trials can be designed to investigate the benefit of endovascular delivery of 
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TGFβ1 to AAAs or the effect of pharmacological modulation of TGFβ. Cyclosporine appears to upregulate 

TGFβ in pre-clinical studies although this is likely to be too toxic to be used for the treatment of small AAAs 

[73].  

Importantly a clearer understanding of the reasons for the distinct effects of TGFβ in TAAs and AAAs is 

needed. The mechanisms underlying the biphasic effects of TGFβ need to be investigated. For example, 

TGFβ decreases MMP-9 in macrophages in AAAs, however, it increases MMP-9 in other cell types including 

human meningeal cells [103], fibroblasts [104], keratinoctes [105] and tumour cells [106-108]. In addition, 

TGFβ can both decrease [73] and increase  VSMC apoptosis [20], and it can both inhibit [85] and promote 

[109] VSMC proliferation. The effects of TGFβ appear to be context dependent. For example, TGFβ can both 

inhibit and promote the proliferation of valve interstitial cells under normal physiological conditions and in 

the early stages of repair, respectively [110, 111]. The identification of mechanisms which determine why the 

effects of TGFβ change in different environments is probably critical if therapies targeting TGFβ are to be 

developed. 

9. Conclusion 

Current evidence suggests that TGFβ protects experimental animals against AAA formation, progression 

and complications. The underlying mechanisms are thought to be due to the ability of TGFβ to inhibit 

inflammatory cell infiltration, ECM degradation and VSMC apoptosis, as well as the ability of TGFβ to 

promote ECM formation. The TGFβ signaling pathways might provide a therapeutic target in AAA.  
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Figure legends 

Fig. 1 Illustration of the TGFβ signaling pathway. TGFβs bound to LAPs are not active. Dissociation of LAPs 

from TGFβs leads to activation of TGFβs. The active TGFβ binds to TβRII, which then recruits and 

phosphorylates TβRI. The phosphorylated TβRI activates R-Smads. Activated R-Smads form heteromeric 

complexes with Co-Smads, which translocate to the nucleus, where they regulate the transcription of target 

genes. TGFβs can also activate Smad-independent pathways, including MAPK (ERK, p38 and JNK) and 

PI3K pathways.  Akt: protein kinase B; Co-Smads: common-partner Smads; ERK: extracellular signal-

regulated kinase; I-Smad: inhibitory Smad; JNK: c-Jun N-terminal kinases; LAPs: latency associated 

peptides; MAPK: mitogen-activated protein kinases; MKK: protein kinase kinase; PI3K: phosphoinositide 3-

kinase; R-Smads: receptor-regulated Smads; Smad: Sma and Mad Related Family protein; TAK1: TGFβ-

activated kinase-1; TβRI, type 1 transforming growth factor-β receptor; TβRII, type 2 transforming growth 

factor-β receptor; TGFβ: transforming growth factor-β. 

Fig. 2 Mechanisms implicated in the putative protective effect of TGFβ in AAA. TGFβ prevents aortic 

inflammatory cell infiltration, and thus inhibits MMP generation and consequent ECM degradation. In 

addition, TGFβ can inhibit VSMC apoptosis and increase elastin and collagen formation. AAA: abdominal 

aortic aneurysm; ECM: extracellular matrix; MMP: matrix metalloproteinase; TGFβ: transforming growth 

factor-β; VSMC: vascular smooth muscle cell. 
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Table 1 Similarity and difference between AAAs and TAAs 

Features  AAAs  TAAs 

Loss of VSMCs  Yes  Yes  

Increased MMPs  Yes  Yes  

Increased ECM degradation  Yes  Yes  

Age is risk factors  Yes  Yes  

Locations  Abdominal aorta  Ascending aorta, arch and 
descending thoracic aorta  

Origins of VSMCs VSMCs of abdominal aorta 
originate from somites  

 

The embryonic origin of medial 
VSMCs in the ascending aorta and 
arch arise from neural crest, and 
VSMCs in descending thoracic 
aorta from somites. 

Increased inflammatory cell infiltration  Yes  Minimal  

AAAs: abdominal aortic aneurysms; ECM: extracellular matrix; MMPs: matrix metalloproteinases; TAAs: 

thoracic aortic aneurysms; VSMC: vascular smooth muscle cells. 

 



Table 2 Polymorphisms of TGFβ signaling components are associated with human AAA in some studies 

 
AAA: abdominal aortic aneurysm; ACE: angiotensin converting enzyme; SNP: single nucleotide polymorphism; 

TGFβ: transforming growth factor-β; LTBP: latent TGFβ binding proteins; TβR: TGFβ receptor. 

 

Author, Year Gene Number of  
subjects Controls Population ConclusionSNP Associated

allele

Baas, 2010 [9] TβRI 736 1024 Netherlands These 3 SNPs out of 32 SNPs tested are
associated with AAAs af ter correction for
multiple testing

rs1626340 A
TβRII rs1036095 C

rs4522809 A

Golledge, 2009 [30] TβRII 640 1071 Australia C allele is weakly associated with AAAs in
the Australian cohort; however, this
association does not hold after adjusting
for multiple testing and is not validated in
the New Zealand cohort.

rs1078985 C

654 389 New Zealand

Biros, 2011 [12] TβRII 610 1065 Australia G alleles of both SNPs are associated
AAAs even af ter adjusting for multiple test
in this meta-analysis. The association is
mainly driven by f indings in the
Netherlands group, , as this association is
lost if the Netherlands group is removed.

rs764522 G

601 608 New Zealandrs1036095
693 943 Netherlands

G

Thompson, 2010 [90] LTBP4

TGFβ3

Lucarini, 2009 [58] TβRI 201 252 Italy TβRI 6A allele is not associated with the
susceptibility to AAAs. However, the
contemporary presence of ACE DD
genotype and TβRI 6A allele, increase the
predisposition to the disease.

6A 6A

UK

WA, Australia

Queensland, Australia

New Zealand

580 2752

369 358

295 159

652 474

T allele in LTBP4 rs2077407 is associated
with the presence of AAAs in the UK
cohort; but this association is conf irmed in
other cohorts.

rs2077407 T

-614G>A A

-4234A>G G

10384G>A A

21011A>T T
25859C>T T
32603C>G G

5 SNPs in LTBP4 (-4234A>G, 10384G>A, 
21011A>T, 25859C>T and 32603C>G) 
and A allele of  TGFβ3 -614G>A are 
associated with a decreased growth in the 
UK cohort.
Meta analysis of AAA size and growth
rates in larger AAAs (≥ 45 MM),
demonstrated a signif icant association with
the LTBP4 21011A>T genotype (a 2%
decrease in AAA diameter, or a 0.53
mm/year reduction in AAA growth rate, per
T allele)
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