Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae)

Davis, Aaron M., Unmack, Peter. J., Pusey, Bradley J., Pearson, Richard G., and Morgan, David L. (2013) Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae). BMC Evolutionary Biology, 13. 53. pp. 1-16.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB)
View at Publisher Website: http://dx.doi.org/10.1186/1471-2148-13-5...
 
28
1047


Abstract

Background One of the most widely accepted ecomorphological relationships in vertebrates is the negative correlation between intestinal length and proportion of animal prey in diet. While many fish groups exhibit this general pattern, other clades demonstrate minimal, and in some cases contrasting, associations between diet and intestinal length. Moreover, this relationship and its evolutionary derivation have received little attention from a phylogenetic perspective. This study documents the phylogenetic development of intestinal length variability, and resultant correlation with dietary habits, within a molecular phylogeny of 28 species of terapontid fishes. The Terapontidae (grunters), an ancestrally euryhaline-marine group, is the most trophically diverse of Australia’s freshwater fish families, with widespread shifts away from animal-prey-dominated diets occurring since their invasion of fresh waters.

Results Description of ontogenetic development of intestinal complexity of terapontid fishes, in combination with ancestral character state reconstruction, demonstrated that complex intestinal looping (convolution) has evolved independently on multiple occasions within the family. This modification of ontogenetic development drives much of the associated interspecific variability in intestinal length evident in terapontids. Phylogenetically informed comparative analyses (phylogenetic independent contrasts) showed that the interspecific differences in intestinal length resulting from these ontogenetic developmental mechanisms explained ~65% of the variability in the proportion of animal material in terapontid diets.

Conclusions The ontogenetic development of intestinal complexity appears to represent an important functional innovation underlying the extensive trophic differentiation seen in Australia’s freshwater terapontids, specifically facilitating the pronounced shifts away from carnivorous (including invertebrates and vertebrates) diets evident across the family. The capacity to modify intestinal morphology and physiology may also be an important facilitator of trophic diversification during other phyletic radiations.

Item ID: 26563
Item Type: Article (Research - C1)
ISSN: 1471-2148
Keywords: dietary radiation; allometry; morphological evolution; phylogenetic comparative method; herbivory-detritivory
Date Deposited: 18 Apr 2013 23:26
FoR Codes: 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060204 Freshwater Ecology @ 50%
06 BIOLOGICAL SCIENCES > 0603 Evolutionary Biology > 060301 Animal Systematics and Taxonomy @ 50%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960802 Coastal and Estuarine Flora, Fauna and Biodiversity @ 100%
Downloads: Total: 1047
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page