More is not necessarily better: a biomechanical study on distal screw numbers in volar locking distal radius plates

Drobetz, Herwig, Weninger, Patrick, Grant, Caroline, Heal, Clare, Muller, Reinhold, Schuetz, Michael, Pham, Minh, and Steck, Roland (2013) More is not necessarily better: a biomechanical study on distal screw numbers in volar locking distal radius plates. Injury, 44 (4). pp. 535-539.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


Introduction: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws.

Materials and methods: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments.

Results: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate.

Conclusion: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.

Item ID: 26307
Item Type: Article (Research - C1)
ISSN: 1879-0267
Keywords: distal radius fracture; volar locking plate; variable-angle locking; fixed-angle locking; biomechanical study
Date Deposited: 11 Apr 2013 02:35
FoR Codes: 11 MEDICAL AND HEALTH SCIENCES > 1117 Public Health and Health Services > 111799 Public Health and Health Services not elsewhere classified @ 100%
SEO Codes: 92 HEALTH > 9204 Public Health (excl. Specific Population Health) > 920499 Public Health (excl. Specific Population Health) not elsewhere classified @ 100%
Downloads: Total: 4
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page