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Abstract. Bioimaging at molecular and cellular levels requires specific image analysis methods to help life scientists develop
methodologies and hypotheses in biology and biomedicine. In particular, this is true when dealing with microscopic images
of cells and vessels. To facilitate the automation of cell screening, we have developed methods based on vector quantization
and Markov model for classification of cellular phases using time-lapse fluorescence microscopic image sequences. Because of
ambiguity inherently existing in the labeling of cell-phase feature vectors, we proposed to use relaxation labeling technique to
reduce uncertainty among cell-phase models having overlapping properties. To further improve the classification rate we applied
a fuzzy fusion strategy for combining individual results obtained from multiple classifiers. Our proposed image-classification
methods can be useful for the task of high-content cell-cycle screening which is essential for biomedical research in the study of

structures and functions of cells and molecules.

1. Introduction

Bioimaging utilizes the application of microscopy
to the study of cells and organisms and considered to
be essential in many types of biological and biomedi-
cal research. Modern bioimaging technology can pro-
vide huge datasets of images of living systems to al-
low life-science researchers to study the basic mecha-
nisms of life and pathologies. In cell biology, bioimag-
ing devices are usually customized to produce images
of microscopic resolution for the observation of cells.

1This is the extended version of the paper: T.D. Pham, and
D.T. Tran, Image classification by fusion for high-content cell-cycle
screening, KES 2006 (9-11 October 2006, Bournemouth, UK), B.
Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part I, LNAI
4251, pp. 524-531, 2006.

*Corresponding author. B-mail: tuan.pham@jcu.edu.au.

Optical imaging techniques and biophotonics include
traditional or confocal microscopy, multi-photon con-
focal microscopy, optical coherent tomography, near-
infrared imaging, diffuse optical imaging, phased array
imaging, and others. Recent development of microen-
doscopy allows cellular imaging at the end of a very
small optical fiber [1], which aims to capture the char-
acterization and measurement of biological processes
at cellular and molecular level. Furthermore, molec-
ular imaging can find the ways to probe much earlier
the molecular anomalies that are the basis of a disease
rather than to obtain the image of its end effects [2].
In particular, high-content and high-throughput cell-
cycle screening using fluorescence microscopy is be-
coming one of the most widely used research tools to
assist scientists in understanding the complex process
of cell division or mitosis [3-7]. An essential task for
such screening purpose is to measure cell cycle progres-
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Fig. 1. Nuclear migration during ccll division.

sion (interphase, prophase, metaphase, and telophase)
in individual cells as a function of time. The progress
of a cell cycle can be identified by measuring nuclear
changes. Stages of an automated cellular imaging anal-
ysis consist of segmentation, feature extraction, classi-
fication, and tracking of individual cells in a dynamic
cellular population; and the classfication of cell phases
is considered the most difficult task of such analysis [8—
10].

In time-lapse microcopy, images are usually captured
in a time interval of more than 10 minutes. During
this period dividing nuclei may move far away from
each other and daughter cell nuclei may not overlap
with their parents. The consecutive image subframes
from an image sequence show nuclear size and shape
changes during cell mitosis. As an example, Fig. 1
shows the nuclear migration during cell division in
which there are two cases of cells splitting into two.
Given the advanced fluorescent imaging technology,
there still remain technical challenges in processing
and analyzing large volumes of images generated by
time-lapse microscopy. The quantity and complexity
of image data from dynamic microscopy renders man-
ual analysis unreasonably time-consuming. Therefore,
automatic techniques for analyzing cell-cycle progress
are of considerable interest in the drug discovery pro-
cess.

Being motivated by the desire to study drug effects
on Hel.a cells, an ovarian cancer cell line, we have

proposed the combined vector quantisation (VQ) and
Markov modeling method for classifying individual
cell phase changes during a period of time. Howev-
er the combined method is not always effective be-
cause the ambiguity inherently existing in the labeling
of cell phase feature vectors is treated in an inflexible
way by its deterministic rules. Being motivated with
this reason, we propose an improved algorithm over
the combined VQ and Markov modeling method using
the relaxation labeling (RL) which adds another robust
process to the classification. The RL technique is a
parallel algorithm that updates the probabilities of la-
bels or classes by using interactive information between
unknown objects with respect to the reference labels.
This process will result in the reduction of uncertainty
among labels having interchanging properties.

To utilize the advantages of different classification
models, we apply the concept of fuzzy measures and
fuzzy integrals to combine the results obtained by these
individual classifiers in order to improve the overall
classification rate. The fuzzy fusion strategies can im-
prove the classification rates and assist the task of high-
content cell-cycle screening more effective for biomed-
ical research in the study of structures and functions of
cells and molecules.

The rest of the paper is organized as follows. Sec-
tion 2 presents the vector quantization method and its
partitioning schemes including the k-nearest neighbor
(k-NN), LBG algorithm, fuzzy c¢-means (FCM), and
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fuzzy entropy (FE). Section 3 is the combination of VQ
and Markov models for classifying cell phases. Sec-
tion 4 applies the relaxation labeling process to revise
the initial probabilities obtained from the combined
VQ-Markov model. Section 5 describes how to imple-
ment two fuzzy fusion schemes in an adaptive proce-
dure to improve the classification rate. Finally, Sec-
tion 6 presents the experiment with comparisons and
discussions on the results.

2. Computational techniques for VQ

Let p be a particular cell phase and NV the size
of the VQ codebook [11]. Given a cell-phase train-
ing set X = {xi,Xs,...,%Xr}, where each source
vector x¢ = (Zu1,%e2,...,%ex) 1S of K dimen-
sions. Let A = {c1,¢2,...,Cn} represent a code-
book of size N, where ¢, (Cn1s€n2s .-\ Crkc)s
n = 1,2,..., N are code vectors. Each code vector
C,, is assigned to an encoding region R, in the parti-
tion 3 = {R1, R, ..., Ry }. Then the source vector
X: can be represented by the encoding region R, and
expressed by

V(Xt) = Cp, if Xt € Rn (1)

In general, the VQ design can be stated as follows.
Given a training set X, the size V of the codebook, we
seck to find the codebook A, and the partition €2 such
that the average distortion D) is minimized. The code-
book is regarded as cell phase models. The distortion
D depends on the clustering technique used to build
the codebook A. We review in the subsequent section
two-non-fuzzy clustering techniques which include k-
means, and LBG algorithm; and two fuzzy clustering
techniques which include fuzzy c-means, and fuzzy
entropy.

2.1. k-means partition

Let U = [un:] be a matrix whose elements are
memberships of x; in the nth cluster, n = 1,..., N,
t=1,...,T. A k-partition space for X is the set of
matrices U such that [12]

unt € {0,1}  Vn, ¢,
SN une=1 W @)
0< ST June <T ¥

where un: = un(x:) is 1 or 0, according to whether
. . . N
X; 18 or is not in the nth cluster, anl Une = 1 Vi

means each X, is in exactly one of the NV clusters, and
0< Zr 1 Une < T ¥n means that no cluster is empty
and no cluster is all of X because of 1 < N < T

The k-means technique is based on minimization of
the sum-of-squared-errors function as follows

N T
TUXX) =3 unds, (3)
n=1t=1
where U = {un: } is a hard k-partition of X, A is a set
of prototypes, in the simplest case, it is the set of cluster
centers A = {c1,Ca, ...,y }, and dy is the Euclidean
norm of (x; — cp)
The cluster centers are calculated as follows

T T
= Zumxt/zﬂum I<Sn<N (4
t=1 t=1

where
1: dnt<djt j:]wu-?]\fa

Ung = J#n )
0: otherwise

dos = s = cal DO = de ®)

2.2. LBG partition

The LBG algorithm [13] requires an initial code-
book, and iteratively bi-partitions the codevectors based
on the optimality criteria of nearest-neighbor and cen-
troid conditions until the number of codevectors is
reached. It is summarized as follows.

1. Given a training data set X = {x1,Xsa,...,Xr},
where x; = (Q}tl,ﬂjtg, . ,l‘t](), t= 1, 2, ce T

2. Given ¢ > 0 (small real number)

3. Set N = 1, compute initial cluster center and
average distortion

Z @)

’ﬂ J

1 T
*:T—‘Z 1% — €1ll2)? (8

4. Splitting:
Cpi = (1 + E)C:,, 1 g N
=(l-¢€c;,1<n

Set N = 2N )
5. Seti=0and let D = D* Iteration:

n

NN
=
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(a) Assign vector to closest codeword
V(xi)=c,, = arg mm(th —cDy)?,
1€t<T,1<ng N ®
(b) Update cluster centers

; 1
(i+1) _
Cp ]V(X 3 ] Z Xt,

oy, T ixn
1<n< N (10)
where |V (x;)] is the number of V(x;) = ¢ .
(¢) Compute
D(i-l—l) —

=~

1

TR t:l(“Xt - Vixe)2)? an

) If

(i+1) _ D)
D |

o € (12)

thenseti = i+ 1, D* = DW ¢ = o,
1 €£n < N, and go to step (a)

6. Repeat steps 4 and 5 until the desired number of
codewords is obtained.

2.3. Fuzzy c-means partition

Let U = [un¢ be a matrix whose elements are
memberships of x; in the nth cluster, n = 1,..., N,
t=1,...,T. The fuzzy c-partition space for X is the
set of matrices U such that [14]

O upe <1 Yo,
SN Ume=1 Vi (13)
0< thlum <T ¥n

where 0 < up: < 1 Vn,t means it is possible for

each x; to have an arbitrary distribution of membership
among the NV fuzzy clusters.

The FCM algorithm is based on the iterative mini-
mization of the following objective function which is
the sum of the squared Euclidean distances between
each input sample and its corresponding cluster center,
with the distances weighted by the fuzzy membership
grades [14]:

N T
JUNX) =) > uld?, (14)
n=1 t=1

where U = {u,¢} is a fuzzy c-partition of X, m > 1
is a weighting exponent on each fuzzy membership u ;;
and controls the degree of fuzziness, A and d,; are
defined as in Eq. (3).

The cluster centers are calculated as follows.

T T
n= Yl [ Y
t=1 t=1
St<T1<n< N (15)
where

Unt = (16)

A 1/( -1)
Z m

dot = %5 — Cnlla, DUFY =

Zd L(17)

2.4. Fuzzy entropy partition

Define U = [un:] and fuzzy c-partition space for X
as defined in fuzzy c-means partition. The fuzzy en-
tropy technique is based on minimisation of the follow-
ing function [15]:

N T
HUNX) = > >  undl,

n=1 t=1

+mg Z Zum log tny (18)

n=1 t=1
where U = {un;} is a fuzzy c-partition of X, mg > 0
controls the degree of fuzzy entropy, A and d,; are de-
fined as in Eq. (14). The basic idea of the FE technique
is to minimize H (U, \; X) over the variables U and ).
The cluster centers are calculated as follows.

T T
Cp = E Untxt/ § Unt
t=1 t=1

1<t<T,1<ng N (19)
where
e—dit/m]g
Unp = ~ (20)
Z e_dit/mE
k=1

T K ‘]7”

dnt = ||Ix¢ — cplla DUV = 30
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3. VQ-Markov-based cell phase classification

It is observed that a cell changes its phase in a cell-
cycle progress according to some phase changing rules.
Therefore the use of the temporal information from the
phase sequence can improve the recognition accuracy.
Based on these remarks, we consider phases as states
in Markov chains and hence state sequences obtained
from cell sequences are not hidden.

Given a training set of () sequences O = {01, Os,
. ,OQ}, Oq = {th OqQ, . ,OQT}, and let § =

{51,82,...,8m} be the set of M states in a Markov
chain. We define the following parameters
m=[m], m=P(Oyu =s;) 22)
A =lay),
ai; = P(Ogt = 85|0g(s-1) = 51) (23)

where ¢ = 1,2,...,Q, @ is the number of phase se-
quences, t = 2,...,T,, T, the length of the sequence
Og,i=1,...,Mandj=1,..., M, and M the num-
ber of phases.

Cell phases can be considered as probabilistic states
in a Markov chain and values in the vector 7 and ma-
trix A are initial state and state transition probabilities
respectively. The set A = (7, A) is called the Markov
phase model that represents the phase sequences in the
training set as Markov chains. Thus, we have

T Thij

M v B = Ty

E Tk E ik
k=1

k=1
The training and classification procedures of this
VQ-Markov algorithm can be designed as follows.
Training:

24

i =

1. Given X as the universe of cell phases.
2. Train VQ-based phase models

(a) Divide the set X mto M distinct subsets
X1 X2, ..., XM where each X? contains
cells of phase p.

(b) For each subset X7, train a VQ-based phase
model using the training algorithm previously
described.

3. Train Markov model for all phases

(2) Align cells in the set X as sequences of cells
(b) Extract ¢ phase sequences O, 0s,...,0g
from the set X’

(c) Using ¢ phase sequences, calculate 7 and A
according to Eq. (24)

Classification:

1. Given an unknown sequence of cells X =

{Xl,Xg, AN ,XT}.
2. Classify phase for the first cell x4 in the sequence
as follows

(a) Calculate the minimum distance between x 1
and NP, p=1,.... M, where M is the num-
ber of phases:

dp, = mind(xy, c?) (25

(b) Calculate the similarity score S(x1,p)
Tp

P
Z (dp/dk)l/(mﬁl)

k=1

S(x1,p) = (26)

where m > 1.
(c) Assign x; to the phase p* that has the maxi-
Mum score:

* = argmax S(x1,p) @7
p
3. Foreachcell x3,t = 2,..., 7, classify it as fol-
lows

(a) Calculate the minimum distance between x;
and AP, p=1,..., M, where M is the num-

ber of phases:
dp = min d(x, ) (28)
(b) Calculate the similarity score S{x¢,p)
Q=
S(x¢,0) = = £r 29
Z (dp/dk)l/(n%l)
k=1

where m > 1 and p* is the classified phase
of the previous cell.

(c) Assign X, to the phase p* that has the maxi-
mam score:

p* = argmax S(Xl7 p) (30)
P

4. VQ-Markov-RL-based cell phase classification

The relaxation labeling (RL) algorithm { 16] consists
of four models: discrete, fuzzy, linear probabilistic,
and nonlinear probabilistic models. The last model was
reported to offer the best performance for identification
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problems [16] and based on our previous application of
the relaxation for speaker identification [18], we have
selected the nonlinear probabilistic relaxation model in
this study. Let X = {x1,Xa,...,xr} be a set of un-
known feature vectors and A = {A1, A2, ..., Aar} be
the set of codebooks known as cell phase models ob-
tained after the training process presented in Section 3.
An initial probability is given to each unknown fea-
ture vector x; having each model Ay, which is denoted
as P()\plx;). These probabilities satisfy the following
condition

> PQulx) =1, wx € X,

0 < PlAklxe) <1 (31
The probabilities P(Aj|x;) is determined as follows
e~ drt
P(ylx (32)
D) = Sins S e

where dy; is the distance between the unknown feature
vector x; and the closest codevector in the model Ay

drt = min d(xt,cﬁ) (33)

The RL updates the probabilities P(Ag|x:) in
Eq. (31) using a set of compatibility coefficients
rer (N, M), where 7o (Mg, A) 0 A X A — [=1,1],
whose magnitude denotes the strength of compatibility.
The meaning of these compatibility coefficients can be
interpreted as follows

Tt (>\k; /\l) =

<0, Mg, A are incompatible for a; and ay
=0, Mg, A areindependentfora;anday (34)
>0, Ap, A; are compatible for a; and ay

For computing the compatibility coefficients, two
possible methods employ the concepts of statistical cor-
relation and mutual information [17]. Based on previ-
ous work on the application of the RL process {18,19],
we adopt the correlation-based estimate of the compat-
ibility coefficients, which is defined as

Ttt'o\k; /\l) = (35

Sy [POwlxe) = POW)IPQlxe) = POW)]
o(A)o(h)
where P(Ag|xy) is the probability of x; having the
model A\; and x4 are the neighbors of x4, P(Al) is
the mean of P(Ag|xy) for all x4, and o(N;) is the
standard deviation of P(A;|xy ). To alleviate the effect
of dominance among labels, the modified coefficients

are
i (e, A) = [1 = POw)][L = P(M))]
Tier ( Ak, At (36)

The mutual-information based estimate of the com-
patibility coefficients is

Tt (/\k, A

Ty ey (kklxt) (Adfxer)
Zt VP(Olxe) 20 LJt/  Pulxe)
The compatibility coefficients in Eq. (37) must be
scaled in order to take values in the range [—1, 1]. The
updating factor for the estimate P(Ax|x¢) at the i-th
iteration is

(37

g’ Ow) =

T M v

Z gy Zﬁt’()\k-, A)PO Ol (38
=1 =1

where d;; are the parameters that weight the contribu-
tions to x; coming from its neighbors x and subject
to

Z dtt’ =1 (39)

t/._.
The updated probability P+ (A |x, ) for x, is giv-
en by
P (i+1) ()\k [Xt)

PO O fxe)[L + ¢t (Aw)]
M P (ufxe)[L+ gt (M)

The training algorithm for the VQ-Markov-RL~
based cell phase classification is the same as the train-
ing algorithm presented in Section 3. The classification
algorithm can be outlined as follows

Classification:

(40)

1. Given an unknown sequence of cells X =

{x1,%2,.... X7}
2. Relaxation Labeling updates

(a) Estimate the initial probabilities for each ob-
ject satisfying Egs (31), (32) and (33)

(b) Compute the compatibility coefficients using
Eqs (36) or (37)

{c) Calculate the updating factor defined in
Eq. (38)

(dy Update the probabilities for each object using
the updating rule in Eq. (40)



I.D. Pham et al. / Fuzzy information fusion of classification models for high-throughput image screening 243

Repeat the last two steps until the change in the
probability is less than a chosen threshold or equal
to a chosen number of iterations. The updated
distances are determined as follows

dkt = -—IOgP(/\;C[Xt) (41)

3. Classify phase for the first cell x; in the sequence
as follows

(a) Calculate the similarity score S(x1,p)

S(an) =

Tp

(42)

M

Z (dpl/dkl)l/(m-—l)

k=1

wherem > landp =1,2,..., M.
{(b) Assign x1 to the phase p” that has the maxi-
mum score:

" =arg max S(x1,p) (43)

4. Foreach cell x4, t = 2,..., T, classify it as fol-
lows

(a) Calculate the similarity score S(x;, p)

S(xe,p) = TR @)

Z (dpt/dkt)l/\m—l)
k=1
wherem > 1,p=1,2...., M and p* is the
classified phase of the previous cell.
(b) Assign x, to the phase p* that has the maxi-
mum Score:

p* = argmax S(x:,p) (45)
3

5. Fuzzy fusion

In the previous sections we have described how to im-
plement VQ-Markovbased and VQ-Markov-RL-based
algorithms for classifying cell phases. We now address
how to implement the mathematical concepts of fuzzy
measure and fuzzy integral to combine results obtained
from multiple classifiers.

LetY = {y1,...,yn} beaset of attributes assigned
o n classifiers. A fuzzy measure g defined on Y is a
set function g : P(Y) — [0, 1] satisfying the following
aXioms [20,21]:

L g() =0,and g(¥Y) =1.
2. If A C B,then g(A) < g(B).

where P({Y") denotes the power set of ¥,

It is noted that when the second property is not sat-
isfied, ¢ is called a non-monotonic fuzzy measure [31].
There are 2™ coefficients being equivalent to the car-
dinality of P(Y) to compute a fuzzy measure on Y.
These coefficients are the values of ¢ for all subsets of
Y and they are not independent since they must sat-
isfy the property of monotonicity. Theoretically, the
concept of fuzzy measures is the generalization of the
classical measure theory which is restrictive on the hy-
pothesis of additivity; where as additivity is relaxed by
the theory of fuzzy measures.

Sugeno [21] defined a fuzzy measure known as the
gx-fuzzy measure that satisfies the following additional
condition, VA, B C Y,and AN B = 0,

INAUB) = ga(A) + g:(B)
+Aga(A)ga(B), A > —1. (46)

To simplify the notation, let g* = g({y,}) which is
called a fuzzy density function. A fuzzy density g*
can be interpreted as the degree of belief or degree of
importance that the corresponding attribute y, makes
an effect or contribution towards the whole fuzzy sys-
tem when all attributes are considered together. Let
A= {yh:yizv cer a?/z'm} Y, g/\(A)7 A 75 0, can be
expressed as [22]

T

gA(A) = g¥
i=1

m—1 m
Y D g

j=1 k=j+1

+)\nl—lgi1 o gim

1 .
:X{H(l+/\gl)~l} 4n
z;EA
The value of A can be calculated using the condition
(Y} = 1 as follows.

n
A+1=]]0+ ) (48)
i=1
The following properies of the ¢ y-fuzzy measure will
be helpful in the computation of the parameter A [23].

1. Lemma: For a finite set {g'}, 0 < g* < 1, there
exists a unique root A € (—1,+co), and A # 0.
Based on this lemma, A can be determined by
solving (n — 1) degree polynomial and selecting
the unique root > —1.
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2. 1Y)77, g° < 1,then A > 0.
3.IfY 9" >1,then—-1< A <O.

Among other computer methods being useful for
clinical applications such as Mycine [24] and several
other medical expert systems [25], the Shafer’s theo-
ry of evidence [26] is a popular tool for medical de-
cision making [27]. There are some connections be-
tween the belief and plausibility measures of the theo-
ry of evidence and the Sugeno’s fuzzy measures. The
function which maps P(Y') to [0, 1] is called a belief
function, denoted as bel, iff it satisfies the following
conditions [26]:

1. bel(0) =0, bel(Y) =1
2. bel(lU; Ai) > Z@#Ig{m,yz,m,yn}<"1)m+lbel
(M 4s)

The plausibility measure is defined in terms of the

belief measure as
pl(A) =1 —bel(A) (49)

Based on the definitions and properties of the belief
and plausibility measures, Banon [28] has shown that
a gx-fuzzy measure is a belief measure when A = 0,
and a g)-fuzzy measure is a plausibility measure when
A<0.

Given the values of the fuzzy measures, fuzzy inte-
grals can perform as an aggregation operator. Fuzzy
integrals are integrals of a real function with respect
to a fuzzy measure. There are several definitions of
fuzzy integrals [29] but the most popular two are the
Sugeno [20,21] and the Choquet [30] integrals. These
two fuzzy integrals are defined as follows.

Let C be a set of classifiers, & : C — [0, 1], and let
h{c;) denote the classification score given by classifier
¢;. The Sugeno integral of h over A C C with respect
to the fuzzy measure g can be calculated as follows:

/ h(c;) og= sup [aAg{AN Hy) (50)
Ja o€f0,1]
where H, = {¢;|h(c;) = o}

For a finite set of elements C = {c1,¢9,...,¢n}

where the elements are sorted so that i(c;) is a de-
scending function, that is ~(eq1) = A(co) ... = h(ca)s
the discrete Sugeno integral, which represents the fused
result, can be calculated as follows:

Sg(h) = Vit [h(ei) A g(H))] Sy
where H; = {c1,...,¢i}.
The discrete Choquet integral is defined as

Cylh) = S Ih(e) ~ hlelg(As) (5
g=1

where h{c1) < hles)... < hlcn), h{co) = 0, and
Ai = {(Zi., caey Cn}.

6. Experimental results

Imaging was performed by time-lapse fluorescence
microscopy with a time interval of 15 minutes. Two
types of sequences were used denoting drug treated and
untreated. Each sequence consists of 96 equal frames
over a duration of 24 hours. Cell cycle progress was
affected by drug and some or all of the cells in the treat-
ed sequences were arrested in metaphase. Cell cycle
progress in the untreated sequences was not affected.
Cells without drug treatment will usually undergo one
division during this period of time.

After the nuclear segmentation has been performed,
it is necessary to perform a morphological closing pro-
cess on the resulting binary images in order to smooth
the nuclear boundaries and fill holes insides the nuclei.
These binary images are then used as a mask on ap-
plied the original image to arrive at the final segmen-
tation [8]. From this resulting image, features can be
extracted. The ultimate goal for feature selection is to
assign correct phase to cells via the training of some
identification technique. In this work, a set of cell-
nuclear features are extracted based on the experience
of biologists. To identify the shape and intensity dif-
ferences between different cell phases, a set of 7 fea-
tures are extracted. These features include maximum
intensity, mean, stand deviation, major axis, minor axis,
perimeter, and compactness {8].

Because the feature values have different ranges, the
scaling of features is therefore necessary by calculating
the z-scores:

2y = T (53)
Sk
where x; is the k-th feature of the ¢-th nucleus,
the mean value of all n cells for feature k, and s the
mean absolute deviation, that is

l n
Sk = Zlfctk — Ty 54
t=1

The seven features extracted for each cell are consid-
ered as the feature vectors for training and testing sev-
eral identification approachesincluding the £-NN algo-
rithm; VQ-Markov approaches based on the k-means,
fuzzy c-means (FCM), fuzzy entropy (FE), LBG algo-
rithms, and the combinations of VQ and Markov mod-
els. The parameter & was set to be 6 for the A-NN
algorithm. The degree of fuzziness m and degree of
fuzzy entropy rm g were set to be 1.1 and 0.05, respec-
tively. The selection of these paramters were based on
the experimental trials of the training data.
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Table 1
Identification rates obtained from individual classifiers and
fusion models

Classification Method

Identification rate (%)

fe-means 85.25
k-means-Markov 86.65
k-means-Markov-RL 87.51
LBG-VQ 85.54
LBG-VQ-Markov 86.61
LBG-VQ-Markov-RL 87.36
FE-VQ 86.13
FE-VQ-Markov 87.32
FE-VQ-Markov 88.12
FCM-VQ 88.24
FCM-VQ-Markov 88.35
FCM-VQ-Markov-RL 88.72
Fuzzy fusion by Sugeno integral 92.89
Fuzzy fusion by Choquet integral 93.21

There are 5 phases to be identified: interphase, pro-
phase, metaphase, anaphase, and arrested metaphase.
We divided the data set into 5 subsets for training 5
models and a subset for identification. Each of the 5
training sets for 5 phases contains 5000 cells, which
were extracted from the cell sequences labeled from
590to 892. These sequences were also used to calculate
the Markov models. The identification set contains
sequences labeled from 1 to 589. There are 249,547
cells in this identification set.

The identification results obtained from 12 individ-
ual classifiers and the fuzzy fusion models using the
Sugeno and Choquet integrals that combine the results
from the three classifiers: LBG-VQ-Markov-RL, FE-
VQ-Markov-RL, and FCM-VQ-Markov-RL are pre-
sented in Table 1. The FCM-VQ-Markov-RL model
yields the better classifcation rate (88.72%) over other
individual classifiers. While fuzzy fusion models gives
the highest results, the Choquet integral yields higher
classification rate (93.21%) than the Sugeno integral
(92.89%).

The experimental results can be generally noted that
the probabilistic modeling of the VQ code vectors by
Markov chains always increases the identification rates
in all VQ partitioning strategies being cither k-means,
fuzzy c-means, fuzzy entropy, or LBG algorithms.
Moreover, the computational time for any of the VQ
methods was significantly less than that for the &-NN
method, particularly when the value for & of the k-NN
rule increases.

The incorporation of probabilistic analysis using
Markov chains into the template matching using vector
quantization approach helps improve the identification
Tates with various clustering criterion (k-means, fuzzy
¢-means, and LBG algorithms). From the experimental

results, it can be seen that the fuzzy vector quantization
(either fuzzy entropy or fuzzy c-means) is superior to
either the k-means or LBG based vector quantization
methods. The FCM algorithm seeks to partition a da-
ta set into a specified number of fuzzy regions which
are represented by the corresponding fuzzy prototypes.
The degrees of each cellular-image feature vector that
belong to different clusters are characterized by the cor-
responding fuzzy membership grades taking real val-
ues between 0 and 1. Thus, the use of the fuzzy c-
means algorithm provides more effective analysis of
the present problem where the image boundaries of
different classes are vaguely defined.

Making use of the different strenghts of the three
Markov-based classifiers in the sense that each clas-
sifier tends to make different mistakes, two fuzzy fu-
sion models have been able to improve the classifica-
tion rate by taking the knowledge of the importance
of performance of individual classifiers to combine the
scores from multiple classifiers. In addition to previous
applications of fuzzy intergrals for pattern classifica-
tion [31-34], the performance of the Choquet integral
in this experiment is again found to be superior to that
of the Sugeno integral.

On the computational complexity of various mod-
els, a general observation is that the model of higher
performance the longer the computational time it re-
quires. The computer running of the k-means takes the
least time; whereas the fuzzy fusion takes the longest
time because it works by combining the results of sev-
eral complicated classification models based on vector
quantization, probabilistic and fuzzy algorithms. The
fusion approach by the fuzzy integrals has improved
the results because it can utilize both the non-additive
measure of the attributes of individual classifiers and
the real output values of the classifiers. The informa-
tion provided from a single classifier can be considered
as mcomplete, the fuzzy integral can reduce the un-
certainty by aggregating the interaction and the results
obtained from multiple sources of information.

7. Conclusions

Several classification techniques for identifying cell
phases using time-lapse fluoresence microscopic im-
age sequences have been addressed. The proposed re-
laxation labeling and fuzzy fusion methods are able
to increase the classification rate over other individu-
al classifiers. The result can certainly be further im-
proved by extracting more effective features of the cell
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images. Further applications and additional fusion of
other machine learning methods such as support vector
machines and neural networks will be investigated in
our future research.

Bioimaging and ifs technology are progressively
becoming critically important tools in most cell and
molecular biology research, particularly in %ive—cell
imaging which can provide critical insight into the
fundamental nature of cellular and tissue functions.
As such, cell imaging has become a requisite analyt-
ical tool in most cell biology laboratories, as well as
a routine methodology that is practiced in the wide
ranging fields of neurobiology, developmental t?iology,
pharmacology, and many of the other related biomedi-
cal research disciplines (http://micro.magnet.fsu.edw).
Thus, advanced bioimage processing and its classifica-
tion methods play the frontal role for any downstream
analysis performed by biologists and biomedical scien-
tists. The methods we have introduced in this paper arc
promising for such purposes and rarely explored in the
literature of bioimaging.
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