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Abstract

Species check-lists are helpful to establish Marine Protected Areas (MPAs) and protect local richness, endemicity, rarity, and
biodiversity in general. However, such exhaustive taxonomic lists (i.e., true surrogate of biodiversity) require extensive and
expensive censuses, and the use of estimator surrogates (e.g., habitats) is an appealing alternative. In truth, surrogate
effectiveness appears from the literature highly variable both in marine and terrestrial ecosystems, making it difficult to
provide practical recommendations for managers. Here, we evaluate how the biodiversity reference data set and its
inherent bias can influence effectiveness. Specifically, we defined habitats by geomorphology, rugosity, and benthic cover
and architecture criteria, and mapped them with satellite images for a New-Caledonian site. Fish taxonomic and functional
lists were elaborated from Underwater Visual Censuses, stratified according to geomorphology and exposure. We then
tested if MPA networks designed to maximize habitat richness, diversity and rarity could also effectively maximize fish
richness, diversity, and rarity. Effectiveness appeared highly sensitive to the fish census design itself, in relation to the type
of habitat map used and the scale of analysis. Spatial distribution of habitats (estimator surrogate’s distribution), quantity
and location of fish census stations (target surrogate’s sampling), and random processes in the MPA design all affected
effectiveness to the point that one small change in the data set could lead to opposite conclusions. We suggest that
previous conclusions on surrogacy effectiveness, either positive or negative, marine or terrestrial, should be considered with
caution, except in instances where very dense data sets were used without pseudo-replication. Although this does not rule
out the validity of using surrogates of species lists for conservation planning, the critical joint examination of both target
and estimator surrogates is needed for every case study.
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Introduction

Among the existing conservation measures used to mitigate

natural and anthropogenic impacts on marine ecosystems, the

establishment of reserves are useful both to protect biodiversity

and to sustain adjacent resources [1]. However, to be well

designed and effective, reserves should be implemented using

biological, social, and economic criteria, but this often requires a

large amount of very specific data [2]. Considering biodiversity

representativeness only, a comprehensive census of overall species

richness, rarity, or endemism would be needed [3]. As ecosystem

functioning depends more on functional traits than on species

themselves [4], new conservation strategies promote the represen-

tation of functional groups, where important functional groups

with little or no redundancy should warrant priority conservation

effort. Unfortunately, costs of data acquisition, knowledge of

species, and time limit taxonomic and functional inventories,

which remain scarce. One possible approach to overcome this

problem is to use surrogates [5]. The overall diversity of species

and functional groups may remain unknown, but can be

approximated by estimator surrogates variables that are more

easily collected. These can be other taxa [6–7], environmental

variables [8], and habitats [9]. In practice, surrogate-based

conservation planning may require two steps. First, the effective-

ness of various surrogates to represent the conservation target is

evaluated using a reduced but representative data set. Second, if

surrogacy is found sufficiently effective and sufficiently robust to

sampling, the best surrogate can be used to search for new

protected areas with confidence. At this stage, the surrogate is

often spatially generalized and gridded at a given resolution by

interpolation or modelling, if it is not already a gridded data set

(remote sensing image for instance). Here, we focus on the first

part of this two-stage process.

Surrogacy is only one of the tool available for conservation

planning, which can be based on expert-opinion, customary rules,

optimization of conservation costs for a given objectives and so

forth [10]. Yet, surrogacy refers to date to a wide body of work

[11]. In its simpler and more intuitive form, surrogacy is referring

to the identification and use of surrogates data, instead of other

data difficult to collect, for instance with statistical measurements
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of good-fit between the surrogate and the target (‘‘pattern-based

surrogate’’). In its more achieved form, surrogacy is related to the

use of ‘‘selection-based surrogates’’ to design a network of

protected areas (a suite of locations of remarkable features) with

a selection algorithm [12]. Our study is also related to the later

domain.

One way to test if estimator surrogates are efficient for

conservation planning consists in measuring to which extent a

virtual reserve network established on surrogate data allow a good

representation of the target data within the network [3,6,12,13].

Using this approach (i.e. reserve selection algorithms) is interesting

since algorithms maximize complementarity between selected

sites. For example, prioritizing sites of high species richness only

might result in a selection of sites containing similar subsets of

species [14] but this would be avoided with a complementarity

criteria. However, previous selection based studies have yielded

highly variable effectiveness of surrogacy both between and within

case studies. As a result, in their review paper, Favreau et al. (2006)

[15] could not discern clear trends of surrogacy effectiveness due

to high discrepancy of scales, taxa, and methods between studies.

Rodrigues and Brooks (2007) [16] found more promising results,

but surrogacy effectiveness appeared too variable to draw any

decisive conclusion [11].

In coral reef ecosystems, conclusions remain largely variable.

Beger et al. (2007) [6] found that corals, mollusks and fishes were

not reliable surrogates for one another. In their review paper,

Mellin et al. (2011) [14] found that surrogate effectiveness was the

lowest for tropical coral reefs. Mumby et al. (2008) [17] found that

selections of habitats designed to represent most of fish species

richness were better surrogates for benthic species and overall

biodiversity due to the wide distribution of fish across seascapes. In

principle, habitats should be good surrogates of biodiversity since

various theoretical (niche theory, island biogeography theory, etc)

and empirical work show that areas of increasing richness of

habitats house more species. Dalleau et al. (2010) [9] tested in

Wallis Island if coral reef habitats were effective surrogates for

fishes, invertebrates, corals, and algal species. They found variable

effectiveness depending on habitat definitions, design algorithms

used, and spatial scales, but concluded positively overall. Further

tests in New Caledonia using fish data (M. Dalleau, S. A., M. K.,

unpublished data) and Maldives using a multi-taxa data set (S.A.

and M.H., unpublished data) surprisingly led to different

conclusions than in Wallis Island. Worse, the conclusions appeared

extremely variables and contradictory between sites for similar

configurations of taxonomic data sets and habitats. Facing such

variability (and frustration), general patterns of surrogacy could

hardly be drawn and preclude extrapolation of results from one

site, one surrogate, and one spatial scale to others [12]. As a result,

a significantly growing body of work could not yield better

recommendations for conservation planning and management.

A better understanding of the drivers of the observed variability

is required to make positive or negative recommendation for

conservation planning. Looking back at a number of studies

published so far, and looking at all coral reef studies, we realized

that results have remained discussed from a broad statistical

perspective, using the bulk of data, but never by dissecting the

influence of particular stations, species, or spatial configurations.

In fact, what was missing from the literature was a detailed step-

by-step analysis of the reasons explaining the success or failure of a

particular analysis, and a quantitative assessment of the influence

of particular configurations.

To fill this gap, we considered here a New Caledonia site and

evaluated the extent by which fish communities of specific

locations could be represented by habitats around. A representa-

tive set of sampling sites was used to evaluate how various habitat

descriptions at various scales could be used as surrogate of fish

taxonomic and functional properties. Richness, diversity, and

rarity of habitats were respectively evaluated as surrogate for fish

richness, diversity and rarity. To explain why surrogacy is effective

or not, results based on the entire data sets were compared with

results based on reduced data set to assess the effect of each site.

Then, effectiveness variability was critically assessed according to

habitat definition and scale (estimator surrogates), the reference

functional and taxonomic fish data set (target surrogate) and the

conservation design (rarity, diversity and richness based algo-

rithms).

Methods

Study Area
New-Caledonia is a large western Pacific island, 1500 km east of

Australia. Due to its coral reefs and lagoons, the Lagoons of New

Caledonia became part of the UNESCO World Heritage list in

2008. The present study focused on Port-Bouquet Bay (Fig. 1a),

where fishing activities are scarce and for subsistence only. This

area is outside the UNESCO zones, yet its biodiversity is

remarkable. It includes fringing reefs in protected bays and

exposed to dominant tradewinds. Intermediate patch reefs are

present in the deep open lagoon, which is bounded by barrier reef

sections, both intertidal and subtidal. The entire domain covers

418 km2 of reefs and lagoons. Habitats include coral habitats,

generally in good health but with some dead sections, several

extensive algae-dominated reef flats, and multi-species seagrass

beds. In the main bay, an existing MPA surrounds entirely a large

high island.

Fish Censuses and Functional Traits
Fish biodiversity data were collected in 2005, in the framework

of the neo-Caledonian economic zone program (ZONECO).

Presence/absence and abundance of 335 fish species were counted

on 54 transects (50610 m) distributed on 27 stations (Fig. 1a). Fish

data were collected by underwater visual census using the method

described in Labrosse et al. (2001) [18] and therefore did not

require any ethical approval. In order to capture a significant

fraction of the biodiversity of the area with a limited number of

stations, sampling was stratified by reef geomorphology and

exposure, which are known factors structuring fish communities

[19]. Stations were selected a priori in the vicinity of coral habitat

zones on three main reef types: fringing (9 stations), lagoon (10

stations) and barrier reefs (8 stations) (Table S1). This sampling

design is the result of nearly 20 years of sampling effort in New-

Caledonia and the Indo-Pacific and is optimized to describe fish

diversity and abundance [20]. Similar stratification was also used

to characterize fish community to support in 2008 the listing of

New Caledonia reefs as UNESCO World Heritage areas [21].

More details on the underwater census procedure and sampling

design are given in File S1.

Fish functional groups were defined afterwards by combining

three life traits: trophic regime, maximum body size class (which

determine the position of fishes in food webs), and mobility (which

reflects fish home range) [22]. For trophic regime, we considered 4

qualitative classes (i.e. Plankton feeders; Herbivorous; Carnivo-

rous; and Piscivorous). Mobility and size classes were semi-

quantitative (six classes for body size and 4 classes for mobility).

Combination of these classes led to define 59 functional groups for

the study site and given the counted species.

Habitats as Surrogates of Fish Assemblages
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Habitat Mapping
In situ inventory and description of habitats. We

described architectural and benthic characteristics from fieldwork

at 36 seascapes selected from very high spatial resolution (2.4

meter) of Quickbird satellite images to capture most of habitat

diversity in the study site [21]. A reefscape is defined here as a

group of habitats, located in one broad geomorphological zone

(e.g. a fringing reef, a patch reef, a barrier reef). A new habitat was

Figure 1. Characteristics of fish sampling stations. Panel A localizes sampling stations in Port-Bouquet bay in New-Caledonia. Black dots
indicate fish census stations. Panel B indicates the number of overlaps between fish census’ 5000 m neighborhoods. For a specific area, the higher
the number of overlaps (1 to more than 10), the higher is the bias of habitats’ rarity index. Panels C–H present habitat characterization around fish
sampling stations 1, 2 and 3, based upon coarse geomorphology (C), a combination of coarse, medium, and fine geomorphology (D), and a
combination of coarse, medium, fine geomorphology, rugosity, and benthic components (D). (F), (G) and (H) show habitats characterizing the three
fish census stations when various grains are considered (respectively 250 m, 500 m, and 750 m).
doi:10.1371/journal.pone.0040997.g001

Habitats as Surrogates of Fish Assemblages
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recorded in the reefscape when coverage and/or architecture

changed visually across several tens of meters. Thus, one reefscape

site could yield several habitat descriptions (up to 9).

Architecture is related to the rugosity of the habitat (average

variation of topography) but also to coral colonies growth forms

and the height of seagrass and algal canopies. We used a Medium-

Scale Approach (MSA) [23], to infer rugosity and coverage of

benthic components for each sampled seascape and habitat.

Typology of habitats and mapping. We used 6 different

ways to describe habitats, on the basis of geomorphology (coarse,

medium, and detailed), topography, and benthic cover (coral and

prevailing).

Three of them used geomorphological categories, reflecting

distance to land, depth, and exposition to wind and swell. All these

factors are potentially important to explain fish community

structures [24–25]. First, a coarse characterization listed 8 broad

classes of reefs (e.g. barrier reef; fringing reef, etc…). A medium

characterization (16 classes) provided detailed geomorphological

description (e.g. reef flat, internal slope, etc…) within each of the 8

coarse classes. A third geomorphological characterization (7

classes) referred to peculiar finer structures (e.g. vertical faults,

spur and groves) which create many micro-habitats in terms of

hydrodynamic, light and depth variations.

A fourth habitat characterization was based on rugosity only

(i.e. local variation of topography) since rugosity is a primary

structuring factor for fish communities [26,27]. We ranked

habitats into four classes of rugosity: low (variation of relief

between 0 and 40 cm high above the floor), medium (between 40

and 100 cm), high (between 100 and 200 cm) and very high

(.200 cm).

The next two habitat characterizations used benthic cover

information. The fifth habitat characterization separated habitats

with very low living coral coverage (,5%) from those with low

(from 5 to 15%), medium (from 15 to 30%) and high living coral

coverage (.30%). Then, the sixth characterization took into

account groups of habitats defined from a Principal Component

Analysis (PCA) of all benthic variables quantified by MSA.

Finally, 11 different typologies of habitats were defined by

meaningfully combining these six characterizations (Table 1).

Specifically, six simple typologies considered only one character-

ization at a time. The five last typologies successively combined

coarse geomorphology with 1 to 5 of the other characterizations.

The most detailed habitat definition was used to map habitat using

a series of very high resolution Quickbird images at 2.4 m

resolution. The user-oriented principles and methods from

Andréfouët (2008) [28] were used to interpret the images. Then,

for each typology, a map of Port-Bouquet Bay was achieved by

degrading the information from the initial map (i.e. merging

polygons with similar description) using the Geographic Informa-

tion Software ESRI ArcMap 9.2 software. Figures 1c, 1d, and 1e

illustrate three different maps, respectively on the basis of three

different characterizations of habitats: from the simplest (coarse

geomorphology only, Fig. 1c) to the most complete (Fig. 1e).

Testing Habitats as Surrogates for Fish Communities
Tested variables. To test whether habitats are good

surrogates for fish communities, we calculated for each station

fish richness, diversity, and rarity both for taxonomic groups

(species) and functional traits. We also calculated habitat richness,

diversity, and rarity for a given neighborhood. We tested 9 extents

of neighborhood (circles of 30 m, 60 m, 100 m, 250 m, 500 m,

750 m, 1000 m, 3000 m, and 5000 m radius around each fish

census station). Figures 1f, 1g, and 1h illustrate how habitats are

taken into account for the surrogacy analysis around three fish

sampled stations when different neighborhoods are used. With this

spatial approach, we assumed that a fish assemblage sampled at a

given station is dependent on the habitats around it. Indeed, most

fish species we counted have home ranges larger than the transect

length. For sedentary species, neighboring habitats might also

influence nutrient flow, access to mobile prey, and in general

provision of resources and therefore fish survival. We considered

also very wide neighborhood (.1 km) in order to test the

sensitivity of the surrogacy approach to various spatial scales,

and to identify a possible optimal conservation unit size.

Richness was the number of species (or functional groups) and

habitat richness was the number of mapped habitats around the

station (or network of stations) for the neighborhood and the

habitat typology considered.

For rarity, we created a rarity index for each entity (a species, a

functional group, or a habitat) as a function of the number of

sampled stations where the corresponding entity has been

recorded (Table 2). Note that this rarity index is not independent

Table 1. Criteria used to characterize habitats in this study.

Habitat
characterization Geomorphology Topography Benthic cover

Coarse Medium detailed Coral Prevailing

1 N

2 N

3 N

4 N

5 N

6 N

7 N N

8 N N N

9 N N N N

10 N N N N N

11 N N N N N N

The first six characterizations consider only one criterion at time. The five last use various combinations of the six criteria.
doi:10.1371/journal.pone.0040997.t001

Habitats as Surrogates of Fish Assemblages
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of species richness and has not been previously reported in the

literature. A rarity index is then calculated for each station (or

network of stations) as the sum of rarity indices of all species/

functional groups/or habitats present in the station or in the

network (Table 2).

For diversity, the Shannon-Weaver index was calculated for

each station (or network) by using fish abundances (Ai) and habitat

surfaces (Sj) for the computations (Table 2).

Richness, rarity, and diversity of habitats were then respectively

evaluated as surrogates of richness, rarity and diversity of fishes,

both taxonomic and functional. The richness and rarity based

algorithms are consistent with typical planning approach as they

intend to protect as many entities (i.e. habitats, species or

functions) and rare species as possible. The diversity based

algorithm is more innovative. Its value is to protect as many

entities as possible with an equivalent efforts: for example,

protecting 10 species with similar effort might be far more

interesting than protecting 1 species and barely protecting 9

others.

Surrogacy analysis. Iterative heuristic algorithms were

performed (software R 2.13.0) to create MPA networks by

selecting stations step by step according to their richness, diversity,

and rarity of entities (habitats or fishes). Three algorithms were

tested both on habitat data (surrogate scenario) and fish data

(optimal scenario): i) A richness-complementarity algorithm

selected stations to increase as fast as possible the number of

entities included in the network. The first station selected was the

richest. Stations iteratively added were those with the highest

number of entities not already included in the network; ii) Then, a

rarity algorithm selected step by step the richest stations in rare

entities to add to the network; iii) Finally, a diversity-complemen-

tarity algorithm selected for each iteration the station that yielded

the most diversified network (i.e., highest Shannon-Weaver index).

For each algorithm, the potential of habitats to be efficient

surrogates of fish community was measured by comparing three

curves:

– The tested cumulative curve of richness, rarity or diversity of

fishes included in the network when stations were selected by

surrogate scenario (habitat data).

– The optimal cumulative curve obtained when stations were

selected by optimal scenario (fish data).

– The average random curve obtained by 999 random selections

of stations, framed by a 95% confidence interval.

We used an index similar to the Species Accumulation Index

(SAI) previously described by Ferrier and Watson (1997) [8] to

measure quantitatively the differences between these three curves:

SAI~
Ascenario{Arandom

Aoptimal{Arandom

where Ascenario, Arandom and Aoptimal were respectively areas under the

tested curve, random curve, and optimal curve. A Species

Accumulation Index close to 1 indicated that habitats were good

surrogates of fish communities whereas Species Accumulation

Index close to 0 indicated that the network of stations selected by

habitat data did not reach its conservation goal faster than a

random selection of stations, thus is a poor surrogate.

Factors driving variability. To identify the factors influ-

encing effectiveness, we used the Sheirer-Ray-Hare extension of

the Kruskall-Wallis’ test [29] to evaluate whether SAI results

changed significantly between habitat characterizations, between

neighborhood sizes, or both. We choose this test instead of analysis

of variance because data were non-normal.

Robustness of surrogacy analysis to sampling was assessed by

confronting (Wilcoxon Mann-Whitney paired tests) SAI results

obtained with the entire data set (all stations) and results obtained

when removing 1 to 5 randomly selected stations (99 runs). We

then evaluated the proportion of simulations which provided

significantly different results.

Finally, we summarize in Table 3 every scenario tested in this

study. By combining all four factors (i.e. neighborhood size,

habitat characterization, type of algorithm, and random removal

of stations), 1782 scenarios were tested.

Results

Fish Censuses and Habitat Mapping
335 species were counted among the 27 stations sampled, with a

mean (SD) of 91 (20) species per station. Accumulation curves of

fish species shows the level of biodiversity captured (Fig. S1).

Spatial distribution was contrasted among species. Some genera

(e.g., Pomacentrus sp., Neopomacentrus sp.) were highly abundant (more

than 2000 individuals) at some stations but were absent at other

stations. For six species, only one individual could be observed at

only one station. Some other species (e.g. the butterflyfish Chaetodon

lunulatus (Quoy & Gaimard (1825)) were widely distributed and

observed at almost all stations. Similarly, some functional groups

were highly redundant (i.e. 44% of groups were represented at

Table 2. Indices used to express rarity and diversity of
habitats and fishes.

Index Formula

Rarity index of fish i Ii~2Ni

Fish rarity index of station/network k
Rk~

P

i

Ii

Rarity index of habitat j Ij0~2Nj0

Habitat rarity index of station/network k
Rk’~

P

j

Ij’

Fish diversity index of station/network k
Hk~{

P

i

( Ai
Atot

|log2( Ai
Atot

))

Habitat diversity index of station/network k
Hk’~{

P

j

( Sj
Stot

|log2( Sj
Stot

))

Hk is the Shannon-Weaver index of entity k.
Ni and Nj : Number of stations where the corresponding fish/habitat is absent.
Ai: Abundance of fish specie i.
Atot: Total abundance of all species.
Sj: Surface of habitat j.
Stot: Total surface of all habitats.
doi:10.1371/journal.pone.0040997.t002

Table 3. Summary of all scenarios tested in this study.

Factors tested Values tested

Conservation goal Richness - Rarity - Diversity

Habitat characterization 1–2–3–4–5–6–7–8–9–10–11

Neighborhood size (m) 30–60–100–250–500–750–1000–3000–5000

Number of stations removed 0–1–2–3–4–5

One test corresponds to a particular combination of each factor and value.
doi:10.1371/journal.pone.0040997.t003

Habitats as Surrogates of Fish Assemblages
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more than 50% of stations) whereas others were found at only one

station.

The most detailed habitat map encompassed 103 habitats

classes, divided into 8 coarse geomorphological groups. Patch

reefs, located 1 to 5 km offshore, were the most complex structures

and could encompass 30 habitats overall. However, the richest fish

sampling stations in terms of habitats (i.e. 40 habitats) were found

on fringing reefs for a 5000 m neighborhood. At this scale, the

station included fringing reef, barrier reef and patch reef habitats.

Testing Habitats as Surrogates for Fish Communities
As expected, results of surrogacy effectiveness were contrasted.

Figure 2 shows accumulation curves for two contrasted examples.

The first one (Fig. 2a) was obtained for functional rarity, with a

500 m neighborhood size and using the medium geomorpholog-

ical characterization of habitats. For this configuration, the tested

cumulative curve of fish rarity index was above the average

random curve and its 95% confidence interval, which implied

good surrogacy effectiveness. The second example (Fig. 2b) is

obtained for richness, with a 3000 m neighborhood size and using

the rugosity based habitat characterization. Here, the tested

cumulative curve of fish richness was below the average random

curve and its 95% confidence interval, which implied poor

surrogacy effectiveness.

Overall, the SAI results show that habitats were effective

surrogate of fish communities in very few configurations (Fig. 3).

Specifically, only the algorithm on the basis of rarity provided

significant results (Fig. 3e and 3f). Those results were obtained for

taxonomic data (Fig. 3e) when habitats were characterized by

coarse and medium geomorphology, with neighborhoods of

medium sizes (i.e. from 250 m to 500 m and from 750 m to

1000 m respectively). For functional data (Fig. 3f), best results were

obtained when habitats were characterized by medium geomor-

phology, with neighborhood sizes of 500 to 750 m. Positive

(although non-significant) results were also obtained for the

diversity-based algorithm when combining a small neighborhood

size (250 m) and a characterization of habitats based on rugosity.

For the three algorithms, variability was high and was driven by

the neighborhood size variation (Table 4). In addition, for the

richness based algorithm, habitat characterization also influenced

the spread of results (Table 4). Interaction between neighborhood

size and habitat characterization was clearly visible on Fig. 3, but

could not be tested statistically given the lack of replicates.

Importantly, removing stations from the initial data set affected

SAI results, regardless of the variables tested (taxonomic and

functional richness, rarity, or diversity). Removal of only one

station could affect results significantly (Wilcoxon Mann-Whitney’s

paired test, p,0.05) in 92 to 97% of the scenarios, all

configurations included, for the three algorithms (Table 5).

Conversely, the random removal of five stations significantly

affected results only for 58 to 79% of simulations (Table 5). Most

dramatic effects appeared with only one removal.

Discussion

The main goal of this study was to test if habitats could be

effective surrogates of taxonomic and functional assemblages. We

found generally weak effectiveness, except for some specific spatial

scales and some habitat characterizations.

Taxonomic Versus Functional Analysis
Ecosystem functioning is ruled more by functional assemblages

than by taxonomic assemblages [4]. Changes in functional

diversity are thus more likely to affect the stability, resistance

and resilience of species assemblages than changes in taxonomic

diversity [30,31]. For these reasons, conservation planners should

consider including functional criteria in their analysis to comple-

ment, or replace, taxonomic data [31]. Here, we found that

habitats were generally weak surrogates for both taxonomic and

functional fish data. For both, results were highly variable but we

Figure 2. Accumulation curves of two contrasted examples of surrogacy effectiveness. A shows good surrogacy effectiveness obtained
for functional rarity with a characterization of habitats based on medium geomorphology and considering a 500 m neighborhood size; B shows poor
surrogacy effectiveness obtained for functional richness with a characterization of habitats based on topography and considering a 5000 m
neighborhood size.
doi:10.1371/journal.pone.0040997.g002

Habitats as Surrogates of Fish Assemblages
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note that the best results were obtained for the same habitat

typologies (i.e. coarse and medium geomorphology for rarity,

rugosity for diversity) and for similar neighborhood distances (i.e.

from 250 m to 1000 m). Finding similar general pattern for both

types of data suggests that conservation plans built on taxonomic

criteria could be transposed to functional criteria, and vice versa.

However, even if taxonomic and functional analysis may share

patterns, variability was high and taxonomic and functional fish

data did not always provide the same range of Species

Accumulation Index for a similar configuration of neighborhood

sizes and habitat characterization.

Factors Driving Variability of Surrogacy Effectiveness
Surrogacy analyses have been widely used and many studies

report highly variable effectiveness results. Here we also found

variable results according to neighborhood sizes and type of

surrogates (i.e. habitat characterization) that match the variability

reported both in marine and terrestrial ecosystems

[6,9,13,15,17,32]. However, none investigated systematically for

a given data set the reasons that could explain the observed

variability [12]. Ecological processes have been discussed to

explain the results according to some feeding range, mobility, use

of preferential habitats, and other ecological traits that could be

related to the studied configurations, but no clear ecological and

functional reasons could be sorted out. Specifically for the multi-

taxa Wallis case study [9] and for the present results in fish

communities, no known ecological processes can be identified to

explain the patterns in Figure 3. Thus, here, we followed another

path, by examining the influence of the randomly selected stations

that have significantly changed the results when they were omitted

from the analysis, for a given habitat configuration (habitat type

and neighborhood size).

First, for richness-complementarity and diversity-complemen-

tarity scenarios, spatial distribution of habitats (specific to the study

site) and spatial distribution of fish data (also specific to the study)

drove habitat effectiveness as surrogate for fish communities. For

neighborhoods large enough, several stations can yield a very high

habitat richness, if, for instance, the station includes in this

neighborhood different geomorphological zones. Typically, a

station in an intermediate patch reef that happens to overlap a

fringing reef for a given neighborhood size will have a very high

habitat richness. If the distance between reef types is short, this will

happen frequently, even for small neighborhood. Thus, between

the many stations belonging to the same geomorphological

structure, the algorithms will prioritize early in the iterations

these stations close to different geomorphological zones. Station A

was for example quickly selected by the diversity based algorithm

for a neighborhood of 750 m, as this neighborhood covered both

fringing and patch reef geomorphological structures (i.e. many

habitats) (Fig. 2h). The algorithm then searched other type of

complementary habitat configurations, likely around the barrier

reef area, since barrier habitats were not yet included. Unfortu-

nately, station A had very low fish diversity (H9 = 1.83 and

H9 = 1.20 for taxonomic and functional diversity respectively),

essentially dominated by one species: the coral demoiselle

Neopomacentrus nemurus (Bleeker, 1857). For a habitat based

algorithm, fringing reef fish species will thus be missing from the

network since the following iteration favor missing complementary

barrier habitat configuration, and the diagnostic is thus poor

effectiveness. Considering a 750 neighborhood size, removal of

station A thus changed the results from non-effective to effective

(Wilcoxon Mann-Whitney’s paired test, p,0.05). This illustrates

the significant influence of a single sampling station in testing

surrogacy; and the importance of the reference data set sampling

strategy (i.e. position of stations).

The rarity-based scenario first appeared interesting for man-

agement planning since best results of surrogacy were obtained for

this scenario. However, the rarity-based algorithm was affected by

sampling in 2 different ways. First, when stations are close enough

spatially, their neighborhoods can overlap (e.g. Fig. 1h). If a rare

habitat is present in that shared overlapping neighborhood, then

this habitat is counted twice. The habitat rarity index is thus lower

than what it should be. Increasing neighborhood size increases

probability of overlapping and therefore increases the bias of the

rarity index. A figure (Fig. 1b) shows oversampled areas, from this

aspect, on the study site for a 5000 m neighborhood extent, which

could possibly affect habitat’s rarity index. It is worth noting that

oversampling is not here a replication issue. The choice of fish

stations geographically close can be justified by different exposure

to dominant wave and wind energy. Yet, this can affect the habitat

rarity index as described above. Moreover, since these very close

stations with similar habitat composition in their neighborhood

could hold very different fish assemblages by design, this can

explain the overall low surrogacy effectiveness we observed.

Second, and for small neighborhoods, the surface areas of some

habitats in the neighborhood of fish sampling stations were not

Figure 3. SAI results of all scenarios tested, for each neighborhood size and each characterization of habitats. SAI above 95%
confidence interval are obtained for rarity only and mean that stations selected on habitats criteria are significantly better surrogates for fish
communities than a random selection of stations.
doi:10.1371/journal.pone.0040997.g003

Table 4. Effect of habitat characterization and neighborhood
extent on SAI results (Sheirer-Ray-Hare’s test).

Algorithm
Conservation
target Factor H p

Richness Taxonomic groups Habitat
characterization

37.96 ,0.001***

Neighborhood size 23.58 0.003**

Functional groups Habitat
characterization

23.56 0.005**

Neighborhood size 17.08 0.030*

Rarity Taxonomic groups Habitat
characterization

13.55 0.139

Neighborhood size 26.52 ,0.001***

Functional groups Habitat
characterization

13.39 0.146

Neighborhood size 32.87 ,0.001***

Diversity Taxonomic groups Habitat
characterization

13.55 0.139

Neighborhood size 26.52 0.001***

Functional groups Habitat
characterization

13.39 0.146

Neighborhood size 32.87 ,0.001***

Results are significantly affected by neighborhood size for all scenarios, and are
affected by habitat characterization for richness scenarios only. Asterisks (*)
indicate that results are significant with 95% (*), 99% (**), or 99,9% (***)
confidence.
doi:10.1371/journal.pone.0040997.t004
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representative of their overall presence on the map. Considering a 250 m neighborhood size and a habitat characterization based on

medium geomorphology for instance (Fig. 4), the habitat

characterization ‘‘intertidal reef flat’’ (numbered ‘‘15’’ on Fig. 4)

is largely distributed on the overall map, but little represented in

sampled sites’ neighborhoods. Thus, rarity is also very sensitive to

the reference data set (e.g. fish) sampling design. Here, fish stations

were located mostly on coral dominated areas (a frequent bias in

fish survey, e.g. [6]) and rarity index of sandy, algal, or seagrass

dominated habitats are overestimated compared to their actual

coverage in the entire domain. To obtain less biased results of

surrogacy analysis, stations should thus be sampled so that they

best represent overall habitat surfaces and should be separated

enough to avoid overlap between stations.

Thirdly, randomness affected selection of stations for richness

and rarity based algorithm in the case of simple habitat

characterization. When habitat characterizations were simple

and neighborhoods were small, some stations could have exactly

the same richness and rarity of habitats. In this case, stations were

selected at random by the algorithm, which increased the

variability of the surrogacy effectiveness depending on the fish

community present on these stations. However, diversity based

scenarios could not be affected by similar effects. Indeed, diversity

accounts for the surface of the habitats a well, and it is unlikely that

habitat surfaces around stations are perfectly equal for any

neighborhood.

These effects of habitat spatial structure, sampling, and

randomness were evidenced by investigating the strong shift in

effectiveness when removing only one, or few, stations. Most

striking is the influence that only one station could have, with

Table 5. Effect of removing stations on SAI results and comparison with all stations results (Wilcoxon’s test).

Taxonomic data Functional data

Scenario SAI Mean (SD) % significantly different SAI Mean (SD) % significantly different

Richness

All stations 20.02 (0.19) 0.01 (0.21)

1 station removed 20.03 (0.20) 94% 20.00 (0.20) 94%

2 stations removed 20.02 (0.19) 81% 20.01 (0.19) 72%

3 stations removed 20.03 (0.19) 74% 20.01 (0.18) 75%

4 stations removed 20.02 (0.19) 77% 20.01 (0.18) 69%

5 stations removed 20.02 (0.19) 75% 20.01 (0.17) 72%

Diversity 20.00 (0.18)

All stations 20.19 (0.19) 20.06 (0.17)

1 station removed 20.20 (0.18) 92% 20.07 (0.22) 92%

2 stations removed 20.20 (0.18) 84% 20.07 (0.21) 80%

3 stations removed 20.19 (0.17) 64% 20.07 (0.21) 71%

4 stations removed 20.20 (0.18) 66% 20.08 (0.20) 81%

5 stations removed 20.20 (0.17) 58% 20.08 (0.20) 79%

Rarity

All stations 0.05 (0.21) 0.04 (0.23)

1 station removed 0.05 (0.26) 97% 0.03 (0.22) 95%

2 stations removed 0.06 (0.26) 81% 0.01 (0.22) 87%

3 stations removed 0.04 (0.26) 70% 0.02 (0.22) 82%

4 stations removed 0.05 (0.25) 80% 0.00 (0.21) 80%

5 stations removed 0.06 (0.25) 77% 0.01 (0.20) 70%

For all scenario tested (1 to 5 stations randomly removed from the initial dataset) we evaluated the proportion of SAI results significantly different from results obtained
with the overall dataset. We also compared mean (SD) of SAI results when all neighborhood sizes and habitat characterizations are confounded.
doi:10.1371/journal.pone.0040997.t005

Figure 4. Discrepancies between habitat surface areas present
on the area and habitat surface areas sampled. The figure
displays a specific example, considering a 250 m neighborhood size
and a characterization of habitats based on medium geomorphology.
On the x-axis, habitats are ranked from the least (on the left) to the
most (on the right) represented on the overall map. Some well
represented habitats on the overall map (e.g. habitats ‘‘14’’ and ‘‘15’’)
appear under-sampled.
doi:10.1371/journal.pone.0040997.g004
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conclusions on surrogacy effectiveness changing completely. By

contrast, removing more stations does not necessarily affect results

as much as only one station (Table 5). In fact, some stations

increase effectiveness while others decrease effectiveness, thus

removal of several stations annihilate their respective effect and

has a lower effect on results overall. To our knowledge, this study

is the first to report dependence of surrogacy analyses from so few

stations in the marine environment, while identifying the reasons

(spatial configuration of habitats, sampling) that explain the

sensitivity. In a terrestrial environment, Freitag & Van Jaarsveld

(1998) [33] assessed the effects of missing sites and missing taxa on

reserve network design. They concluded that a 10–20% data

deletion increased network variability (location of selected MPAs)

and the number of marine protected areas required to represent all

species sampled in the area.

The very low robustness of surrogacy analysis and the overall

low surrogacy effectiveness we report here lead to cautious

conclusions for conservation planning. As, in practice, MPA design

is generally undertaken for one given scale and one given

surrogate, sampling of the surrogate data set may therefore be

extremely determinant on surrogacy effectiveness.

However, our sampling effort was moderate (only 27 stations).

This likely amplified the importance of each station and limited

robustness. Using a more extensive dataset should decrease the

sensitivity to a particular set of stations. Nevertheless, the factors

influencing effectiveness that we have identified in this study

remain the same. Practitioners are now fully aware of some

potential traps they should not forget, either when designing the

sampling of the true surrogates, or when analyzing the results.

This study suggests that simulations need to be performed to

assess if an optimal trade-off can be found to maximize robustness,

in terms of estimator surrogate (habitat) description and neigh-

borhood and target surrogate (fish) sampling efforts. Also, one can

suggest having very few fish stations well separated spatially,

sampled on habitats thematically and spatially apart. But limited

stations likely imply an incomplete inventory, taxonomic or

functional. By contrast, one can recommend the multiplication

of sampling sites to limit the influence that only one site could

have, but this may not be practical.

In the literature, for both pattern and selection based analysis,

the range of sampling efforts implemented is wide. Most studies

used larger data sets than ours [6,7,17,34,35,36,37] and should

therefore remain reliable. For some other studies [9,38,39,40,41],

the area sampled and the sampling effort is similar to ours and

conclusions might need to be revisited. Some studies (e.g. [35,40])

used sampling stations geographically very close (i.e. with similar

habitat composition) and this might also affect surrogacy

effectiveness measurements. When using only field data for

diversity assessment, we believe that a high density of geograph-

ically distant sites is best to yield reliable results.

An alternative approach, widely documented in the literature,

would be to divide the entire study area in virtual conservation

units (i.e. grid cells), and to estimate species diversity of each cell by

extrapolation of the reduced field data. With such an approach

(which can be inspired by a variety of species distribution, habitat

suitability, or niche models) surrogacy can be tested using grid cells

(i.e., using the entire area) rather than being confined to sampling

sites. Gridded methods, however, always generate unknown level

of errors due to the extrapolation process, and may bias, positively

or negatively, the interpretation of the true effectiveness of the

surrogates. In fact, while many studies evaluated surrogacy

effectiveness using extrapolated gridded approaches (e.g.,

[12,13,26,41,42,43,44,45]), others directly used the sampling sites

(e.g., [6,8,9,39,46]). Obviously, a site-based approach may not be

entirely satisfactory for managers if they need a comprehensive

spatial zoning plan. However, if the sampling sites were

representative of the overall area, managers can be adequately

guided. To our knowledge, the effectiveness of surrogates using

site-based and gridded-based approaches has been seldom

compared, and rather suggested higher effectiveness for gridded

approaches [16]. This aspect warrants further investigations as it is

an important unknown of the transferability of theoretical results

to applied conservation planning.

Using Habitats Maps for Conservation Planning?
Despite the intuitive interest to use habitat maps as surrogates of

biodiversity census, we are still unable to tell whether habitats are

effective surrogates of taxonomic and functional representation or

not. In this study we showed contrasting results depending on the

sampling effort achieved to build the reference data sets, against

which effectiveness can be tested. We assume that similar

conclusions could arise in other surrogacy studies, with different

taxa and habitats, marine or terrestrial.

Consequences for conservation planning are two-fold. First, this

clearly reinforces the idea that surrogacy results should not be

extrapolated from one site to another, since various sets of

sampling sites may provide highly different results [6,13].

Secondly, we believe that surrogacy tests will be more reliable if

a large amount of stations are sampled to build a reference. In

such a case, each individual site would have a lower contribution

to the overall diversity sampled, and more sites would be required

to significantly change the results. If sampling effort is consistent

enough, surrogacy analysis could be more influenced by the

general pattern of habitat structure than the sampling and random

effect. Our results suggest that the diversity algorithm is the least

sensitive to the identified bias. It can be biased by a peculiar station

located close to very different habitat configuration, but this

configuration can certainly be easily avoided, if habitat maps

(definitive or as pre-interpretation from a satellite image) are

available beforehand. The best compromise to avoid bias seems to

favor diversity-based algorithm, and achieve adequate sampling

replication to avoid outliers.

Despite some encouraging results of habitats as surrogate for

biodiversity [7,9], conservation biology now faces a dilemma: on

one hand, the high variability of surrogacy effectiveness among

study areas implies to test surrogacy for each conservation plan

[47], and remain reliable only for extensive sets of data, which

involve both surrogate and target expansive censuses. On the

other hand, surrogacy remains relevant only for broadly effective,

affordable, and easily assessed surrogate. Considering time

requirement for the task, we cannot expect managers to

systematically test surrogacy effectiveness of different entities

before starting conservation planning.
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